大学物理第六章练习答案
大学物理第6章习题参考答案

第六章习题解答6-1 解:首先写出S 点的振动方程 若选向上为正方向,则有:0c o s02.001.0ϕ=- 21cos 0-=ϕ,0s i n 00>-=ϕωυA 0sin 0<ϕ 即 πϕ320-=或π34 初始相位 πϕ320-=则 m t y s )32cos(02.0πω-=再建立如图题6-1(a)所示坐标系,坐标原点选在S 点,沿x 轴正向取任一P 点,该点振动位相将落后于S 点,滞后时间为: ux t =∆则该波的波动方程为:m u x t y ⎥⎦⎤⎢⎣⎡--=πω32)(cos 02.0若坐标原点不选在S 点,如习题6-1图(b )所示,P 点仍选在S 点右方,则P 点振动落后于S 点的时间为: uL x t -=∆则该波的波方程为:m uL x t y ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0若P 点选在S 点左侧,P 点比S 点超前时间为ux L -,如习题6-1图(c)所示,则⎥⎦⎤⎢⎣⎡--+=πω32)(cos 02.0u x L t y⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t∴不管P 点在S 点左边还是右边,波动方程为: ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t y6-2 解(1)由习题6-2图可知, 波长 m 8.0=λ 振幅A=0.5m习题6-1图习题6-1图频率 Hz 125Hz 8.0100===λuv周期 s 10813-⨯==vT ππυω2502==(2)平面简谐波标准波动方程为: ⎥⎦⎤⎢⎣⎡+-=ϕω)(cos u xt A y 由图可知,当t=0,x=0时,y=A=0.5m ,故0=ϕ。
将ϕπωω、、、u v A )2(=代入波动方程,得:m )100(250cos 5.0⎥⎦⎤⎢⎣⎡-=x t y π(3) x =0.4m 处质点振动方程.⎥⎦⎤⎢⎣⎡-=)1004.0(250cos 5.0t y π m )250cos(5.0ππ-=t6-3 解(1)由习题6-3图可知,对于O 点,t=0时,y=0,故2πϕ±=再由该列波的传播方向可知,00<υ取 2πϕ=由习题6-3图可知,,40.0m OP ==λ且u=0.08m/s ,则ππλππω52rad/s 40.008.0222====u v rad/s可得O 点振动表达式为:m t y )252cos(04.00ππ+=(2) 已知该波沿x 轴正方向传播,u=0.08m/s,以及O 点振动表达式,波动方程为:m x t y ⎥⎦⎤⎢⎣⎡+-=2)08.0(52cos 04.0ππ(3) 将40.0==λx 代入上式,即为P 点振动方程:m t y y p ⎥⎦⎤⎢⎣⎡+==ππ2152cos 04.00 (4)习题6-3图中虚线为下一时刻波形,由图可知,a 点向下运动,b 点向上运动。
大学物理 第六章(中国农业出版社 张社奇主编)答案

6.2
y(x,t) 0.2cos[200 (t 1 x) ]
40 2
6.3.有一平面简谐波在介质中传播,波速u=100m/s,波 线上右侧距坐标原点为75.0m处的一点P的运动方程为 yp=0.30cos[2πt+π/2]m,求:
(1)波向x轴正方向传播时的波动方程;
(2)波向x轴负方向传播时的波动方程。
yD
(t
)
0.03
cos[4
(t
9 20
)
]
0.03
cos[4
t
14
5
]m
(2) uT u 2 20 2 10m
4
O点振动比A点振动在相位上提前
2 x 2 5
10
则 O 0
若取 x 轴方向向右,则此时波向x 轴正向传播,波动方程为
20 0.75
0.25
2
所求振动方程 y 0.1cos[500 t 0.25 ](m)
t=0 时该点的振动速度为:
v ( dy / dt)t0
50 sin0.25
6.7 (1)
y(x,t) 0.05cos(10t 4 x) 0.05cos[10 (t 2 x)]m
φ0
y
0 0.05 0.1
y 0.1cos[500 (t x / 5000) / 3](m)
(2) 波源
t=0
y(0) 0m
v(0)<0
波源的初相位=
2
y
0
距波源7.5m处质点的相位比波源落后
2 x 2 7.5 0.75
大学物理参考答案(白少民)第6章 电磁感应 电磁场

则电子在涡旋电场中所受的力为:
F = −eE = 1 dB F e dB e r ,加速度 a = = r 2 dt m 2m dt
图 6.22 题 6.14 示图
