5 相 平 衡

合集下载

第五章 相平衡

第五章   相平衡

衡时的p-x相图如右图
g
A
xB
B
三、二组分气-液平衡系统
例题二:在p=101.3 kPa,85℃时,由甲苯(A)及苯(B)组成的 二组分液态混合物即达到沸腾。该液态混合物可视为理想液 态混合物。试计算该理想液态混合物在101.3 kPa及85℃沸腾 时的液相组成及气相组成。已知85℃时纯甲苯和纯苯的饱和 蒸气压分别为46.00 kPa和116.9 kPa。
b、具有最低会溶温度的系统 如H2O-(C2H5)3N系统 TB=291K
c、具有两种会溶温度的系统 如H2O-(C2H5)3N系统 曲线内为两相共存 曲线外是互溶单相区
d、不具有两种会溶温度的系统 如H2O-乙醚系统
T/K
291
H2O x
481
T/K
(C2H5)3N
333
H2O x
烟碱
五、二组分液-固平衡系统
pA*
p pA pB pA* xA pB* xB
pA* (1 xB) pB* xB
pB* pA* xB pA*
A
xB
B
压力与液相组成图(T一定)
设A在气相中的摩尔分数为yA,B为yB,则有
yA
pA p
pA* xA p
yB
pB p
pB* xB p
yA pA* xA yB pB* xB
继续降低压力至D,气液达到平衡
此时,液相组成为C点
p T一定 a
气相组成为E点
C点和E点称为相点 CE称为联结线
继续降低压力至F
pA*
CN
D
F
pB*
EM
此时,液相已经全部蒸发
气相组成为F点 继续降低压力
气相的简单状态变化

第5章 相平衡习题解答

第5章 相平衡习题解答
解:(1)由表中的数据,绘制水(A) -醋酸(B)系统的温度-组成图如下:
⑵ 图中,组成为 xB=0.800 的液相的泡点: t 110.2 C ; ⑶ 图中,组成为 yB =0.800 的气相的露点: t 112.8 C ; ⑷ 求 105℃时气-液平衡两相的组成: xB 0.417 , yB 0.544 ;
xB
1
xA
0.541
p pA pB 54.22 0.459 136.12 0.541 98.53kPa
yA
pA pA pB
54.22 0.541
0.2526
54.22 0.459 136.12 0.541
yB
pB pA pB
136.12 0.459
0.7474
54.22 0.459 136.12 0.541
答: ⑴ p=98.54kPa,yB=0.7476;⑵ p=80.40kPa,xB=0.3197; ⑶ yB=0.6825,xB=0.4613,nB(l)=1.709mol,nB(g)=3.022mol 5-7 在 101.325kPa 下,水(A) -醋酸(B)系统的气-液平衡数据如下:
t/℃
100
100 92 0.45
2.415
mB (2.415 100 / 92) 18 23.91kg
第五章 相平衡习题解答
5-1 指出下列平衡系统中的物种数 S、组分数 C、相数 P 和自由度数 f。 ⑴ C2H5OH 与水的溶液; ⑵ I2(s)与 I2(g)成平衡; ⑶ NH4HS(s)与任意量的 H2S(g)及 NH3(g)达到平衡; ⑷ NH4HS(s)放入抽空的容器中分解达平衡; ⑸ CaCO3(s)与其分解产物 CaO(s)和 CO2(g)成平衡; ⑹ CHCl3 溶于水中、水溶于 CHCl3 中的部分互溶系统及其蒸气达到相平衡。 解:(1)物种数 S=2,组分数 C=2、相数 P=1,自由度数 f=C-P+2=3;

第五章 相平衡

第五章  相平衡

b.同一相内物质间有浓度限制条件R′
5.3 相律
相律
例如:合成氨时系统内有N2,H2,NH3 N2+3H2=2NH3
Kp p p p
2 NH 3 3 N2 H 2
C= S-R C =S-R-R´ 5.3 相律
相律
C = S - R - R'
注意: (1)R---表示独立的化学平衡数。有时系统中可以 存在很多化学平衡,但是独立的并不多。
5.3 相律
相律
自由度(degree of freedom) 系统内独立可变因素的数目称为自由度,用字母f 表示。独立可变因素包括压力、温度和浓度等。
独立可变因素是指在一定范围内这些可变因素变 化时,不会引起相的改变,既不会使原有相消失, 也不会增加新的相。
5.3 相律
相律
相律(phase rule)
Φmin=1
fmin=0
(3)可求系统中最多相数Φ
max
5.3 相律
相律
例题(P336,习题4):已知Na2CO3(s)和 H2O(l)可以生成三种水合物: Na2CO3· H2O(s), Na2CO3· 7H2O(s)和 Na2CO3· 10H2O(s),试求: (1) 在大气压力下,与Na2CO3水溶液和冰 平衡共存的水合盐的最大值; (2) 在298K时,与水蒸气平衡共存的水合 盐的最大值。
单组分系统的两相平衡
解:
p2 vap H m 1 1 (1) ln p1 R T1 T2 p2 34170J m ol1 1 1 ln 1 1 10.02kPa 8.314J m ol K 293K 303K p2 15.91kPa
5.1 引言

