人教版八年级上册数学三角形全等知识点

合集下载

人教版八年级数学上册 第十二章 全等三角形 知识点归纳

人教版八年级数学上册 第十二章 全等三角形 知识点归纳

人教版八年级数学上册第十二章全等三角形知识点归纳12.1全等三角形经过平移、翻折、旋转,能够完全重合的两个图形叫做全等形。

经过平移、翻折、旋转,能够完全重合的两个三角形叫作全等三角形。

全等用符号“≌”表示,读作“全等于”。

例1、△ABC≌△DEF读作:三角形ABC全等于三角形DEF。

把两个全等的三角形重合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

用“≌”表示两个图形全等的时候,必须把对应的顶点写在对应的位置上。

例2、已知△ABC≌△DEF,那么就说明:①点A对应点D,点B对应点E,点C对应点F②∠A=∠D,∠B=∠E,∠C=∠F③AB=DE,AC=DF,BC=EF用“全等于”这个词表示两个图形全等的时候,顶点不一定有一一对应关系。

例3、已知△ABC全等于△DEF,那么点A不一定对应D,点A也可能对应点E或者点F 。

全等三角形的性质:①对应边相等②对应角相等③角平分线、中线、高分别对应相等④周长相等⑤面积相等12.2三角形全等的判定全等三角形的判定依据:①三边对应相等的两个三角形全等,简称“边边边”或“SSS ”。

②两边一夹角对应相等的两个三角形全等,简称“边角边”或“SAS ”。

③两角一夹边对应相等的两个三角形全等,简称“角边角”或“ASA ”。

④两角一对边对应相等的两个三角形全等,简称“角角边”或“AAS ”。

⑤一条斜边和一条直角边对应相等的两个直角三角形全等,简称“斜边直角边”或“HL ”。

温馨提示:“SSA ”和“AAA ”不能证明两个三角形全等。

全等三角形的证明格式:SSS 、SAS 、ASA 、AAS 的证明格式: HL 的证明格式:在△ABC 与△DEF 中 在Rt △ABC 与Rt △DEF 中∵{ 条件1条件2条件3∵{条件1条件2 ∴△ABC ≌△DEF (条件) ∴△ABC ≌△DEF (HL )12.3角的平分线的性质如果从一个角的顶点引出一条射线把这个角分成两个相等的角,那么这条射线叫做这个角的角平分线。

初二数学知识点总结(包括八年级人教版上下两册知识内容-非常完整)

初二数学知识点总结(包括八年级人教版上下两册知识内容-非常完整)

资料内容仅供您学习参考,如有不当之处,请联系改正或者删除八年级上册知识点总结第十一章全等三角形复习一、全等三角形1.定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。

2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。

理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

(2)全等三角形的周长相等、面积相等。

(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:个角的平分线。

1、性质:角的平分线上的点到角的两边的距离相等.2、判定:角的内部到角的两边的距离相等的点在角的平分线上。

三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”(5)截长补短法证三角形全等。

第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

人教版八年级上册第十二章全等三角形知识点总结及复习

人教版八年级上册第十二章全等三角形知识点总结及复习

全等三角形知识点总结及复习一、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理二、基础知识梳理 (一)、基本概念1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

全等三角形定义 :能够完全重合的两个三角形称为全等三角形。

(注:全等三角形是相似三角形中的特殊情况)当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

由此,可以得出:全等三角形的对应边相等,对应角相等。

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边一定是对应边; (4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角; 2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等; 3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。

