直线和椭圆圆锥曲线资料常考题型
圆锥曲线的七种常考题型详解【高考必备】

圆锥曲线的七种常考题型题型一:定义的应用 1圆锥曲线的定义:(1) 椭圆 ________________________________________________________________ (2) 双曲线 ________________________________________________________________ (3) 抛物线 ________________________________________________________________ 2、 定义的应用(1) 寻找符合条件的等量关系 (2 )等价转换,数形结合 3、 定义的适用条件: 典型例题2 2 2 2例1、动圆M 与圆C i : x 1 y 36内切,与圆C 2: x 1 y 4外切,求圆心M 的 轨迹方程。
例2、方程x 6 2 y 2 x 6 $ y 28表示的曲线是 __________________题型二:圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断) 1、椭圆:由x 2、y 2分母的大小决定,焦点在分母大的坐标轴上。
2、双曲线:由x 2、y 2系数的正负决定,焦点在系数为正的坐标轴上;3、抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
典型例题(1) 是椭圆;(2)是双曲线.例1、已知方程x 21表示焦点在y 轴上的椭圆,贝U m 的取值范围是 _______________例2、k 为何值时,方程1表示的曲线:题型三:圆锥曲线焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题 1常利用定义和正弦、余弦定理求解 2、 PF 1 m, PF 2 n , m n, m n, mn, m 2 n 2四者的关系在圆锥曲线中的应用典型例题2 2例1、椭圆x 2 每 i (a b 0)上一点P 与两个焦点F i , F 2的张角FPF ,a b求F 1PF 2的面积。
直线和椭圆(圆锥曲线)常考题型

直线和圆锥曲线常考题型运用的知识:1、两条直线111222:,:l y k x b l y k x b =+=+垂直:则121k k =-;两条直线垂直,则直线所在的向量120v v =2、韦达定理:若一元二次方程20(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b cx x x x a a+=-=。
3、中点坐标公式:1212,y 22x x y yx ++==,其中,x y 是点1122(,)(,)A x y B x y ,的中点坐标。
4、弦长公式:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上,则1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一,AB =或者AB =例题1、已知直线:1l y kx =+与椭圆22:14x y C m+=始终有交点,求m 的取值范围例题2、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。
解:依题意知,直线的斜率存在,且不等于0。
设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。
由2(1)y k x y x=+⎧⎨=⎩消y 整理,得2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2242(21)4410k k k ∆=--=-+> 即2104k <<② 由韦达定理,得:212221,k x x k -+=-121x x =。
则线段AB 的中点为22211(,)22k k k--。
线段的垂直平分线方程为:221112()22k y x k k k--=-- 令y=0,得021122x k =-,则211(,0)22E k - ABE ∆为正三角形,∴211(,0)22E k -到直线AB 的距离dAB 。
高中数学——圆锥曲线常考典型题型规律归纳精选(含答案)

高中数学——圆锥曲线常考典型题型规律归纳精选(含答案)
圆锥曲线包括椭圆(圆为椭圆的特例),抛物线,双曲线,下面是洪老师针对高中数学——圆锥曲线
这些常考典型题型规律归纳精选(含答案)!
都是word文档,可以打印。
如有需要word完整一套高中数学典型题型规律归纳大全,可以发送私信123给洪老师。
不会私信怎么办?点洪老师头像——看底下——点(洪粉必看)!
下面是特别针对圆锥曲线常考典型题型规律归纳精选!