第5章 相 平 衡

第5章     相 平 衡

相与相:明显界面;机械方法可分开;
宏观界面性质突变;与物质量无关。
相数:体系中所含相的数目,记为P。
自然界中物质有三种存在形态(s,l,g)
气态:一般能无限混合 ——单相
液态:完全互溶 —— 单相
不完全互溶 —— 多相
固态:一般不能互溶 —— 多相
固溶体 —— 单相
2. 组分和组分数
组分(元,Component),也称独立组分(元) 描述体系中各相组成所需最少的、能独立存在 的物质(讨论问题方便)。
溜冰人在冰刀上产生的压强为:
mg 60 9.8 p2 1.575 108 / Pa 2 As 2 1.867 10 6
p1 1.01325 105 / Pa源自T1 273.16 / K
trs H m T2 ln 来计算:T2=262.19K ◎用 p trsVm T1 trs H m T ◎用 p 来计算:T2=261.96K trsVm T1
1. 点、线、面的意义 线:两相平衡,为单变量系 —— P = 2 f =1 OA:液(水)-气(水蒸气)平衡线,水蒸气压曲线 p = 22088.85kPa C p 临界点 A T = 647K 水 OF :过冷水-水蒸气平衡 p2 不稳定 p1 冰 O F 水蒸气 OB:固(冰)-气(水蒸气) 平衡,冰升华曲线 B OC:固(冰)-液(水)平衡,
trs H m | trs H m | | trs H m | dp p 2 dT T trsVm TVm, g RT
dlnp | trs H m | 或 dT RT 2
| trs H m | 1 1 p2 ln ( ) p1 R T2 T1
| trs H m | p A' ln B' B' p RT T | trs H m | p B' A lg B p 2.303RT 2.303 T

第5章相平衡

第5章相平衡

5.3中低压下汽液平衡 5.3中低压下汽液平衡
相平衡时
ɵ V = P sφ s r x Pyi φ i i i i i
(5-18) 18)
热力学中汽液平衡的研究方法: 热力学中汽液平衡的研究方法: 汽液平衡的研究方法 从平衡数据的测定入手,总结得到相应的平衡 从平衡数据的测定入手, 规律,拟合得到活度系数方程参数, 规律,拟合得到活度系数方程参数,利用具有预 测功能的活度系数方程,并结合式(5-18),计 测功能的活度系数方程,并结合式( 18),计 ), 算得到其他条件下的汽液平衡性质。 算得到其他条件下的汽液平衡性质。 5.3.1中 5.3.1中、低压下二元汽液平衡相图 见教材,自阅。 见教材,自阅。
汽液平衡体系的四类
相平衡时: 19) 相平衡时: PyiφiV = Pi sφis xi (5-19) 工程条件: 工程条件: P〈 1.5MPa的烃类混合物,同分异构体等。 1.5MPa的烃类混合物 同分异构体等。 的烃类混合物, 低压体系: ③低压体系: 汽相: 汽相:理想气体的混合物 Pi = yi P f i l = ri xi f i l 液相:非理想溶液 液相: 相平衡时 yi P = ri xi f i l = Pi s ri xi 20) (5-20) 工程上:大多数体系可采用此法计算。 工程上:大多数体系可采用此法计算。
∴ −d (U + PV − TS ) ≥ 0
∴ ( dG )T , P ≤ 0
∵ G = U + PV − TS
判断是否达到平衡状态 时,未达到平衡态; 未达到平衡态; 时, 达到平衡态。(5-3) 达到平衡态。( 。(5
=0
∆G < 0 ∆G = 0
( dG )T , P

基础化学第五章 相 平 衡

基础化学第五章  相  平  衡

可改写为:
dlnp dT RT 2 如果温度变动范围不大, g 可近似看作 cd H m,B 常数,上式进行定积分得: g p2 cd H m,B (T2 T1 ) ln p1 RT1T2
g cd H m,B
例题
二、水的相图
图 5-1
水的相图
第三节 二组分理想液体 混合物的相图
pB p x pyB * pA pA(1 xB) p(1 yB)
* B B
* yB pB xB * 1 yB pA(1 xB)
* B A * A
以上两式相除:
由上式得:
混合物的蒸气压为:
y p xB * * pB ( p pB) yB
* * A B * * A B
一、理想液体混合物的蒸气压组成图
由 A 和 B 组成的理想液体混合物,在温度 T 时混合物的蒸气压为:
* * p pA pB pA (1 xB) pB xB
由上式可得:
p p ( p p )xB
* A * B * A

图 5-2
理想液体混合物蒸气压图
理想液体混合物的蒸气也是理想气体混合物, 若用 yA 和 yB 表示气相中 A 和 B 的摩尔分数:



( -1) 个化学势相等 每一个组分在Φ 个相中应有 Φ 的关系式,系统中共有 K ( Φ-1) 个化学势相等的 关系式,有一个等式就表示一个变量不独立,系 统共有 K ( Φ - 1) 个变量不独立。因此,描述系统 状态所需的独立变量数为:
f ( K 1) 2 K ( 1) K 2
二组分液体混合物,除极少数是理想液体混 合物外,纯大多数混合物中各组分的蒸气压都与 拉乌尔定律产生明显偏差,因而蒸气压与组成并 不成直线关系。如果混合物中组分的蒸气压大于 拉乌尔定律计算值。则称为正偏差;如果组分的 蒸气压小于拉乌尔定律计算值,则称为负偏差。 一般情况下,二组分液体混合物中的两种组分或 均为正偏差、或均为负偏差。

物理化学 第五章 相平衡

第五章 相平衡
一、基本概念和公式 (一)几个基本概念 1. 相和相数 (1)相 (phase) 系统内部物理和化学性质完全均匀的部分称为相。 特点 相与相之间在指定条件下有明显的界面, 在界面上宏观性质的改变是飞跃式的。 (2)相数 (number of phase) 系统中相的总数称为相数,用 表示。 气体:
(三)二组分系统的相图及应用
(3) 同时具有最高、最低会溶温度 (4) 不具有会溶温度
(三)二组分系统的相图及应用
4. 不互溶双液系 (1) 特点 如果A,B 两种液体彼此互溶程度极小,以致可忽略 不计。则A与B共存时,各组分的蒸气压与单独存在时一 样,液面上的总蒸气压等于两纯组分饱和蒸气压之和。 * * 即: p pA pB 当两种液体共存时,不管其相对数量如何,其 总蒸气压恒大于任一组分的蒸气压,而沸点则恒低 于任一组分的沸点。 (2) 水蒸气蒸馏
CaF2 ( A)
0 .6
0 .8
1 .0 CaCl2 ( B)
(三)二组分系统的相图及应用
(3) 相合熔点 A和B形成的化合物有确定的熔点,完全熔化时不 分解,在熔点时液相和固相的组成相同,所以稳定化 合物的熔点称为相合熔点。 (4) 不相合熔点 因为C没有自己的熔点,将C加热,到O点温 度时分解成 CaF2 (s) 和组成为B的熔液,所以将O点 的温度称为转熔温度(peritectic temperature)也 叫异成分熔点或不相合熔点。
(四)三组分系统的相图及其应用
(d) 如果代表两个三个组分 系统的D点和E点,混合成新 系统的物系点O必定落在DE 连线上。哪个物系含量多, O点就靠近哪个物系点。 O点的位置可用 杠杆规则求算。
mD OD mE OE