(2)两角和它们的夹边对应相等的两个三角形全等。

(3)两角和其中一角的对边对应相等的两个三角形全等。

(4)两边和它们的夹角对应相等的两个三角形全等。

(5)斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

八年级(上册)数学《全等三角形》全等三角形的判定-知识点整理

八年级(上册)数学《全等三角形》全等三角形的判定-知识点整理

三角形三条中线的交于一点,这一点叫做“三角形的重心〞。

三角形的中线可以将三角形分为面积相等的两个小三角形。

3. 三角形的角平分线∠A的平分线与对边BC交于点D,那么线段AD叫做三角形的角平分线。

∠1=∠2=∠BAC.要区分三角形的“角平分线〞与“角的平分线〞,其区别是:三角形的角平分线是条线段;角的平分线是条射线。

三角形三条角平分线的交于一点,这一点叫做“三角形的内心〞。

要求会的题型:①三角形中两条高和其所对的底边中的三个长度,求其中未知的高或者底边的长度“等积法〞,将三角形的面积用两种方式表达,求出未知量。

三角形的稳定性1. 三角形具有稳定性2. 四边形及多边形不具有稳定性三角形的内角1. 三角形的内角和定理三角形的内角和为180°,与三角形的形状无关。

2. 直角三角形两个锐角的关系直角三角形的两个锐角互余〔相加为90°〕。

有两个角互余的三角形是直角三角形。

三角形的外角1. 三角形外角的意义三角形的一边与另一边的延长线组成的角叫做三角形的外角。

2. 三角形外角的性质三角形的一个外角等于与它不相邻的两个内角之和。

三角形的一个外角大于与它不相邻的任何一个内角。

多边形1. 多边形的概念在平面中,由一些线段首尾顺次相接组成的图形叫做多边形,多边形中相邻两边组成的角叫做它的内角。

多边形的边与它邻边的延长线组成的角叫做外角。

连接多边形不相邻的两个顶点的线段叫做多边形的对角线。

一个n边形从一个顶点出发的对角线的条数为〔n-3〕条,其所有的对角线条数为.3. 正多边形各角相等,各边相等的多边形叫做正多边形。

〔两个条件缺一不可,除了三角形以外,因为假设三角形的三内角相等,那么必有三边相等,反过来也成立〕要求会的题型:①告诉多边形的边数,求多边形过一个顶点的对角线条数或求多边形全部对角线的条数n边形从一个顶点出发的对角线的条数为〔n-3〕条,其所有的对角线条数为.将边数带入公式即可。

多边形的内角和1. n边形的内角和定理n边形的内角和为2. n边形的外角和定理多边形的外角和等于360°,与多边形的形状和边数无关。

数学八年级上册知识点总结人教版

数学八年级上册知识点总结人教版

数学八年级上册知识点总结人教版第十一章三角形。

1. 三角形的概念。

- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

- 三角形有三条边、三个内角和三个顶点。

2. 三角形的分类。

- 按角分类:- 锐角三角形:三个角都是锐角的三角形。

- 直角三角形:有一个角是直角的三角形,直角三角形中直角所对的边叫做斜边,另外两条边叫做直角边。

- 钝角三角形:有一个角是钝角的三角形。

- 按边分类:- 不等边三角形:三边都不相等的三角形。

- 等腰三角形:有两边相等的三角形,相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,腰与底边所夹的角叫做底角。

等腰三角形中,等边三角形是特殊的等腰三角形,它的三边都相等。

3. 三角形的三边关系。

- 三角形两边之和大于第三边,两边之差小于第三边。

- 用式子表示为:a + b>c,a - b(a、b、c为三角形的三边)。

4. 三角形的高、中线与角平分线。

- 高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。

三角形有三条高,锐角三角形的三条高都在三角形内部;直角三角形有两条高是直角边,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部。