先说说椭圆的,明天再继续。
热点题型一椭圆的定义及其标准方程
热点题型二椭圆的几何性质
热点题型三直线与椭圆的位置关系。
椭圆综合题型分类总结大全(定点定值问题、圆锥曲线与向量、圆锥曲线弦长与面积等)

椭圆综合题型分类总结大全一、直线与椭圆位置关系的常规解题方法:1.设直线的方程(注意:①设直线时分斜率存在与不-存在;②设为y=kx+b 与x=my+n 的区别)2.设交点坐标(注意:之所以要设是因为不去求出它,即“设而不求”)3.联立方程组,得到新的一元二次方程4.求出韦达定理(注意:抛物线时经常是把抛物线方程代入直线方程反而简单)5.根据条件重转化,常有以下类型:①“以弦AB 为直径的圆过点0”(注意:需讨论K 是否存在,OA ⊥OB ) ②“点在圆内、圆上、圆外问题”“直角、锐角、钝角问题”⇔“向量的数量积大于、等于、小于0问题”⇔12120x x y y +>③“等角、角平分、角互补问题”即斜率关系(120K K +=或12K K =); ④“共线问题”(如:AQ QB λ=⇔数的角度:坐标表示法;形的角度:距离转化法); (如:A 、O 、B 三点共线⇔直线OA 与OB 斜率相等); ⑤“点、线对称问题”即坐标与斜率关系;⑥“弦长、面积问题”⇔转化为坐标与弦长公式问题 6.化简与计算; 7.细节问题不忽略;①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0.二、基本解题思想1、“常规求值”问题:找等式关系,“求范围”问题需要找不等式;2、“是否存在”问题:应当假设存在去求,若求出答案则假设成立,若不存在则计算时会无解;3、证明定值问题的方法:⑴常把变量用参数表示出来,然后证明计算结果与参数无关;⑵也可先在特殊条件下求出定值,再给出一般的证明(此方法用得少)4、处理定点问题的方法:⑴常把方程参数分离,使参数乘以的因式为0,求出定点;⑵也可先取参数的特殊值探求定点,然后给出证明,5、求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决;、题型一、椭圆与向量(1)给出直线的方向向量或;(2)给出与相交,等于已知过的中点;(3)给出,等于已知是的中点;(4)给出,等于已知A、B与PQ的中点三点共线;(5)给出以下情形之一:①;②存在实数;③若存在实数,等于已知三点共线.(6)给出,等于已知是的定比分点,为定比,即(7)给出,等于已知,即是直角,给出,等于已知是钝角, 给出,等于已知是锐角。
高中数学圆锥曲线常考题型(含解析)

(1)当5AC =时,求cos POM ∠(2)求⋅PQ MN 的最大值.7.已知抛物线1C :28x y =的焦点点,1C 与2C 公共弦的长为4(1)求2C 的方程;(2)过F 的直线l 与1C 交于A ,(i )若AC BD =,求直线l 的斜率;(ii )设1C 在点A 处的切线与系.8.已知圆()(2:M x a y b -+-点O 且与C 的准线相切.(1)求抛物线C 的方程;(2)点()0,1Q -,点P (与Q 不重合)在直线切线,切点分别为,A B .求证:9.已知椭圆2212:12x y C b+=的左、右焦点分别为2222:12x y C b -=的左、右焦点分别为于y 轴的直线l 交曲线1C 于点Q 两点.a b (1)求椭圆的方程;(2)P 是椭圆C 上的动点,过点P 作椭圆为坐标原点)的面积为5217,求点12.过坐标原点O 作圆2:(2)C x ++参考答案:)(),0a-,(),0F c,所以AF时,在双曲线方程中令x c=,即2bBFa=,又AF BF= ()所以BFA V 为等腰直角三角形,即易知2BFA BAF ∠=∠;当BF 与AF 不垂直时,如图设()()0000,0,0B x y x y >>00tan(π)y BFA x c -∠=-即tan -又因为00tan y BAF x a∠=+,002tan 2y x aBAF +∠=4.(1)21±2(2)证明见解析.【分析】(1)求出椭圆左焦点F1 1x5.(1)21 2x y =(2)1510,33 P⎛⎫± ⎪ ⎪⎝⎭【分析】(1)根据抛物线的焦半径公式可解;【点睛】方法技巧:圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多样,但主要有两种方法:(1)几何转化代数法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用圆锥曲线的定义、图形、几何性质来解决;(2)函数取值法:若题目的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值(或值域),常用方法:三角换元法;(5)平面向量;(7.