第五章相平衡个

第五章 相平衡一、本章基本要求1.掌握相、组分数和自由度的意义;2.了解相律的推导过程及其在相图中的应用;3.了解克劳修斯-克拉珀龙方程式的推导,掌握其在单组分两相平衡系统中的应用;4.掌握各种相图中点、线及面的意义;5.根据相图能够画出步冷曲线,或由一系列步冷曲线绘制相图;6.掌握杠杆规则在相图中的应用;7.结合二组分气液平衡相图,了解蒸馏与精馏的原理;8.对三组分系统,了解水盐系统的应用,相图在萃取过程中的应用及分配定律的应用;二、 基本公式和内容提要一基本公式相律的普遍形式:f K n =-Φ+ 克拉珀龙方程:mm d ln d V T H T p ∆∆= 克劳修斯-克拉珀龙方程的各种形式:微分式: 2m vap d ln d RT H T p ∆= vap m H ∆与温度无关或温度变化范围较小vap m H ∆可视为常数, 定积分:vap m 211211ln ()H p p R T T ∆=- 不定积分式:vap mln H p C RT ∆=-+ 特鲁顿规则:K)J/(mol 88b mvap ⋅≈∆T H杠杆规则:以系统点为支点,与之对应的两个相点为作用点,有如下关系:1122()()n x x n x x -=-其中n 1 、n 2 分别表示平衡两相的摩尔数,x 、x 1、x 2分别表示系统的组成及其对应的平衡两相的组成;二内容提要1.单组分系统 单组分系统相律的一般表达式为:f =1-Φ+2=3-Φ图5-1 水的相图可见单组分系统最多只能有三相平衡共存,并且最多有两个独立变量,一般可选择温度和压力;水的相图为单组分系统中的最简单相图之一;图5-1中三条曲线将平面划分成固、液及气相三个区;单相区内f =2;AB 、AD 和AE 分别表示气液、气固和固液两相平衡线;两相共存时f =1;虚线AC 表示应该结冰而未结冰的过冷水与水蒸气平衡共存;A 点为三相点,这时f =0,水以气、液、固三相共存;水的三相点与水的冰点不同,冰点与压力有关;单组分系统两相平衡共存时T 与p 的定量关系式可由克拉珀龙方程式描述;对于有气相参与的纯物质气液两相或气固两相平衡,可用克劳修斯-克拉珀龙方程描述;特鲁顿规则是近似计算气化热或沸点的经验式;2.二组分双液系统 对于二组分系统, f =2-Φ+2=4-Φ;Φ=1时f =3,即系统最多有三个独立变量,这三个变量通常选择温度、压力和组成;若保持三者中的一个变量恒定,可得到p ~x 图、T ~x 图和p ~T 图;在这三类相图中,系统最多有3个相同时共存;1二组分完全互溶系统的气液平衡:这类系统的相图如图5-2;图中实线为液相线,虚线为气相线,气相线与液相线之间为气液二相共存区;靠近气相线一侧为气相区,靠近液相线一侧为液相区;其中Ⅰ为理想液态混合物系统;Ⅱ、Ⅲ分别为一般正、负偏差系统;Ⅳ、Ⅴ分别是最大正、负偏差系统;Ⅰ~Ⅲ类系统中易挥发组分在气相中的组成大于其在液相中的组成,一般精馏可同时得到两个纯组分;Ⅳ、Ⅴ类相图中极值点处的气相组成与液相组成相同,该系统进行一般精馏时可得到一个纯组分和恒沸混合物;二组分系统的两相平衡状态对应一个区域,用杠杆规则可以计算两相平衡共存区平衡二相的相对数量;图5-2 完全互溶系统的气液2部分互溶的二组分系统:因两种液体结构上有显著的差别,会出现一种液体在另一种液体中只有有限的溶解度,超过一定范围便要分成两个液层,即“部分互溶”,相图见图5-3;C点对应的温度称为“临界溶解温度”;温度超过C点,正丁醇与水两组分能以任何比例互溶;还存在另外两类溶解度图,分别见图5-4和图5-5,前者具有下临界溶解温度,后者同时具有上、下临界溶解温度;图5-3 水-正丁醇的溶解图图5-4 水-三乙基胺的溶解度图图5-5 水-烟碱的溶解度图图5-6 邻硝基氯苯、对硝基氯苯二元系统的冷却曲线a 和熔点组成图b3完全不互溶的双液系统:如果两种液体结构相差很大,彼此间的溶解度可以忽略不计,这样的系统可以看作完全不互溶的双液系统;在这类系统中任意液体在某一温度下的蒸气压与该液体同温度下单独存在时的蒸气压相同,与两种液体存在的量无关;总蒸气压**A B p p p =+,因此完全不互溶液体混合物的沸点低于任意纯组分的沸点,这是水蒸气蒸馏的基础;3.二组分固液系统1简单低共熔系统:常用热分析法或溶解度法绘制这类相图;利用“冷却曲线”绘制的邻硝基氯苯A 与对硝基氯苯B 的固液相图见图5-6;aE 和bE 线分别表示邻硝基氯苯与对硝基氯苯固体与熔化物平衡时液相组成与温度的关系曲线,也称为熔点降低曲线;E 点为最低共熔点,对应该温度的水平直线为三相平衡线两端点除外,共存的三相为固体邻硝基氯苯和对硝基氯苯及E 点对应的溶液,aE 、bE 及三相线将图形分成4个部分,各区域的相态分别注在图上;低共熔系统相图与药学密切相关,如利用冷却结晶过程分离提纯化合物;利用熔点变化检查药物或中间体纯度;指导药物配伍及防冻制剂的制备;改良与修饰剂型;与气-液相图联用,对混合物进行分离和提纯;2生成化合物系统:若A 与B 形成的化合物在固相和液相均是稳定的,并且熔化时固相和液相的组成相同,称为生成稳定化合物系统;若A 与B 间形成n 个稳定的化合物,则其固液相图相当于n +1个简单低共熔系统相图的拼合,若A 与B 间形成的化合物C,在加热到熔点之前,就分解成熔化物和另一种固体,熔化物与固态化合物C 的组成不同,称为生成不稳定化合物系统;其相图与前者有所不同;4.