在 a 点, r = 5cm = 5 ×10 −2 m
aa = 1 ×1.76 ×1011 × ( −1.0 ×10 −2 ) × 5 ×10 −2 = −4.4 ×10 7 m / s 2 ,方向向右。 2
f m = IlB = ε υBl cos θ υcos θ 2 2 lB lB = l B R R R υ 2 2 dυ l B cos θcos θ = Rm dt
沿斜面方向应用牛二得:
g sin θ −
图 6.21 题 6.13 示图
这是 υ 对 t 的常微分方程,解之得:
4
− mgR sin θ υ= 2 2 − Ce 2 B l cos θ
ε
R
dt = −
∫ (6 − 8t )dt = − 10
0
1
100
× (6 − 4) = −20C 6 = 0.75s 8
(4)由 ε = −N (6 − 8t ) 知,电动势开始反转的时刻 t =
6.11 如图 6.19(a)表示一根长度为 L 的铜棒平行于一载有电流 i 的长直导线,从距 离电流为 a 处开始以速度 υ 向下运动。求铜棒所产生的感应电动势。已知 υ= 5m·s-1 , i=100A,L= 20cm ,a =1cm。 又如图 6.19(b)所示若铜线运动的方向 υ 与电流方向平行。 设铜棒的上端距电流为 a,问此时铜棒的感应电动势又为多少。 解:在图(a)中: µ i ε = ∫ υ × B ⋅ dl = υBL = υ 0 L 2πa
大学物理第6章(题库)含答案

06章一、填空题 (一)易(基础题)1、热力学第二定律的微观实质可以理解为:在孤立系统内部所发生的不可逆过程,总是沿着熵 增大 的方向进行。
2、热力学第二定律的开尔文表述和克劳修斯表述是等价的,表明在自然界中与热现象有关的实际宏观过程都是不可逆的,开尔文表述指出了____功热转换__________的过程是不可逆的,而克劳修斯表述指出了___热传导_______的过程是不可逆的.3.一定量的某种理想气体在某个热力学过程中,外界对系统做功240J ,气体向外界放热620J ,则气体的内能 减少 (填增加或减少),E 2—E 1= -380 J 。
4.一定量的理想气体在等温膨胀过程中,内能 不变 ,吸收的热量全部用于对外界做功 。
5.一定量的某种理想气体在某个热力学过程中,对外做功120J ,气体的内能增量为280J ,则气体从外界吸收热量为 400 J 。
6、在孤立系统内部所发生的过程,总是由热力学概率 小 的宏观状态向热力学概率 大 的宏观状态进行。
7、一定量的单原子分子理想气体在等温过程中,外界对它作功为200J.则该过程中需吸热____-200____J.补充1、一定量的双原子分子理想气体在等温过程中,外界对它作功为200J.则该过程中需吸热____-200____J.补充2、一定量的理想气体在等温膨胀过程中,吸收的热量为500J 。
理想气体做功为 500 J 。
补充3、一定量的理想气体在等温压缩过程中,放出的热量为300J ,理想气体做功为 -300 J 。
8、要使一热力学系统的内能增加,可以通过 做功 或 热传递 两种方式,或者两种方式兼用来完成。
9、一定量的气体由热源吸收热量526610J ⋅⨯,内能增加541810J ⋅⨯,则气体对外作 功______J.10、工作在7℃和27℃之间的卡诺致冷机的致冷系数为 14 ,工作 在7℃和27℃之间的卡诺热机的循环效率为 6.67% 。
(二)中(一般综合题)1、2mol 单原子分子理想气体,经一等容过程后,温度从200K 上升到500K,则气体吸收的热量为_37.4810⨯____J.2、气体经历如图2所示的一个循环过程,在这个循环中,外界传给气体的净热量是 90J 。
关于大学物理课后习题答案第六章

关于大学物理课后习题答案第六章文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]第6章 真空中的静电场 习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。
一试验电荷置于x 轴上何处,它受到的合力等于零解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以 故 223+=x2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。
试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)(2)这种平衡与三角形的边长有无关系解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 故 q q 33-=' (2)与三角形边长无关。