- 中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

三角形的三条中线都在三角形内部,且相交于一点,这个点叫做三角形的重心。

- 角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

三角形的三条角平分线都在三角形内部,且相交于一点。

5. 三角形的内角和与外角和。

- 三角形内角和定理:三角形的内角和为180^∘。

- 三角形的外角:三角形的一边与另一边的延长线组成的角叫做三角形的外角。

- 三角形的外角性质:- 三角形的一个外角等于与它不相邻的两个内角之和。

- 三角形的一个外角大于与它不相邻的任何一个内角。

- 三角形的外角和为360^∘。

人教版初中八年级数学知识点总结

人教版初中八年级数学知识点总结

人教版初中八年级数学知识点总结八年级数学(上)知识点人教版八年级上册主要包括全等三角形、轴对称、实数、一次函数和整式的乘除与分解因式五个章节的内容。

第十一章全等三角形一、知识框架二、知识概念1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

2.全等三角形的性质:全等三角形的对应角相等、对应边相等。

3.三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”(5)斜边和直角边相等的两直角三角形(HL)。

4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。

通过直观的理解和比较发现全等三角形的奥妙之处。

在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。

第十二章轴对称一、知识框架二、知识概念1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

人教版八年级上册第十二章全等三角形知识点复习

人教版八年级上册第十二章全等三角形知识点复习

A. ①④
B.①②
C.②③
D.③④
2.如图,ABD ≌ CDB ,且 AB 和 CD 是对应边,下面四个结论中不正确的是( )
A. ABD和CDB 的面积相等
A
D
B. ABD和CDB 的周长相等 C. A + ABD = C + CBD
B
C
D.DAD//BC 且 AD=BC
3.如图, ABC ≌ BAD ,A 和 B 以及 C 和 D 分别是对应点,如果
4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS”.
AB = DE 如图,在 ABC 和 DEF 中 BC = EF
AC =
【典型例题】
例1.如图, ABC ≌ ADC ,点 B 与点 D 是对应点, BAC = 26 ,且 B = 20 , SABC = 1,求 CAD , D, ACD 的度数及 ACD 的面积.
数及 BC 的长.
E
F
A
BC
D
本文来源于网络,如果侵权行为,请联系删除!
精品文档,助力人生,欢迎关注小编!
11.如图,在 ABC与ABD 中,AC=BD,AD=BC,求证: ABC ≌ ABD
D A
C B
全等三角形(一)作业
1.如图, ABC ≌ CDA ,AC=7cm,AB=5cm.,则 AD 的长是( )
求证:(1) DE ⊥ AB ; (2)BD 平分 ABC (角平分线的相关证明及性质)
B
A E
D
C
【巩固练习】 1.下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的
形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形; ④若两个图形是全等图形,则它们的大小一定相同,其中正确的是( )

人教版八年级上册数学 12.2 全等三角形全等判定知识点和对应练习(无答案)

人教版八年级上册数学  12.2 全等三角形全等判定知识点和对应练习(无答案)

全等三角形一、全等三角形的概念与性质1、概念:能够完全重合的两个三角形叫做全等三角形。

(1)表示方法:两个三角形全等用符号“≌”来表示,记作ABC∆≌DEF∆2、性质:(1)对应边相等(2)对应角相等(3)周长相等(4)面积相等1.下列各组的两个图形属于全等图形的是( )2.如图,△ABD≌△ACE,则∠B与________,∠AEC与________,∠A与________是对应角;则AB与________,AE与________,EC与________是对应边.第2题图第3题图3.如图,△ABC≌△CDA,∠ACB=30°,则∠CAD的度数为________.4.如图,若△ABO≌△ACD,且AB=7cm,BO=5cm,则AC=________cm.第4题图第5题图5.如图,△ACB≌△DEB,∠CBE=35°,则∠ABD的度数是________.6.如图,△ABC≌△DCB,∠ABC与∠DCB是对应角.(1)写出其他的对应边和对应角;(2)若AC=7,DE=2,求BE的长.二、全等三角形的判定1 全等三角形的判定方法:(SAS),(SSS), (ASA), (AAS),(HL)边边边(SSS)边角边(SAS)角边角(ASA) 角角边AAS 直角边和斜边(HL)三边对应相等的两三角形全等有两边和它们的夹角对应相等的两个三角形全等有两角和它们的夹边对应相等的两个三角形全等.两角和及其中一个角所对的边对应相等的两个三角形全等.有一条斜边和一条直角边对应相等的两个直角三角形全等(HL)专题一:“边边边”全等三角形(SSS)三边对应相等的两个三角形全等,简写成“边边边”或“SSS”,几何表示如图,在ABC∆和DEF∆中,ABCEFBCEBDEAB∆∴⎪⎩⎪⎨⎧=∠=∠=≌)(SASDEF∆【典型例题】AC=DF (SSS)例1找第三边(减公共部分)如图,已知点B,C,D,E 在同一直线上,且A B=AE,AC=AD,BD=CE.求证:△ABC≌△AED.例2找第三边(加公共部分)如图,点B,E,C,F 在同一条直线上,AB=DE,AC=DF,BF=CE,求证:△ABC≌△DEF;例3找第三边(公共边)如图,AD=CB,AB=CD,求证:△ACB≌△CAD.巩固练习1.如图,下列三角形中,与△ABC全等的是( )A.① B.② C.③ D.④2.如图,已知AB=AD,CB=CD,∠B=30°,则∠D的度数是( ) A.30° B.60° C.20° D.50°第2题图第3题图3.如图,AB=DC,请补充一个条件:________,使其能由“SSS”判定△ABC≌△DCB.4.如图,A,C,F,D在同一直线上,AF=DC,AB=DE,BC=EF.求证:△ABC≌△DEF.5.如图,AB=AC,AD=AE,BD=CE.求证:∠ADE=∠AED.6.如图,在ABC ∆中,M 在BC 上,D 在AM 上,AB=AC , DB=DC 求证:AM 是ABC ∆的角平分线7.如图:在△ABC 中,BA=BC ,D 是AC 的中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级上册数学《全等三角形》知识点
摘要:能够完全重合的两个三角形称为全等三角形。

