大学物理课后习题答案第六章

合集下载

大学物理第6章习题参考答案

大学物理第6章习题参考答案

第六章习题解答6-1 解:首先写出S 点的振动方程 若选向上为正方向,则有:0c o s02.001.0ϕ=- 21cos 0-=ϕ,0s i n 00>-=ϕωυA 0sin 0<ϕ 即 πϕ320-=或π34 初始相位 πϕ320-=则 m t y s )32cos(02.0πω-=再建立如图题6-1(a)所示坐标系,坐标原点选在S 点,沿x 轴正向取任一P 点,该点振动位相将落后于S 点,滞后时间为: ux t =∆则该波的波动方程为:m u x t y ⎥⎦⎤⎢⎣⎡--=πω32)(cos 02.0若坐标原点不选在S 点,如习题6-1图(b )所示,P 点仍选在S 点右方,则P 点振动落后于S 点的时间为: uL x t -=∆则该波的波方程为:m uL x t y ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0若P 点选在S 点左侧,P 点比S 点超前时间为ux L -,如习题6-1图(c)所示,则⎥⎦⎤⎢⎣⎡--+=πω32)(cos 02.0u x L t y⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t∴不管P 点在S 点左边还是右边,波动方程为: ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t y6-2 解(1)由习题6-2图可知, 波长 m 8.0=λ 振幅A=0.5m习题6-1图习题6-1图频率 Hz 125Hz 8.0100===λuv周期 s 10813-⨯==vT ππυω2502==(2)平面简谐波标准波动方程为: ⎥⎦⎤⎢⎣⎡+-=ϕω)(cos u xt A y 由图可知,当t=0,x=0时,y=A=0.5m ,故0=ϕ。

将ϕπωω、、、u v A )2(=代入波动方程,得:m )100(250cos 5.0⎥⎦⎤⎢⎣⎡-=x t y π(3) x =0.4m 处质点振动方程.⎥⎦⎤⎢⎣⎡-=)1004.0(250cos 5.0t y π m )250cos(5.0ππ-=t6-3 解(1)由习题6-3图可知,对于O 点,t=0时,y=0,故2πϕ±=再由该列波的传播方向可知,00<υ取 2πϕ=由习题6-3图可知,,40.0m OP ==λ且u=0.08m/s ,则ππλππω52rad/s 40.008.0222====u v rad/s可得O 点振动表达式为:m t y )252cos(04.00ππ+=(2) 已知该波沿x 轴正方向传播,u=0.08m/s,以及O 点振动表达式,波动方程为:m x t y ⎥⎦⎤⎢⎣⎡+-=2)08.0(52cos 04.0ππ(3) 将40.0==λx 代入上式,即为P 点振动方程:m t y y p ⎥⎦⎤⎢⎣⎡+==ππ2152cos 04.00 (4)习题6-3图中虚线为下一时刻波形,由图可知,a 点向下运动,b 点向上运动。

大学物理 第六章(中国农业出版社 张社奇主编)答案

大学物理 第六章(中国农业出版社 张社奇主编)答案

6.2
y(x,t) 0.2cos[200 (t 1 x) ]
40 2
6.3.有一平面简谐波在介质中传播,波速u=100m/s,波 线上右侧距坐标原点为75.0m处的一点P的运动方程为 yp=0.30cos[2πt+π/2]m,求:
(1)波向x轴正方向传播时的波动方程;
(2)波向x轴负方向传播时的波动方程。
yD
(t
)

0.03
cos[4
(t

9 20
)


]

0.03
cos[4
t

14
5
]m
(2) uT u 2 20 2 10m

4
O点振动比A点振动在相位上提前
2 x 2 5

10
则 O 0
若取 x 轴方向向右,则此时波向x 轴正向传播,波动方程为
20 0.75


0.25
2
所求振动方程 y 0.1cos[500 t 0.25 ](m)
t=0 时该点的振动速度为:
v ( dy / dt)t0
50 sin0.25
6.7 (1)
y(x,t) 0.05cos(10t 4 x) 0.05cos[10 (t 2 x)]m
φ0
y
0 0.05 0.1
y 0.1cos[500 (t x / 5000) / 3](m)
(2) 波源
t=0
y(0) 0m
v(0)<0