3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。
求该直线段受到的电场力。
解:先求均匀带电圆环在其轴线上产生的场强。
在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为)(4220R x dqdE +=πε 根据电荷分布的对称性知,0==z y E E式中:θ为dq 到场点的连线与x 轴负向的夹角。
下面求直线段受到的电场力。
在直线段上取dx dq 2λ=,dq 受到的电场力大小为 方向沿x 轴正方向。
直线段受到的电场力大小为 方向沿x 轴正方向。
4. 一个半径为R 的均匀带电半圆环,电荷线密度为λ。
求: (1)圆心处O 点的场强;(2)将此带电半圆环弯成一个整圆后,圆心处O 点场强。
解:(1)在半圆环上取ϕλλRd l dq ==d ,它在O 点产生场强大小为20π4R dq dE ε=ϕελd R0π4= ,方向沿半径向外根据电荷分布的对称性知,0=y E 故 RE E x 0π2ελ==,方向沿x 轴正向。
大学物理(华中科技版)第6章习题解答

大学物理(华中科技版)第6章习题解答第6章机械波习题一习题六6-1平面谐波沿x轴负向传播,波长=1.0m,质点处质点的振动频率=2.0Hz,振幅a=0.1M,当t=0时,它只是沿Y轴负方向通过平衡位置移动,求出该平面波的波函数?0时,原点处粒子的振动状态为Y0?0,v0?0,因此已知原点处振动的初始相位为,取波动方程为2y?acos[2?(tx?)??0]则有t?x?y?0.1cos[2?(2t?)?]12? 0.1cos(4?t?2?x?6-2已知波源在原点的一列平面简谐波,波函数为y=acos(bt?cx),其中a,b,c为正值恒量.求:(1)波的振幅、速度、频率、周期和波长;(2)写出传播方向上距离波源为l处一点的振动方程;(3)任一时刻,在波的传播方向上相距为d的两点的位相差.解:(1)已知平面简谐波的波动方程2) my?acos(bt?cx)(x?0)比较波动方程和标准方程的形式y?acos(2??t?2?比较,可知:波振幅为a,频率??波长??x?)b、 2号?2.b、波速u,cc12?波动周期Tb(2)将x?l代入波动方程即可得到该点的振动方程Y助理文书主任(bt?cl)(3)因任一时刻t同一波线上两点之间的位相差为将x2?x1?d,及??6-3沿绳索传播的平面谐波的波函数为y=0.05cos(10?T?4?X),其中X,y以米为单位,T以秒为单位。
发现:(1)波的速度、频率和波长;(2)绳子上各质元振动时的最大速度和最大加速度;2.(x2?x1)2?代入上式,即得ccd.第六章机械波练习2(3)当t=1s时,求素数元素在x=0.2m处的相位。
什么时候是起源阶段?此阶段表示的运动状态为t=1.25s时刻到达哪一点?解决方案:(1)给出方程和标准公式的问题1?1相比,得振幅a?0.05m,频率??5s,波长??0.5m,波速u2.5m?s.(2)绳索上每个点的最大振动速度和加速度为y?acos(2??t?2?x)vmax??A.10?? 0.05? 0.5? Ms一amax??2a?(10?)2?0.05?5?2m?s?2(3) x?0.2m处的振动滞后于原点的时间为x0.2??0.08su2.5故x?0.2m,t?1s时的位相就是原点(x?0),在t0?1?0.08?0.92s时的位相,即??9.2π.让这个相位代表的运动状态为t?如果它在1.25秒到达x点,那么x?x1?u(t?t1)?0.2?2.5(1.25?1.0)?0.825m6-4图6-4显示了在时间T沿x轴传播的平面余弦波的波形曲线。
大学物理习题答案第六章

[习题解答]6-2 一个运动质点的位移与时间的关系为m ,其中x的单位是m,t的单位是s。
试求:(1)周期、角频率、频率、振幅和初相位;(2) t = 2 s时质点的位移、速度和加速度。
解(1)将位移与时间的关系与简谐振动的一般形式相比较,可以得到角频率s 1, 频率, 周期, 振幅, 初相位.(2) t = 2 s时质点的位移.t = 2 s时质点的速度.t = 2 s时质点的加速度.6-3 一个质量为2.5 kg的物体系于水平放置的轻弹簧的一端,弹簧的另一端被固定。
若弹簧受10 N的拉力,其伸长量为5.0 cm,求物体的振动周期。
解根据已知条件可以求得弹簧的劲度系数,于是,振动系统的角频率为.所以,物体的振动周期为.6-4求图6-5所示振动装置的振动频率,已知物体的质量为m,两个轻弹簧的劲度系数分别为k1 和k2。
解以平衡位置O为坐标原点,建立如图6-5所示的坐标系。