三组分系统 当温度和压力同时固定时,在平面上用等边三角形可表示三组分凝聚系统中各平衡系统的状态;其中三个顶点分别表示三个纯物质,三条边分别表示2个端点对应物质构成的二组分系统,三角形内任意一点表示三组分系统,二组分及三组分系统的组成可利用相图得到;三液体间可以是一对、二对甚至是三对部分互溶的,这类系统的相图在液-液萃取过程中有重要作用;除三液系统外,还有水盐系统,其相图对于粗盐提纯、分离具有指导作用;三、 概念题和例题一 概念题1.在一个抽空的容器中,放入过量的NH4Is并发生下列反应:NH4Is NH3g+HIg2HIg H2g+I2g系统的相数Φ= ;组分数K= ;自由度f= ;2.在一个抽空的容器中,放入过量的NH4HCO3s发生下列反应并达平衡:NH4HCO3s NH3g+H2Og+CO2g系统的相数Φ= ;组分数K= ;自由度f= ;3.在一个抽空容器中,放入足量的H2Ol,CCl4l及I2g;H2Ol和CCll完全不互4l中,容器上部的气相中同时含有I2g、H2Og及溶,I2g可同时溶于H2Ol和CCl4CCl4g;该平衡系统的相数Φ= ;组分数K= ;自由度f= ;4.含KNO3和NaCl的水溶液与纯水达渗透平衡,系统的相数Φ= ;组分数K= ;自由度f= ;5.在下列不同情况下,反应:2NH3 g N2 g +3H2 g 达平衡时,系统的自由度各为多少1反应在抽空的容器中进行;2反应在有N2的容器中进行;3反应于一定的温度下,在抽空的容器中进行;6.A和B两种液态物质微观角度讲要满足哪些条件才能形成理想液态混合物7.水的三相点与正常冰点有何不同8.液体的饱和蒸气压越高,沸点就越低;而由克劳修斯-克拉珀龙方程知,温度越高,液体的饱和蒸气压愈大;两者是否矛盾为什么9.对于具有最大正、负偏差的液-气平衡系统,易挥发组分在气相中的组成大于其在液相中的组成的说法是否正确为什么10.在一定压力下,若A、B二组分系统的温度-组成图中出现最高恒沸点,则其蒸气压对拉乌尔定律产生正偏差吗11.导出杠杆规则的基本依据是什么它能解决什么问题如果相图中横坐标为质量分数,物质的数量应取什么单位若横坐标为摩尔分数,物质的数量又应取什么单位二概念题答案1.2,1,12.2,1,13.3,3,24.3, 2, 45.1f=3-1-1-1+2 =2;2f=3-1-1+2=3;3 f=3-1-1-1+1=16.A和B两种液体分子的大小和结构十分接近,使得A-A分子之间、B-B 分子之间及A-B分子之间作用力近似相等时,可构成理想溶液;7.三相点是严格的单组分系统,水呈气、液、固三相共存时对应的温度为,压力为;而冰点是在水中溶有空气和外压为时测得的温度数据;首先,由于水中溶有空气,形成了稀溶液,冰点较三相点下降了;其次,三相点时系统的蒸气压低于冰点时的外压,由于压力的不同冰点又下降了,故冰点时的温度为;8.两者并不矛盾;因为沸点是指液体的饱和蒸气压等于外压时对应的温度;在相同温度下,不同液体的饱和蒸气压一般不同,饱和蒸气压高的液体,使其饱和蒸气压等于外压时,所需的温度较低,故沸点较低;克劳修斯-克拉珀龙方程是用于计算同一液体在不同温度下的饱和蒸气压的,温度越高,液体越易蒸发,故饱和蒸气压越大;9.不正确;因为具有最大正、负偏差系统的相图中有极值点,在极值点处液相组成与气相组成相同,用一般精馏不能将恒沸混合物分离;对于具有最大正、负偏差系统,题中的叙述应修正为适于理想或非理想液态混合物系统的柯诺瓦洛夫规则,即:在二组分溶液中,如果加入某一组分使溶液的总蒸气压增加即在一定压力下使溶液的沸点下降,则这个组分在气相中的组成将大于它在液相中的组成;10.产生负偏差;因为温度-组成图上有最高极值点,压力-组成图上必有最低极值点,故题中所给系统对拉乌尔定律产生最大负偏差;11.导出杠杆规则的基本依据是质量守恒定律,该规则具有普遍意义;可用于计算任意平衡两相的相对数量;相图中横坐标以质量分数表示时,物质的数量以质量为单位;横坐标以摩尔分数表示时,物质的数量以摩尔为单位;三例题例1 水的蒸汽压方程为:4885ln p A T=-, 式中A 为常数,p 的单位为Pa;将10g 水引入体积为10L 的真空容器中,问在323K 达到平衡后,容器中还剩多少水解:将T =,p =101325Pa 代入所给方程中,则:4885ln101325373.2A =- 得A = 于是蒸汽压方程为:Tp 488524.61ln -= 将T =323K 代入上式,得:p =因为 V l +V g =10L, V l V g , 故 V g ≈10L设蒸汽为理想气体,mol 0493.0gg ==RT pV n ,W g =0.888g故还剩水为:10-=9.112g例2 已知298K 时气相异构反应:正戊烷异戊烷的p K =,液态正戊烷和异戊烷的蒸气压kPa 与温度的关系式分别可用下列二式表示: 正戊烷:2002453145.9ln +-=T p 异戊烷:2252453002.9ln +-=T p 假定两者形成的溶液为理想液态混合物,计算298K 时液相异构反应的x