波源的初相位=
2
y
0
距波源7.5m处质点的相位比波源落后
2 x 2 7.5 0.75

大物习题解答-大学物理习题答案-第6章 恒定电流

大物习题解答-大学物理习题答案-第6章 恒定电流

第六章 恒定电流6-1 长度l =1.0m 的圆柱形电容器,内外两极板的半径分别R 1=5.0×10-2m ,R 2=1.0×10-1m ,,其间充有电阻率ρ=1.0×109Ω.m 的非理想电介质,设二极板间所加电压1000V ,求(1)该介质的漏电电阻值;(2)介质内各点的漏电流电流密度及场强。

解:(1)柱面间任一薄层的漏电电阻为:rldrdR πρ=2 整个圆柱形电容器介质的漏电电阻值为:12ln 2221R R l rl dr dR R R R πρ=πρ==⎰⎰ 代入数据得Ω⨯=⨯⨯⨯⨯⨯=--82191010.1100.5100.1ln 114.32100.1R (2)A R V I 68101.91010.11000-⨯=⨯==rl S I j π⨯==-2101.96r ⨯⨯⨯⨯=-114.32101.96=26/1044.1m A r -⨯ (3)=ρ=j E r 691044.1100.1-⨯⨯⨯m V r/1044.13⨯= 6-2 在半径分别为R 1和R 2(R 1< R 2)的两个同心金属球壳中间,充满电阻率为ρ的均匀的导电物质,若保持两球壳间的电势差恒定为V ,求(1)球壳间导电物质的电阻;(2)两球壳间的电流;(3)两球壳间离球心距离为r 处的场强。

解:(1)球面间任一薄层的电阻为:24rdrdR πρ= 整个球壳间导电物质的电阻为:)114421221R R rdr dR R R R -πρ=πρ==⎰⎰( (2))(41221R R R VR R VI -ρπ==(3)=⋅=⎰21R R r d E V ρρΘ=πε⎰dr rqR R 21204211204R R R R q -πε )( ˆ)(ˆ4212122120R r R rr R R R VR r r q E <<-=πε=∴ρ6-3 一根铜线和一根铁线,长度均为l ,直径为d ,今把两者连接起来,并在此复合导线两端加电势差V 。

关于大学物理课后习题答案第六章

关于大学物理课后习题答案第六章

关于大学物理课后习题答案第六章文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]第6章 真空中的静电场 习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。

一试验电荷置于x 轴上何处,它受到的合力等于零解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以 故 223+=x2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。

试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)(2)这种平衡与三角形的边长有无关系解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 故 q q 33-=' (2)与三角形边长无关。

3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。

求该直线段受到的电场力。

解:先求均匀带电圆环在其轴线上产生的场强。

在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为)(4220R x dqdE +=πε 根据电荷分布的对称性知,0==z y E E式中:θ为dq 到场点的连线与x 轴负向的夹角。

下面求直线段受到的电场力。

在直线段上取dx dq 2λ=,dq 受到的电场力大小为 方向沿x 轴正方向。

直线段受到的电场力大小为 方向沿x 轴正方向。

4. 一个半径为R 的均匀带电半圆环,电荷线密度为λ。

求: (1)圆心处O 点的场强;(2)将此带电半圆环弯成一个整圆后,圆心处O 点场强。

解:(1)在半圆环上取ϕλλRd l dq ==d ,它在O 点产生场强大小为20π4R dq dE ε=ϕελd R0π4= ,方向沿半径向外根据电荷分布的对称性知,0=y E 故 RE E x 0π2ελ==,方向沿x 轴正向。