若物体向右移动了x,则它所受的力为.根据牛顿第二定律,应有图6-5,改写为.所以,.6-5 求图6-6所示振动装置的振动频率,已知物体的质量为m,两个轻弹簧的劲度系数分别为k1 和k2。
解以平衡位置O为坐标原点,建立如图6-6所示的图6-6坐标系。
当物体由原点O向右移动x时,弹簧1伸长了x1 ,弹簧2伸长了x2 ,并有.物体所受的力为,式中k是两个弹簧串联后的劲度系数。
由上式可得, .于是,物体所受的力可另写为,由上式可得,所以.装置的振动角频率为,装置的振动频率为.6-6仿照式(6-15)的推导过程,导出在单摆系统中物体的速度与角位移的关系式。
解由教材中的例题6-3,单摆的角位移θ与时间t的关系可以写为θ = θ0 cos (ω t+ϕ) ,单摆系统的机械能包括两部分, 一部分是小物体运动的动能,另一部分是系统的势能,即单摆与地球所组成的系统的重力势能.单摆系统的总能量等于其动能和势能之和,即,因为, 所以上式可以化为.于是就得到,由此可以求得单摆系统中物体的速度为.这就是题目所要求推导的单摆系统中物体的速度与角位移的关系式。
大学物理答案6.第六章

大学物理答案6.第六章第六章机械运动和机械波思考题6-35简谐振动中相位为φ、π+φ、2π+φ、3π+φ、….时描述的是同一运动状态吗?为什么?6-36 对一简谐振动系统,画出其动能和势能关于时间变量的曲线,并分析两者反相的物理意义。
6-37 将单摆摆线从铅直方向拉到φ角的位置撒手任其摆动。
这里φ角是初相位吗?若不是,它将对应什么物理量?6-38 若以一装满水的空心球作为单摆的摆钟,并让水从球体缓慢流出,试描述其摆动周期的变化情况。
6-39 利用受迫振动的稳定解(6.19)式说明为什么恒力不能导致受迫振动。
(提示:恒力的频率ω可视为零)6-40 在太空中能听到声音吗?为什么?6-41 在较长时间间隔(Δt>>T)内,任意以t为变量的正弦(或余弦)型函数的平均值均为零,例如:==0,其中α是任意常数。
试据此推导(6.11)、(6.12)及(6.40)式。
6-42 海啸是一种波长约为几十至几百千米、在海水中传播的波动现象。
它在深海区域并不易被察觉,但一旦海啸接近岸边往往会造成巨大的灾害。
试从能量角度分析其中的原因。
6-43 描述机械波时间周期性的物理量由周期T、频率v和圆频率ω给出。
类似地,我们可以用λ、1λ、2πλ描述波的空间周期性,试说明这三个量对应的物理意义。
6-44 试解释弦乐器的以下现象:(1)较松的弦发生的音调较低,而较紧的弦则音调较高;(2)较细的弦发生的音调较高,而较粗的弦则音调较低(古人称之为“小弦大声,大弦小声”);(3)正在振动的两端固定的弦,若用手指轻按弦的中点时,音调变高到两倍,若改按弦的三分之一处时,音调增至三倍;(4)用力弹拨琴弦(而非用手指按弦)时,能同时听到若干音调各异的声音。
(提示:音调高低与弦振动的频率成正比。
此外,在(4)情形中弦以基频振动的同时还以若干泛频振动。
)习题6-1 如题6-1图所示,用一根金属丝把一均匀圆盘悬挂起来,悬线oc 通过圆盘质心,圆盘呈水平状态,这个装置称为扭摆,当使圆盘转过一个角度时,金属丝受到扭转,从而产生一个扭转的恢复力矩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 热力学基础练 习 一一. 选择题1. 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自由膨胀,达到平衡后( A ) (A) 温度不变,熵增加; (B) 温度升高,熵增加;(C) 温度降低,熵增加; (D) 温度不变,熵不变。
2. 对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外作做的功三者均为负值。
( C ) (A) 等容降压过程; (B) 等温膨胀过程; (C) 等压压缩过程; (D) 绝热膨胀过程。
3. 一定量的理想气体,分别经历如图1(1)所示的abc 过程(图中虚线ac 为等温线)和图1(2)所示的def 过程(图中虚线df 为绝热线) 。
判断这两过程是吸热还是放热:( A ) (A) abc 过程吸热,def 过程放热; (B) abc 过程放热,def 过程吸热; (C) abc 过程def 过程都吸热; (D) abc 过程def 过程都放热。
4. 如图2,一定量的理想气体,由平衡状态A 变到平衡状态B(A p =B p ),则无论经过的是什么过程,系统必然( B ) (A) 对外做正功; (B) 内能增加; (C) 从外界吸热; (D) 向外界放热。