K ;解:K p =**x p p K p p =异异正正图5-7 邻硝基氯苯A 与对 硝基氯苯B 的T -x 图 **x p p K K p =正异由已知条件知298K 时,2002453145.9ln +-=T p , *67.99kPa p =正 同理可求得*91.40kPa p =异,则:**67.9913.249.8591.40x p p K K p ==⨯=正异 例3 邻硝基氯苯A 与对硝基氯苯B 的温度-组成图如图5-7:1指出图中点、线、区的意义;2某厂对硝基氯苯车间的结晶器每次处理氯苯硝化料液×103kg,料液的组成为B W =66%,A W =33%间W =1%,可忽略不计,温度约为327K, 若将此料液冷却到290K 此时溶液中含B 35%,如R 点所示,问:1 每次所得对硝基氯苯的产量为多少kg2 平衡产率如何3 冷母液的组成如何冷母液中尚含对硝基氯苯及邻硝基氯苯各多少kg3画出图中f 、g 、h 三物系的步冷曲线;解:1Ⅰ区为邻硝基氯苯与对硝基氯苯二异构体所组成的溶液,为单相区;Ⅱ区为邻硝基氯苯固相与溶液两相平衡共存区;Ⅲ区为对硝基氯苯固相与溶液两相平衡共存区;Ⅳ区为对硝基氯苯固相与邻硝基氯苯固相两相共存区;ac 线为邻硝基氯苯凝固点降低曲线;bc 线为对硝基氯苯凝固点降低曲线;过c 点的水平线与温度坐标的两个交点除外为三相线,线上任意一点都表示邻硝基氯苯固相、对硝基氯苯固态及对应c 点组成溶液的三相平衡共存;a 点为纯邻硝基氯苯的凝固点,b 点为纯对硝基氯苯的凝固点,c 点为低共熔点,该点对应的温度称为低共熔温度;2将W A =33%,W B =66%,温度为323K m 点的系统冷却到190K,此时有大量对硝基氯苯固态析出,冷母液的组成为R 点所示,含对硝基氯苯W B =35%;此时析出的对硝基氯苯固体与溶液的质量比,可由杠杆规则确定,即:66.000.135.066.0B --=溶液m m 又:3B 7.810kg m m +=⨯溶液图5-8 f 、g 、h 三物系的冷却曲1联立以上两式解得:m B =×103kg 272.3%66.0108.71072.333=⨯⨯⨯=平衡产率 3冷母液的组成为含对硝基氯苯W B =35%,含对硝基氯苯的量为:333(7.810 3.7210)35% 1.42810 kg ⨯-⨯⨯=⨯冷母液中含邻硝基氯苯的量为3333(7.810 3.7210) 1.42810 2.62510 kg ⨯-⨯-⨯=⨯3三系统的冷却曲线见图5-8;例 4 下,苯和甲苯的沸点分别为和,摩尔蒸发热分别为30696J/mol 和31967J/mol 设摩尔蒸发热与温度无关;已知苯和甲苯可构成理想液态混合物,问:若使该溶液在,条件下沸腾,其组成应如何解:)11(ln 21m 12T T R H p p -∆= 苯:)2.37314.3531(314.830696101325ln 2-=p 2p = kPa, 甲苯:)2.37318.3831(314.831967101325ln 2-=p 2p = kPa**+p p x p x =苯苯甲苯甲苯176.30+76.10=101.325x x 苯甲苯=1x x +苯甲苯可得 苯x = , 甲苯x =例5 在温度T 时,纯Al 和纯Bl 的饱和蒸气压分别为40kPa 和120kPa;已知A 、B 两组分可形成理想液态混合物;1在温度T 下,将y B =的A 、B 混合气体于气缸中进行恒温缓慢压缩;求第一滴微小液滴不改变气相组成出现时系统的总压力及小液滴的组成x B 各为若干2若A 、B 液态混合物恰好在温度T 、100kPa 下沸腾,此混合物的组成x B 及沸腾时蒸气的组成y B 各为若干解:1设与y B =的气相成平衡的液相组成为x B 时,总压为p ,则有:*B B B **A B B Bp (1)p x y x p x =-+,代入已知数据得: x B =**A B A B B B (1)p p p p x p x =+=-+=40×1-+120×=2由题意知:100 =*A p 1-x B +*B p x B将*A40kPa p =,*B 120kPa p =代入上式得 x B =对应的气相组成: *B B B 0.900100p x y == 例6 在下,将9.0kg 的水A 与30.0kg 的醋酸B 形成的液态混合物加热到378K,达到气液两相平衡时,气相组成y B =,液相中x B =;求气液两相的质量各为多少千克解:由M A =18×10-3 kg/mol,MB=60×10-3 kg/mol 得:mol 500A A A ==M m n ,mol 500BB B ==M m n mol 1000B A =+=n n n 总 系统的总组成:B 0,B 0.500n n n ==总在T =378K 、p =达到气液平衡时,根据杠杆规则,可列出下列关系: g0.5440.5000.34650.5000.417n n -==-总 n g =总n =×1000=n l =总n -n g =1000-=气、液相的平均摩尔质量分别为:M g =Σy i M i =×18+×60×10-3=×10-2 kg/mol图5-9 水-异丁醇沸点-组成示意图 