(1)2213x y -=(2)(i )36±;(ii )点F 在以【分析】(1)根据弦长和抛物线方程可求得交点坐标,结合同焦点建立方程组求解可得;(2)(i )设()11,A x y ,(2,B x 物线方程和双曲线方程,利用韦达定理,结合以及点M 坐标,利用FA FM ⋅【详解】(1)1C 的焦点为(0,2F 又1C 与2C 公共弦的长为46,且所以公共点的横坐标为26±,代入所以公共点的坐标为(26,3±所以229241a b -=②联立228y kx x y =+⎧⎨=⎩,得28160x kx --=,Δ=联立22213y kx x y =+⎧⎪⎨-=⎪⎩,得()2231129k x kx -++则3421231kx x k +=--,342931x x k =-,9.(1)2212x y +=,2212x y -=(2)12y x =-或12y x=(3)2【分析】(1)用b 表示12,e e ,由12e e ⋅=10.(1)2222114222x y x y +=-=,;(2)1;(3)是,=1x -【分析】(1)根据椭圆和双曲线的关系,结合椭圆和双曲线的性质,求得343+因为AB 既是过1C 焦点的弦,又是过所以2212||1()AB k x x =+⋅+-且121||()()22p p AB x x x =+++=所以212(1)k +=2240123(34)k k +,【点睛】因为//l OT ,所以可设直线l 的方程为由22x y =,得212y x =,得y '所以曲线E 在T 处的切线方程为联立22y x m y x =+⎧⎨=-⎩,得2x m y m =+⎧⎨=⎩()2,22N m m ++NT。
直线和椭圆(圆锥曲线)常考题型

直线和圆锥曲线常考题型运用的知识:1、两条直线 l 1 : yk 1x b 1 ,l 2 : y k 2 x b 2 垂直:则 k 1k 21 ;两条直线垂直, 则直线所在的向量 v 1 v 22、韦达定理:若一元二次方程ax2bx c0(a 0) 有两个不一样的根x 1 , x 2 ,则 x 1 x 2b, x 1x 2 c 。
a a3、中点坐标公式:xx 1 x 2 ,yy 1 y 2,此中 x, y 是点 A( x 1 , y 1), B( x 2, y 2 ) 的中点坐标。
224、弦长公式:若点 A( x 1 , y 1), B(x 2 , y 2 ) 在直线 y kxb( k 0) 上,则 y 1kx 1 b , y 2kx 2 b ,这是同点纵横坐标变换,是两大坐标变换技巧之一,AB(x x ) 2(yy ) 2(xx )2 (kx kx )2(1 k 2 )(x1x )2(1 k 2 )[( x x )24x x ]1 2121 2 1 22121 2或许 AB(x 1 x 2)2 (y 1 y 2)2(1x 1 1x 2)2 (y 1 y 2)2(112)(y 1y 2)2(112 )[( y 1y 2 ) 2 4 y 1 y 2 ] 。
k kk k题型一:数形联合确立直线和圆锥曲线的地点关系例题 1、已知直线 l : ykx 1与椭圆 C :x 2 y 21 一直有交点,求 m 的取值范围4m解:1 m 且 m 4。
题型二:弦的垂直均分线问题例题 2、过点 T(-1,0) 作直线 l 与曲线 N :y 2 x 交于 A 、B 两点,在 x 轴上能否存在一点 E( x 0 ,0) ,使得 ABE 是等边三角形 ,若存在,求出x 0 ;若不存在,请说明原因。
解:依题意知,直线的斜率存在,且不等于 0。
设直线 l : yk (x 1) , k0 , A(x 1, y 1 ) , B( x 2, y 2 ) 。
干货椭圆、双曲线、抛物线重点知识总结常考题型技巧讲解

干货椭圆、双曲线、抛物线重点知识总结常考题型技巧讲解基础知识总结圆锥曲线常见题型+解题技巧1.直线与圆锥曲线位置关系这类问题主要采用分析判别式,有△>0,直线与圆锥曲线相交;△=0,直线与圆锥曲线相切;△<0,直线与圆锥曲线相离.若且a=0,b≠0,则直线与圆锥曲线相交,且有一个交点.注意:设直线方程时一定要考虑斜率不存在的情况,可单独提前讨论。
2.圆锥曲线与向量结合问题这类问题主要利用向量的相等,平行,垂直去寻找坐标间的数量关系,往往要和根与系数的关系结合应用,体现数形结合的思想,达到简化计算的目的。