二.填空题1. 一定量的理想气体处于热动平衡状态时,此热力学系统不随时间变化的三个宏观量是P V T ,而随时间变化的微观量是每个分子的状态量。
O 图.2O (1)(2)图12. 一定量的单原子分子理想气体在等温过程中,外界对它做功为200J ,则该过程中需吸热__-200__ ___J 。
3. 一定量的某种理想气体在某个热力学过程中,外界对系统做功240J ,气体向外界放热620J ,则气体的内能 减少,(填增加或减少),21E E -= -380 J 。
4. 处于平衡态A 的热力学系统,若经准静态等容过程变到平衡态B ,将从外界吸热416 J ,若经准静态等压过程变到与平衡态B 有相同温度的平衡态C ,将从外界吸热582 J ,所以,从平衡态A 变到平衡态C 的准静态等压过程中系统对外界所做的功为 582-416=166J 。
三.计算题1. 一定量氢气在保持压强为×510Pa 不变的情况下,温度由0 ℃ 升高到50.0℃时,吸收了×104J 的热量。
(1) 求氢气的摩尔数 (2) 氢气内能变化多少 (3) 氢气对外做了多少功 (4) 如果这氢气的体积保持不变而温度发生同样变化、它该吸收多少热量解: (1)由,22p m i Q vC T vR T +=∆=∆ 得 422 6.01041.3(2)(52)8.3150Q v mol i R T ⨯⨯===+∆+⨯⨯ (2)4,541.38.3150 4.291022V m i E vC T v R T J ∆=∆=⨯∆=⨯⨯⨯=⨯ (3)44(6.0 4.29)10 1.7110A Q E J =-∆=-⨯=⨯ (4)44.2910Q E J =∆=⨯2. 一定量的理想气体,其体积和压强依照V=的规律变化,其中a 为常数,试求:(1) 气体从体积1V 膨胀到2V 所做的功;(2)体积为1V 时的温度1T 与体积为2V 时的温度2T 之比。
(1):⎰⎰⎪⎪⎭⎫⎝⎛-===21212122211V V V V V V a dV V a PdV W (2): 111nRT V P =1221V V T T = 3. 一热力学系统由如图3所示的状态a 沿acb 过程到达状态b 时,吸收了560J 的热量,对图3外做了356J 的功。
(1) 如果它沿adb 过程到达状态b 时,对外做了220J 的功,它吸收了多少热量(2) 当它由状态b 沿曲线ba 返回状态a 时,外界对它做了282J 的功,它将吸收多少热量是真吸了热,还是放了热解: 根据热力学第一定律 Q E W =+V(1)∵a 沿acb 过程达到状态b ,系统的内能变化是: 560356204ab acb acb E Q W J J J =-=-=V 由于内能是状态系数,与系统所经过的过程无关 ∴系统由a 沿acb 过程到达状态b 时204ab E J =V系统吸收的热量是:204220424ab acb Q E W J J J =+=+=V(2)系统由状态b 沿曲线ba 返回状态a 时,系统的内能变化:204ba ab E E J =-=-V V[]204(282)486ba ba Q W J J ∴+=-+-=-即系统放出热量486J第六章 热力学基础练 习 二一. 选择题1. 如图1所示,一定量的理想气体从体积1V 膨胀到体积2V 分别经历的过程是:A B 等压过程, A C 等温过程,A D 绝热过程。
其中吸热最多的过程 ( A )(A) 是A B ; (B) 是A C ; (C) 是A D ;(D) 既是A B ,也是A C ,两者一样多。
2. 用公式V E C T ∆=μ∆ (式中V C 为定容摩尔热容量,μ为气体摩尔数),计算理想气体内能增量时,此式( D )(A) 只适用于准静态的等容过程; (B) 只适用于一切等容过程;(C) 只适用于一切准静态过程; (D) 适用于一切始末态为平衡态的过程。
3. 用下列两种方法: (1) 使高温热源的温度1T 升高T ∆, (2) 使低温热源的温度2T 降低同样的T ∆值,分别可使卡诺循环的效率升高1∆η和2∆η,两者相比: ( B ) (A) 1∆η 2∆η; (B) 2∆η1∆η; (C) 1∆η= 2∆η; (D) 无法确定哪个大。
二. 填空题1. 同一种理想气体的定压摩尔热容P C 大于定容摩尔热容V C , 其原因是 除了增加内能还需对外做功 。
2. 常温常压下,一定量的某种理想气体(视为刚性分子,自由度为i ),在等压过程中吸热为Q ,对外做功为A ,内能增加为E ∆, 则A/Q =i +22, E/Q = ii +2。
3.一卡诺热机(可逆的),低温热源的温度为27℃,热机效率40%,其高温热源温度为οC 127T 1=。
今欲将热机效率提高为50%,若低温热源保持不变,则高温热源的温度增加οC 200T =∆。