丁醇-水沸点-组成示意图M l =Σx i M i =×18+×60×10-3=×10-2 kg/mol气相的质量:m g =n g M g =××10-3=12.3kg液相的质量:m l = n l M l =××10-2=26.7kg例7 异丁醇-水是液相部分互溶系统,已知其共沸数据如下:共沸点为,共沸组成含异丁醇的质量分数是:气相%,液相中异丁醇层为%,水层为%;今有异丁醇-水液态混合物0.5kg,其中含异丁醇%,将此混合物在压力下加热;1作沸点-组成示意图;2温度接近时,此平衡系统中存在哪些相 各相重多少千克3当温度由刚有上升趋势时,平衡系统中存在哪些相 各相重多少千克解:1根据共沸数据画出相图如图5-9;2温度接近时,平衡系统中存在两个共轭液层,即异丁醇层和水层,设水层重为x kg,则异丁醇层重为-x kg;由上图可知: x 30-=-x 85-30解得: x = 0.36kg异丁醇层重为:-=0.14kg3刚有上升趋势时,系统中亦存在两相,即气相和水层相;设水层重y kg,则气相重为-y kg于是有:y 30-=-y 70-30y = 0.326kg,气相重为:- = 0.174kg四、习题解答1.指出下列平衡系统的组分数、自由度各为多少1NH 4Cls 部分分解为NH 3g 和HClg ;2若在上述系统中额外加入少量的NH 3g ;3NH 4HSs 和任意量的NH 3g 及H 2Sg 平衡;4Cs,COg,CO 2g,O 2g 在100℃时达平衡;解:1K =3-1-1=1, f =1-2+2=12K =3-1-0=2, f =2-2+2=23K =3-1-0=2, f =2-2+2=24K =4-2-0=2, f =2-2+1=12.在水、苯和苯甲酸的系统中,若指定了下列事项,试问系统中最多可能有几个相,并各举一例;1指定温度;2指定温度和水中苯甲酸的浓度;3指定温度、压力和水中苯甲酸的浓度;解:1f=3-Φ+1=4-Φ,f=0时,Φ=4,即最多可有4相共存,如气相、苯甲酸固体、苯甲酸的饱和水溶液及其饱和苯溶液;2f=2-Φ+1=3-Φ,f=0时,Φ=3,故最多可有三相共存,如苯甲酸的饱和水溶液相、苯甲酸的饱和苯溶液相和气相;3f=2-Φ+0=2-Φ,即系统最多可有两相共存,如苯甲酸苯溶液及苯甲酸水溶液;3.求下述系统的自由度数,如f≠0,则指出变量是什么;1在标准压力p下,水与水蒸气平衡;2水与水蒸气平衡;3在标准压力p下,I2在水中和CCl4分配已达到平衡,无I2s存在;4NH3g、H2g、N2g已达化学平衡;5在标准压力p下,NaOH水溶液与H3PO4水溶液混合后;6在标准压力p下,H2SO4水溶液与H2SO4·2H2O固已达平衡;解:1 f=1-2+1=0,即无变量系统2 f=1-2+2=1,即T或p3 f=3-2+1=2,即T和x4 f=2-1+2=3,即T、p和x5 f=3-1+1=3,即T、x1和x26 f=2-2+1=1,即T4.硫的相图如图5-10;图5-10 硫的相图1写出图中各线和点代表哪些相的平衡;2叙述系统的状态由X在恒压下加热至Y所发生的变化;解:1AB:正交与气相;BC:单斜与气相,CD:气相与液相;CE:单斜与液相;BE:过热正交硫的蒸气压曲线;BG:正交与气相;CG:液态与气态;GE:正交与液态;EF:过热正交硫的熔化曲线;B:正交、单斜与气相;C:单斜、液相与气相;E:正交、气相与液相;G:液相、单斜与正交2如图:X→a为正交硫的恒压升温过程,a点为正交硫与单斜硫两相平衡共存,a→b为单斜硫的恒压升温过程,b点为单斜硫与液态两相平衡共存,b→Y为液态硫的恒压升温过程;5.氯仿的正常沸点为外压为,试求氯仿的摩尔气化热及时的饱和蒸气压; 解:由特鲁顿规则知:Δvap H m = 88T b = 88×+ = kJ/mol将已知数据代入克-克方程:)11(ln 21m 12T T R H p p -∆= )15.313165.3341(314.829450325.101ln 2-=p 解得:kPa 0.492=p6.今把一批装有注射液的安瓿瓶放入高压消毒锅内加热消毒,若用的水蒸气进行加热,问锅内的温度有多少度已知Δvap H m = kJ/mol 解:vap m 211211ln ()H p p R T T ∆=- )115.3731(314.840670325.10199.151lnT-= T =385K7.某有机物的正常沸点为外压为,从文献上查得:压力减为 kPa 时,它的沸点为,问在时的沸点为多少 假定~范围内温度对气化热的影响可以忽略; 解:vap m 211211ln ()H p p R T T ∆=- vap m 0.26711ln ()101.3258.314503.15363.15H ∆=- Δvap H m = kJ/mol)115.5031(314.864442325.10133.1ln T-= T =393K8.