大学物理(肖剑荣主编)-习题答案-第6章

大学物理(肖剑荣主编)-习题答案-第6章

面,且端点 MN 的连线与长直导线垂直.半圆环的半径为 b ,环心 O 与导线相距
a .设半圆环以速度 v 平行导线平移.求半圆环内感应电动势的大小和方向及
MN 两端的电压 U M - U N .
解: 作辅助线 MN ,则在 MeNM 回路中,沿 v! 方向运动时 dFm = 0

e MeNM = 0
ò F12 =
2a
3 a
3
µ 0 Ia 2π r
dr
=
µ0Ia ln 2 2π
∴ M = F12 = µ0a ln 2 I 2π
6-16 一矩形线圈长为 a =20cm,宽为 b =10cm,由 100 匝表面绝缘的导线绕成,
放在一无限长导线的旁边且与线圈共面.求:题 10-16 图中(a)和(b)两种情况下,
第六章 课后习题解答
桂林理工大学 理学院 胡光辉
(《大学物理·上册》主编:肖剑荣 梁业广 陈鼎汉 李明)
6-1 一半径 r =10cm
的圆形回路放在 B =0.8T
的均匀磁场中.回路平面与
! B

直.当回路半径以恒定速率 dr =80cm·s-1 收缩时,求回路中感应电动势的大小. dt
解: 回路磁通
=
µ0Iv p
ln
a a
+ -
b b
6-12 磁感应强度为 B! 的均匀磁场充满一半径为 R 的圆柱形空间,一金属杆放在
dB 图中位置,杆长为 2 R ,其中一半位于磁场内、另一半在磁场外.当 >0 时,
dt
求:杆两端的感应电动势的大小和方向.
解: ∵ e ac = e ab + e bc
e ab
= - dF1 dt

大学物理课后习题详解(第六章)中国石油大学

大学物理课后习题详解(第六章)中国石油大学

习 题 六6-1 一轻弹簧在60N 的拉力下伸长30cm .现把质量为4kg 物体悬挂在该弹簧的下端,并使之静止,再把物体向下拉10cm ,然后释放并开始计时.求:(1)物体的振动方程;(2)物体在平衡位置上方5cm 时弹簧对物体的拉力;(3)物体从第一次越过平衡位置时刻起,到它运动到上方5cm 处所需要的最短时间.[解] (1)取平衡位置为坐标原点,竖直向下为正方向,建立坐标系N/m 2001030602=⨯=-k设振动方程为 ()ϕω+=t A x cosrad/s 07.74200===m k ω m 1.0=A 0=t 时 m 1.0=x ϕc o s1.01.0= 0=ϕ 故振动方程为 ()m 07.7cos 1.0t x = (2)设此时弹簧对物体作用力为F ,则()()x x k x k F +=∆=0其中 m 196.02008.940=⨯==k mg x 因而有 ()N 2.2905.0196.0200=-⨯=F (3)设第一次越过平衡位置时刻为1t ,且速度小于零,则()107.7cos 1.00t = 07.75.01π=t第一次运动到上方5cm 处时刻为2t ,且速度小于零,则()207.7cos 1.005.0t =- )07.7322⨯=πt故所需最短时间为:s 074.012=-=∆t t t6-2 一质点在x 轴上作谐振动,选取该质点向右运动通过点 A 时作为计时起点(t =0),经过2s 后质点第一次经过点B ,再经 2s 后,质点第二次经过点B ,若已知该质点在A 、B 两点具有相同的速率,且10cm =AB ,求:(1)质点的振动方程;(2)质点在A 点处的速率.[解] 由旋转矢量图和||||b a v v =可知421=T s 由于42s 81,s 81ππνων====-T(1)以AB 的中点为坐标原点,x 轴指向右方.0=t 时, ϕcos 5A x =-=2s =t 时, ()ϕϕωs i n 2c o s 5A A x -=+== 由以上二式得 1tan =ϕ因为在A 点质点的速度大于零,所以43πϕ-= cm 25cos /==ϕx A所以,运动方程为:()m 4/34/cos 10252ππ-⨯=-t x(2)速度为: ⎪⎭⎫ ⎝⎛-⨯-==-434sin 41025d d 2πππt t x v 当2s =t 时 m/s 1093.3432sin 4102522--⨯=⎪⎭⎫ ⎝⎛-⨯-=πππv6-3 一质量为M 的物体在光滑水平面上作谐振动,振幅为 12cm ,在距平衡位置6cm 处,速度为24s cm ,求:(1)周期T ;(2)速度为12s cm 时的位移.[解](1)设振动方程为()cm cos ϕω+=t A x 以cm 12=A 、cm 6=x 、1s cm 24-⋅=v 代入,得:()ϕω+=t c o s 126 (1)()ϕωω+-=t sin 1224 (2)由(1)、(2)得1122412622=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛ω 解得 334=ω s 72.2232===πωπT (2) 以1s cm 12-⋅=v 代入,得:()()ϕωϕωω+-=+-=t t sin 316sin 1212解得: ()43sin -=+ϕωt 所以 ()413cos ±=+ϕωt故 ()cm 8.1041312cos 12±=⎪⎪⎭⎫ ⎝⎛±⨯=+=ϕωt x6-4 一谐振动的振动曲线如图所示,求振动方程.[解] 设振动方程为: ()ϕω+=t A x cos 根据振动曲线可画出旋转矢量图由图可得: 32πϕ=125223πππϕω=⎪⎭⎫ ⎝⎛+=∆∆=t故振动方程为 cm 32125cos 10⎪⎭⎫⎝⎛+=ππt x6-5 一质点沿x 轴作简谐振动,其角频率s rad 10=ω,试分别写出以下两种初始状态的振动方程:(1)其初始位移0x =7.5 cm ,初始速度s cm 0.750=v ;(2)其初始位移0x =7.5 cm ,初速度s cm 0.750-=v .[解] 设振动方程为 ()ϕ+=t A x 10cos (1) 由题意得: ϕcos 5.7A = ϕsin 1075A -= 解得: 4πφ-= cm 6.10=A 故振动方程为:()cm 410cos 6.10π-=t x(2) 同法可得: ()cm 410cos 6.10π+=t x6-6 一轻弹簧在60 N 的拉力作用下可伸长30cm .现将一物体悬挂在弹簧的下端并在它上面放一小物体,它们的总质量为4k 。