(注:全等三角形是相似三角形中相似比为1:1的特殊情况)
定义
能够完全重合的两个三角形称为全等三角形。

(注:全等三角形是相似三角形中相似比为1:1的特殊情况)
当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

由此,可以得出:全等三角形的对应边相等,对应角相等。

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
(3)有公共边的,公共边一定是对应边;
(4)有公共角的,角一定是对应角;
(5)有对顶角的,对顶角一定是对应角;
表示:全等用“≌”表示,读作“全等于”。

判定公理
1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。

2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。

3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。

由3可推到
4、有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”)
5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”) 所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。

注意:在全等的判定中,没有AAA角角角和SSA(特例:直角三角形为HL,属于SSA)边边角,这两种情况都不能唯一确定三角形的形状。

A是英文角的缩写(angle),S是英文边的缩写(side)。

H是英文斜边的缩写(Hypotenuse),L是英文直角边的缩写(leg)。

6.三条中线(或高、角分线)分别对应相等的两个三角形全等。

性质
三角形全等的条件:
1、全等三角形的对应角相等。

2、全等三角形的对应边相等
3、全等三角形的对应顶点相等。

4、全等三角形的对应边上的高对应相等。

5、全等三角形的对应角平分线相等。

6、全等三角形的对应中线相等。

7、全等三角形面积相等。

8、全等三角形周长相等。

9、全等三角形可以完全重合。

三角形全等的方法:
1、三边对应相等的两个三角形全等。

(SSS)
2、两边和它们的夹角对应相等的两个三角形全等。

(SAS)
3、两角和它们的夹边对应相等的两个三角形全等。

(ASA)
4、有两角及其一角的对边对应相等的两个三角形全等(AAS)
5、斜边和一条直角边对应相等的两个直角三角形全等。

(HL)
推论
要验证全等三角形,不需验证所有边及所有角也对应地相同。

以下判定,是由三个对应的部分组成,即全等三角形可透过以下定义来判定:
S.S.S. (Side-Side-Side)(边、边、边):各三角形的三条边的长度都对应地相等的话,该两个三角形就是全等。

S.A.S. (Side-Angle-Side)(边、角、边):各三角形的其中两条边的长度都对应地相等,且两条边夹着的角都对应地相等的话,该两个三角形就是全等。

A.S.A. (Angle-Side-Angle)(角、边、角):各三角形的其中两个角都对应地相等,且两个角夹着的边都对应地相等的话,该两个三角形就是全等。

A.A.S. (Angle-Angle-Side)(角、角、边):各三角形的其中两个角都对应地相等,且没有被两个角夹着的边都对应地相等的话,该两个三角形就是全等。

R.H.S. / H.L. (Right Angle-Hypotenuse-Side)(直角、斜边、边):各三角形的直角、斜边及另外一条边都对应地相等的话,该两个三角形就是全等。

但并非运用任何三个相等的部分便能判定三角形是否全等。

以下的判定同样是运用两个三角形的三个相等的部分,但不能判定全等三角形:
A.A.A. (Angle-Angle-Angle)(角、角、角):各三角形的任何三个角都对应地相等,但这并不能判定全等三角形,但则可判定相似三角形。

A.S.S. (Angle-Side-Side)(角、边、边):各三角形的其中一个角都相等,且其余的两条边(没有夹着该角),但这并不能判定全等三角形,除非是直角三角形。

但若是直角三角形的话,应以R.H.S.来判定。

编辑本段运用
1、性质中三角形全等是条件,结论是对应角、对应边相等。

而全等的判定却刚好相反。

2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。

在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。

3,当图中出现两个以上等边三角形时,应首先考虑用SAS找全等三角形。

4、用在实际中,一般我们用全等三角形测相等的距离。

以及相等的角,可以用于工业和军事。

5、三角形具有一定的稳定性,所以我们用这个原理来做脚手架及其他支撑
物体。

相关文档
最新文档