3.圆锥曲线弦长问题弦长问题主要记住弦长公式:设直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则:4.定点、定值问题(1)定点问题可先运用特殊值或者对称探索出该定点,再证明结论,即可简化运算;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.5.最值、参数范围问题这类常见的解法有两种:几何法和代数法.(1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法;(2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.在利用代数法解决最值与范围问题时常从以下五个方面考虑:(1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;(3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;(4)利用基本不等式求出参数的取值范围;(5)利用函数的值域的求法,确定参数的取值范围.6.轨迹问题轨迹问题一般方法有三种:定义法,相关点法和参数法。
定义法:(1)判断动点的运动轨迹是否满足某种曲线的定义;(2)设标准方程,求方程中的基本量(3)求轨迹方程相关点法:(1)分析题目:与动点M(x,y)相关的点P(x0,y0)在已知曲线上;(2)寻求关系式,x0=f(x,y),y0=g(x,y);(3)将x0,y0代入已知曲线方程;(4)整理关于x,y的关系式得到M的轨迹方程。
高中数学直线和圆锥曲线常考题型汇总及例题解析

高中数学直线和圆锥曲线常考题型汇总及例题解析题型一:数形结合确定直线和圆锥曲线的位置关系题型二:弦的垂直平分线问题题型三:动弦过定点的问题题型四:过已知曲线上定点的弦的问题题型五:共线向量问题题型六:面积问题题型七:弦或弦长为定值问题题型八:角度问题题型九:四点共线问题题型十:范围问题(本质是函数问题)题型十一:存在性问题(存在点、直线y=kx+b、实数、圆形、三角形、四边形等)【题型一】数形结合确定直线和圆锥曲线的位置关系【题型二】弦的垂直平分线问题【题型三】动弦过定点的问题【题型四】过已知曲线上定点的弦的问题【题型五】共线向量问题【题型六】面积问题【题型七】弦或弦长为定值问题【题型八】角度问题【题型九】四点共线问题【题型十】范围问题(本质是函数问题)【题型十一】存在性问题(存在点、直线y=kx+b、实数、圆形、三角形、四边形等)例题&解析集合例1:例2:例3:例4:例5:例6:刷有所得:确定圆的方程方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.(2)待定系数法①若已知条件与圆心和半径有关,则设圆的标准方程依据已知条件列出关于的方程组,从而求出的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D、E、F的方程组,进而求出D、E、F的值.例7:答案:解析:刷有所得:该题考查的是有关直线与椭圆的问题,涉及到的知识点有直线方程的两点式、直线与椭圆相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,在做题的时候需要先将特殊情况说明,一般情况下,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论.例8:解析:定点问题例9:解析:例10:例11:解析:例12:例13:答案:例14:例15:解析:离心率问题例16:答案:D解析:刷有所得:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义. 例17:答案:C 解析:例18:答案:C解析:刷有所得:求离心率的值或范围就是找的值或关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(II)若椭圆E上存在两点P、Q,使得直线PC与直线QC关于直线 对称,求直线PQ的斜率。
解:(I) ,且BC过椭圆的中心O
又 点C的坐标为 。
A 是椭圆的右顶点,
,则椭圆方程为:
将点C 代入方程,得 ,
椭圆E的方程为
(II) 直线PC与直线QC关于直线 对称,
设直线PC的斜率为 ,则直线QC的斜率为 ,从而直线PC的方程为:
因为直线 为圆心在原点的圆的一条切线,所以圆的半径为 , , ,
所求的圆为 ,此时圆的切线 都满足 或 ,
而当切线的斜率不存在时切线为 与椭圆 的两个交点
为 或 满足 ,
综上, 存在圆心在原点的圆 ,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且 .