大学物理 第6章 练习答案

大学物理  第6章 练习答案

第六章 热力学基础练 习 一一. 选择题1. 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自由膨胀,达到平衡后( A ) (A) 温度不变,熵增加; (B) 温度升高,熵增加;(C) 温度降低,熵增加; (D) 温度不变,熵不变。

2. 对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外作做的功三者均为负值。

( C ) (A) 等容降压过程; (B) 等温膨胀过程; (C) 等压压缩过程; (D) 绝热膨胀过程。

3. 一定量的理想气体,分别经历如图1(1)所示的abc 过程(图中虚线ac 为等温线)和图1(2)所示的def 过程(图中虚线df 为绝热线) 。

判断这两过程是吸热还是放热:( A ) (A) abc 过程吸热,def 过程放热; (B) abc 过程放热,def 过程吸热; (C) abc 过程def 过程都吸热; (D) abc 过程def 过程都放热。

4. 如图2,一定量的理想气体,由平衡状态A 变到平衡状态B(A p =B p ),则无论经过的是什么过程,系统必然( B ) (A) 对外做正功; (B) 内能增加; (C) 从外界吸热; (D) 向外界放热。

二.填空题1. 一定量的理想气体处于热动平衡状态时,此热力学系统不随时间变化的三个宏观量是P V T ,而随时间变化的微观量是每个分子的状态量。

2. 一定量的单原子分子理想气体在等温过程中,外界对它做功为200J ,则该过程中需吸热__-200__ ___J 。

3. 一定量的某种理想气体在某个热力学过程中,外界对系统做功240J ,气体向外界放热620J ,则气体的内能 减少,(填增加或减少),21E E = -380 J 。

4. 处于平衡态A 的热力学系统,若经准静态等容过程变到平衡态B ,将从外界吸热416 J ,若经准静态等压过程变到与平衡态B 有相同温度的平衡态C ,将从外界吸热582 J ,所以,从平衡态A 变到平衡态C 的准静态等压过程中系统对外界所做的功为 582-416=166J 。