4.如图2所示,一定量的理想气体经历a b c 过程, 在此过程中气体从外界吸收热Q ,系统内能变化E , 请在以下空格内填上0或0或=0。
Q >0 ,E >0 。
三. 计算题PVV 1V 2A B CDF图1P Va bc图2图31. 如图3所示两端封闭的水平气缸,被一可动活塞平分为左右两室,每室体积均为0V ,其中装有温度相同、压强均为0P 的同种理想气体,现保持气体温度不变,用外力缓慢移动活塞(忽略摩擦),使左室气体的体积膨胀为右室的2倍,问外力必须做多少功解:x V P S V V P S P F 0010011===, xl VP F -=002 ()()[]89ln ln 003221003221322121V P x l x V P dx F F Fdx W l l l l l l =-=-==⎰⎰2. 比热容比γ = 的理想气体,进行如图4所示的ABCA 循环,状态A 的温度为300K 。
(1)求状态B 、C 的温度;(2)计算各过程中气体吸收的热量、气体所做的功和气体内能的增量。
RT Mm PV =得:KT C K T B R mMA CB 75:225:3002400:==⨯=⨯A C →等体过程,EJ T i R m M Q W ∆-==∆==15002JE W Q J T R i m M E J PdV W BA 50050021000=∆+=-=∆=∆==→⎰C B →等压过程42 6图4图5JE W Q J T R i m M E J PdV W 140010002400-=∆+=-=∆=∆-==⎰3. 如图5为一循环过程的T —V 图线。
该循环的工质是一定质量的理想气体。
其,V m C 和γ均已知且为常量。
已知a 点的温度为1T ,体积为1V ,b 点的体积为2V ,ca 为绝热过程。
求: (1) c 点的温度;(2) 循环的效率。
解: (1)c a 为绝热过程,11112r r a c a c V V T T T V V --⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭(2)a b 等温过程,工质吸热211lnV Q vRT V = bc 为等容过程,工质放热为11..1.12()11r cV m b c V m V m T V Q vC T T vC T vC T T V -⎡⎤⎛⎫⎛⎫⎢⎥=-=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦循环过程的效率112.2211111ln r V mV V C Q V Q RV η-⎛⎫- ⎪⎝⎭=-=-第六章 热力学基础练 习 三一. 选择题1. 理想气体卡诺循环过程的两条绝热线下的面积大小(图1中阴影部分)分别为S 1和S 2 ,则二者的大小关系是( B )(A) S 1 > S 2 ; (B) S 1 = S 2 ;(C) S 1 < S 2 ; (D) 无法确定。
2. 在下列说法中,哪些是正确的( C ) (1) 可逆过程一定是平衡过程; (2) 平衡过程一定是可逆的; (3) 不可逆过程一定是非平衡过程; (4) 非平衡过程一定是不可逆的。
(A) (1)、(4) ; (B) (2)、(3) ; (C) (1)、(2)、(3)、(4) ; (D) (1)、(3) 。
3. 根据热力学第二定律可知( D )(A) 功可以全部转换为热,但热不能全部转换为功;(B) 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体; (C) 不可逆过程就是不能向相反方向进行的过程; (D) 一切自发过程都是不可逆的。
4.“理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外做功”。
对此说法,有以下几种评论,哪种是正确的( C )(A) 不违反热力学第一定律,但违反热力学第二定律; (B) 不违反热力学第二定律,但违反热力学第一定律; (C) 不违反热力学第一定律,也不违反热力学第二定律; (D) 违反热力学第一定律,也违反热力学第二定律。
二. 填空题1. 如图2的卡诺循环:(1)abcda ,(2)dcefd ,(3)abefa ,其效率分别为:1η= 1/3 , 2η= 1/2 ,3η= 2/3 。
2. 卡诺致冷机,其低温热源温度为T 2=300K ,高温热源温度为T 1=450K ,每一循环从低温热源吸热Q 2=400J ,已知该致冷机的致冷系数ω=Q 2/A=T 2/(T 1-T 2) (式中A 为外界对系统做的功),则每一循环中外界必须做功A= 200J 。