因为 ,
所以
,
① 时 因为 所以 ,
所以 ,
解:(1)因为椭圆E: (a,b>0)过M(2, ) ,N( ,1)两点,
所以 解得 所以 椭圆E的方程为
(2)假设存在圆心在原点的圆,使得该圆的任意一条
切线与椭圆E恒有两个交点A,B,且 ,设该圆的切线方程为 解方程组 得 ,即 ,
则△= ,即
,
要使 , 需使 ,即 ,
所以 ,所以又ຫໍສະໝຸດ ,所以 ,即 或 ,由 消y整理,得 ①
由直线和抛物线交于两点,得
即 ②
由韦达定理,得: 。
则线段AB的中点为 。
线段的垂直平分线方程为:
令y=0,得 ,则
为正三角形,
到直线AB的距离d为 。
解得 满足②式, 此时 。
题型三:动弦过定点的问题
例题3、已知椭圆C: 的离心率为 ,且在x轴上的顶点分别为A1(-2,0),A2(2,0)。
是方程的两个根,
则 , ,
即点M的坐标为 ,
同理,设直线A2N的斜率为k2,则得点N的坐标为
,
直线MN的方程为: ,
令y=0,得 ,将点M、N的坐标代入,化简后得:
又 ,
椭圆的焦点为
,即
故当 时,MN过椭圆的焦点。
题型四:过已知曲线上定点的弦的问题
例题4、已知点A、B、C是椭圆E: 上的三点,其中点A 是椭圆的右顶点,直线BC过椭圆的中心O,且 , ,如图。
(Ⅱ)设过定点 的直线 与椭圆交于不同的两点 、 ,且∠ 为锐角(其中 为坐标原点),求直线 的斜率 的取值围。
解:(Ⅰ)易知 所以 ,设 ,则
因为 ,故当 ,即点 为椭圆短轴端点时, 有最小值
当 ,即点 为椭圆长轴端点时, 有最大值
(Ⅱ)显然直线 不满足题设条件,可设直线 ,
联立 ,消去 ,整理得:
例题1、已知直线 与椭圆 始终有交点,求 的取值围
解: 。
题型二:弦的垂直平分线问题
例题2、过点T(-1,0)作直线 与曲线N : 交于A、B两点,在x轴上是否存在一点E( ,0),使得 是等边三角形,若存在,求出 ;若不存在,请说明理由。
解:依题意知,直线的斜率存在,且不等于0。
设直线 , , , 。
(Ⅱ)设 , 。
(1)当 轴时, 。
(2)当 与 轴不垂直时,设直线 的方程为 。
由已知 ,得 。
把 代入椭圆方程,整理得 ,
, 。
当且仅当 ,即 时等号成立。当 时, ,综上所述 。
当 最大时, 面积取最大值 。
问题六:围问题(本质是函数问题)
例6、设 、 分别是椭圆 的左、右焦点。
(Ⅰ)若 是该椭圆上的一个动点,求 · 的最大值和最小值;
所以 当且仅当 时取”=”.
2当 时, .
3当AB的斜率不存在时, 两个交点为 或 ,所以此时 ,
综上,|AB |的取值围为 即:
(I)求椭圆的方程;
(II)若直线 与x轴交于点T,点P为直线 上异于点T的任一点,直线PA1,PA2分别与椭圆交于M、N点,试问直线MN是否通过椭圆的焦点?并证明你的结论
解:(I)由已知椭圆C的离心率 , ,则得 。
从而椭圆的方程为
(II)设 , ,直线 的斜率为 ,则直线 的方程为 ,由 消y整理得
直线和圆锥曲线常考ian锥曲线经题型
运用的知识:
1、两条直线 垂直:则 ;两条直线垂直,则直线所在的向量
2、韦达定理:若一元二次方程 有两个不同的根 ,则 。
3、中点坐标公式: ,其中 是点 的中点坐标。
4、弦长公式:若点 在直线 上,
则 ,这是同点纵横坐标变换,是两大坐标变换技巧之一,
或者 。
题型一:数形结合确定直线和圆锥曲线的位置关系
,即 ,
由 消y,整理得:
是方程的一个根,
即
同理可得:
= =
=
则直线PQ的斜率为定值 。
题型五:面积问题
例题5、已知椭圆C: (a>b>0)的离心率为 短轴一个端点到右焦点的距离为 。
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为 ,求△AOB面积的最大值。
解:(Ⅰ)设椭圆的半焦距为 ,依题意 , 所求椭圆方程为 。
∴
由 得: 或 又
∴
∵ ,即 ∴
故由①、②得 或
题型七、存在性问题:(存在点,存在直线y=kx+m,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)
例7、设椭圆E: (a,b>0)过M(2, ) ,N( ,1)两点,O为坐标原点,
(I)求椭圆E的方程;
(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且 ?若存在,写出该圆的方程,并求|AB |的取值围,若不存在说明理由。