大学物理第六章静电场习题答案

大学物理第六章静电场习题答案

第六章 静电场习题6-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。

试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解:(1)如图任选一点电荷为研究对象,分析其受力有1230F F F F =++=合 y 轴方向有()()21322002032cos 242433304q qQ F F F a a q q Q aθπεπεπε=+=+=+=合得 33Q q =-(2)这种平衡与三角形的边长无关。

6-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如图所示。

设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量。

解:对其中任一小球受力分析如图所示,有⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 6-3 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构。

(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力。

(1)由对称性可知 F 1= 0(2)291222200 1.9210N 43q q e F r aπεπε-===⨯ 方向如图所示6-4 长l =15.0 cm 的直导线AB 上均匀地分布着线密度95.010C m λ-=⨯的正电荷。

试求:(1)在导线的延长线上与导线B 端相距1 5.0cm a =处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处Q 点的场强。

解:(1)如图所示,在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε2220)(d π4d x a x E E llP P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l -=ελ 用15=l cm ,9100.5-⨯=λ1m C -⋅,5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理 2220d d π41d +=x xE Q λε 方向如图所示由于对称性可知⎰=l QxE 0d ,即Q E只有y 分量22222220dd d d π41d ++=x x xE Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x 2220d 4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅ 方向沿y 轴正向*6-5 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x解:先求均匀带电圆环在其轴线上产生的场强。

在带电圆环上取 dq1dl , dq 在带电圆环轴线上x 处产生的场强大小为dEdq4(x R )根据电荷分布的对称性知,E y E z 0dE x dE cos1 xdq4(x 2 R 2)'2第6章 真空中的静电场 习题及答案1.电荷为 q 和 2q 的两个点电荷分别置于 x 1m 和x 1m 处。

一试验电荷置于 x 轴上何处,它受到的合力等于零?解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷 q 0位于点电荷 q 的右侧,它受到的合力才可能为0,所以2qq o qq o2 24 n o (x 1)4 n o (x 1)故 x 3 2 22.电量都是q 的三个点电荷,分别放在正三角形的三个顶点。

试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2这种平衡与三角形的边长有无关系 ?解:(1)以A 处点电荷为研究对象,由力平衡知, q 为负电荷,所以(2)与三角形边长无关。

3.如图所示,半径为 R 、电荷线密度为 1的一个均匀带电圆环,在其轴线上放一长为I 、电荷线密度为 2的均匀带电直线段, 该线段的一端处于圆环中心处。

求该直线段受到的电场力。

2% cos30 a1 qqa)24nE xsin d4n 0R 2n 0R式中:为dq 到场点的连线与x 轴负向的夹角。

---------------------------------- 3dq4 o (x 2 R 2) 2x 1 2 R 1R x40 (x 2 R 2)'2 2 0(x 2 R 2)'2下面求直线段受到的电场力。

在直线段上取 dq2dx , dq受到的电场力大小为dF E x dq1 2只 ------- x ———dx2 0(x 2 R 2),2方向沿x 轴正方向。

直线段受到的电场力大小为FdF1 2 R1R 2)严2 0 2(x1 2R1 12 0R2 2l 2 R 21/2方向沿x 轴正方向。

4. 一个半径为R 的均匀带电半圆环,电荷线密度为 。

求:(1) 圆心处0点的场强; (2)将此带电解:(1)在半圆环上取dq dlRd ,它在0点产生场强大小为dEdq4 n 0 R 2,方向沿半径向外根据电荷分布的对称性知,E y 0dE x dEsinsin d4 n 0R故 E E x,方向沿x 轴正向。

2 n 0 R(2)当将此带电半圆环弯成一个整圆后,由电荷分布的对称性可知,圆心处电场强度 为零。

5•如图所示,真空中一长为 L 的均匀带电细直杆,总电量为 q ,试求在直杆延长线上距杆的一端距离为 d 的P 点的电场强度。

解:建立图示坐标系。

在均匀带电细直杆上取dq dx qdx , dq 在P 点产生的场强大小为故 P 点场强大小为dxE P dE2d4 o x 2q 4 0 d d L方向沿x 轴负方向。

6. 一半径为R 的均匀带电半球面,其电荷面密度为,求球心处电场强度的大小。

解:建立图示坐标系。

将均匀带电半球面看成许多均匀带电细圆环, 应用场强叠加原理求解。

在半球面上取宽度为 dl 的细圆环,其带电量 dq dS 2 rdl%,方向沿x 轴负方向。

4 o X2 R 2sin d的场强公式)dExdq ,方向沿 x 轴负方向4 0(x 2 r 2)%利用几何关系,x Rcos , rRsin 统住一积分变量,得dExdq 4 o (x 2 r 2)'2 1 Rcos4 0R 32 R 2 sin ddq 在O 点产生场强大小为(参见教材中均匀带电圆环轴线上因为所有的细圆环在在 O 点产生的场强方向均沿为 x 轴负方向,所以球心处电场强度的大小为/2E dEsin cos d242 0 4 0方向沿x 轴负方向。

中部有一半径为 R 的圆孔,设平面上均匀带电,电荷面密度为 如图所示。

试求通过小孔中心 O 并与平面垂直的直线上各点的场强。

解:应用补偿法和场强叠加原理求解。

若把半径为R 的圆孔看作由等量的正、负电荷重叠而成,挖去圆孔的带电平面等效为场强叠加原理知, P 点的场强等效于“无限大”带电平面和带电圆盘在该处产生的场强的 矢量和。

“无限大”带电平面在 P 点产生的场强大小为(TE i,方向沿X 轴正方向2 0的圆盘在P 点产生的场强大小为(参见教材中均匀带电圆 盘轴线上的场强公式)XE 2(1 --------------- ),方向沿x 轴负方向2 0R 2 x 2故P 点的场强大小为方向沿x 轴正方向。

8. (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个 面的电场强度通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体-sinocos d7. 一“无限大”平面, 一个完整的“无限大”带电平面和一个电荷面密度为的半径为R 的带电圆盘,由E E iE 2x 2 0 . R 2x 2半径为R 、电荷面密度各面的电场强度通量是多少在顶点,则 e 0。

9. 两个无限大的平行平面都均匀带电,电荷的面密度分别为 1和2,试求空间各处场强。

解:如图所示,电荷面密度为 1的平面产生的场强大小为电荷面密度为 2的平面产生的场强大小为E-,方向垂直于该平面指向外侧2 0由场强叠加原理得 、 1两面之间,E E 1 E 2(1 2),方向垂直于平面向右2 010.如图所示,一球壳体的内外半径分别为 R 1和R 2,电荷均匀地分布在壳体内,电荷 体密度为(0 )。

试求各区域的电场强度分布。

q解:(1)由高斯定理 E dS 求解。

s上电通量相等,所以通过各面电通量为qe6 o(2)电荷在顶点时,将立方体延伸为边长心,则通过边长 2a 的正方形各面的电通量立方体六个面,当q 在立方体中心时,每个面2a 的立方体,使 q 处于边长2a 的立方体中qe6 0对于边长a 的正方形,如果它不包含 q 所在的顶点,则24 o,如果它包含E -,方向垂直于该平面指向外侧2 01面左侧,E E 1 E 2 丄(12 02),方向垂直于平面向左2面右侧,E E 1 E 2 丄(12 02),方向垂直于平面向右解:电场具有球对称分布,以r 为半径作同心球面为高斯面。

由高斯定理11. 有两个均匀带电的同心带电球面,半径分别为R 1和R 2( R 2 R 1),若大球面的面 电荷密度为 ,且大球面外的电场强度为零。

求: (1)小球面上的面电荷密度;(2)大球面内各点的电场强度。

解:(1 )电场具有球对称分布,以r 为半径作同心球面为高斯面。

由高斯定理q i 得1—qi(甩)2rS EdSq i 得4 r 21 —qiR 1时, q i所以r R 2 时,q i(43R ),所以R 2 时,q i/ 3(r 3 o rR 3)2(4 (R 23 R 233R ),所以R i 3)o S EdSE 4 r 22当 r R 2 时,E 0, q i 4 R 224 R 1 0,所以(2 )当 r R 1 时,q i 0,所以 E 0当 R r R 2 时,q i2 24 R 14 R 2,所以负号表示场强方向沿径向指向球心。

12. 一厚度为d 的无限大的带电平板,平板内均匀带电,其体电荷密度为 的场强。

解:电场分布具有面对称性,取同轴闭合圆柱面为高斯面,圆柱面与平板垂直,设两底 1底面圆的面积为S 。

由咼斯定理•:S E dS — q i 得R 2 2 o r心0点的电势。

,求板内外面圆到平板中心的距离均为S E dSE S 0 丄 q ipl当X -时(平板内部)q i2x S ,所以pl当x -(平板外部),q iS ,所以13.半径为R 的无限长直圆柱体均匀带电,体电荷密度为,求其场强分布。

解:电场分布具有轴对称性,取同轴闭合圆柱面为高斯面,圆柱面高为 I ,底面圆半径为r ,应用高斯定理求解。

S EdS E 2 nl— 0q i⑴当r R 时,q ir 2I ,所以⑵当r R 时,q iR 2I ,所以14一半径为R 的均匀带电圆盘, 电荷面密度为,设无穷远处为电势零点,求圆盘中解:取半径为r 、dr 的细圆环dq dS 2 rdr ,则dq 在0点产生的电势为1理 S E dSq i 得解:电场分布具有轴对称性,以 0为球心、作半径为r 的同心球面为高斯面。

由高斯定dVdqdr4 o r2 o圆盘中心O 点的电势为dV15.真空中两个半径都为 R 的共轴圆环,相距为I 。

两圆环均匀带电,电荷线密度分别 是 和。

取两环的轴线为 x 轴,坐标原点 0离两环中心的距离均为 -,如图所示。

2求x 轴上任一点的电势。

设无穷远处为电势零点。

解:在右边带电圆环上取 dq ,它在x 轴上任一点P 产生的的电势为dv —dq ____________________________4 o.(x I/2)2 R 2右边带电圆环在P 产生的的电势为dV ------------------------------- dq4 °、(x I/2)2 R 2_______ R ______ i 12 22 o ,(x I/2)2 R 2同理,左边带电圆环在 P 产生的电势为R2 ° (x I/2)2 R 2由电势叠加原理知,P 的电势为V V V戶,(x I/;2 R 2,(x I/:)2 R 2)16.真空中一半径为R 的球形区域内均匀分布着体电荷密度为 的正电荷,该区域内a点离球心的距离为 -R , b 点离球心的距离为3:R 。

求a 、b 两点间的电势差U ab3a 、b 两点间的电势差为17•细长圆柱形电容器由同轴的内、外圆柱面构成,其半径分别为 a 和3a , 两圆柱面间为真空。

电容器充电后内、外两圆柱面之间的电势差为U 。

求:(1) 内圆柱面上单位长度所带的电量 ; (2) 在离轴线距离r 2a 处的电场强度大小。

解:(1 )电场分布具有轴对称性,取同轴闭合圆柱面为高斯面,圆柱面高为 I ,底面圆半径为r ,应用高斯定理求解。

在离轴线距离r 2a 处的电场强度大小为2a I n3当 r R 时,E 4 r 2—o4 3r ,所以3U ab a E dr2R/3R/3R 2 18S E dSE 2 n l1 —qi内、外两圆柱面之间,q j所以E2 o r内、外两圆柱面之间的电势差为3a E dra3a—dr o rIn 32 o内圆柱面上单位长度所带的电量为2 o U In 3(2)将 代人场强大小的表达式得,rl n318.如图所示,在 A , B 两点处放有电量分别为 +q ,-q 的点电荷,AB 间距离为2R , q o 从0点经过半圆弧移到 C 点,求移动过程中电场力作的功。

相关文档
最新文档