氢醌的蒸气压实验数据如下: 压力/kPa求:1氢醌的升华热、蒸发热、熔化热设它们均不随温度变化; 2气、液、固三相共存时的温度与压力;3在500K 沸腾时的外压;解:1)11(ln 21m 12T T R H p p -∆= sub m 1.333411ln ()0.13338.314405.55436.65H ∆=-Δsub H m = kJ/molvap m 13.33411ln ()5.33278.314465.15489.65H ∆=- Δvap H m = kJ/molΔfus H m =Δsub H m -Δvap H m = kJ/mol2设三相平衡共存时的温度为T ,压力为p ,则有:sub m 11ln()0.13338.314405.55H p T ∆=- vap m 11ln ()5.33278.314465.15H p T∆=- 二式联立得:T =, p =3沸腾时蒸气压等于外压,即有:)500115.4651(314.8708333327.5ln -=p p =9.为了降低空气的湿度,让压力为的潮湿空气通过一冷却至的管道,试用下列数据,估计在管道出口处空气中水蒸气的分压;水在和时的蒸汽压分别为和,时冰的熔化热为kg 假设所涉及的热效应都不随温度而变;当此空气的温度回升到时压力仍为,问这时的空气相对湿度为若干解:)11(ln 21m 12T T R H p p -∆= vap m 1.22811ln ()0.61068.314273.15283.15H ∆=- vap m 44.93 kJ/mol H ∆=m fus m vap m sub H H H ∆+∆=∆=+××-3= kJ/mol设时冰的饱和蒸汽压为p ,时水的饱和蒸汽压为1p ,则有:)15.248115.2731(314.8509306106.0ln -=p kPa 064.0=p)15.293115.2731(314.8449306106.0ln 1-=pkPa 35.21=p 相对湿度为:%72.2%10035.2064.0=⨯ 10.两个挥发性液体A 和B 构成一理想溶液,在某温度时溶液的蒸气压为,在气相中A 的摩尔分数为,液相中为,求此温度下纯A 和纯B 的蒸气压; 解:由题意知: **AA B A (1)p x p x p +-= *A A A y p x p= 将54.1kPa p =,65.0A =x ,A 0.45y =代入以上二式,得:*A37.45 kPa p =,*B 85.01 kPa p = 11.由甲苯和苯组成的某一溶液含30%质量分数的甲苯,在时纯甲苯和纯苯的蒸气压分别为和,设该溶液为理想溶液,问时溶液的总蒸气压和分压各为多少解:30920.26730709278x ==+甲苯 4.870.267 1.300 kPa p =⨯=甲苯15.76(10.267)11.55 kPa p =⨯-=苯p =12.在下,HNO 3、H 2O 系统的组成为:t/K 373 383 393 395 393 388 383 373 x HNO 3液 y HNO 1画出此系统的沸点组成图;2将3mol HNO 3和2mol H 2O 的混合气冷却到387K,互相平衡的两相组 成为何 相对量为多少3将3mol HNO 3和2mol H 2O 的混合物蒸馏,待溶液沸点升高了4K 时,整个馏出物的组成为若干4将3mol HNO 3和2mol H 2O 的混合物进行精馏,能得到什么纯物质解:1系统的沸点-组成图如图5-11:图5-11 HNO 3-H 2O 系统的沸点-组成图 图5-12 水-异丁醇系统的沸点-组成图 2由图可得:系统点组成、气相组成及液相组成分别为、及,则有:n g -=n l -gl 60540.199260n n -==- 34纯HNO 313.水和异丁醇的气液平衡相图如图5-12;1指出各个相区存在的相态及自由度;2组成为w 1的稀溶液精馏后,在塔顶和塔釜分别得到什么3能根据此相图设计合理的工业分馏过程,完全分离水和异丁醇吗 如果能,请写出大致的分离流程;解:1各区域的相态及自由度分别如下:a 区:气相g,f =2;b 区:液相l 1与气相g 两相共存,f =1;c 区:液相l 2与气相g 两相共存,f =1;d 区:液相l 1与液相l 2两相共存,f =1;e 区:液相l 1,f =2; f 区:液相l 2,f =2;2组成为w 1的稀溶液精馏后,在塔顶和塔釜分别得到恒沸混合物和水;3先将此混合液精馏,在塔釜中得到纯水后,将塔顶得到的恒沸物冷却使其进入液-液两相区,利用分液漏斗将两个液相分离得到水层及异丁醇层,再分别进行精馏,于是在塔釜分别得到纯水及异丁醇;如此进行下去,则可完全分离水和异丁醇;14.已知液体A 与液体B 可形成理想溶液,液体A 的正常沸点为,其摩尔气化热为35 kJ/mol;由2mol A 和8mol B 形成的溶液在标准压力#p 下的沸点为;将x B =的溶液置于带活塞的气缸中,开始时活塞紧紧压在液面上,在下逐渐减小活塞上的压力;求:1出现第一个气泡时系统的总压和气泡的组成;2当溶液几乎全部气化,最后仅有一小滴液体时液相的组成和系统的总压; 解:1设时A 和B 的饱和蒸气压分别为*A p 和*B p ,则有:*A 3500011ln ()101.3258.314338.15318.15p =- *A46.41 kPa p = 由**A A B B 101.325p x p x +=,得*B115.05 kPa p =出现第一个气泡时,液相的组成近似为原溶液的组成,即x B =, x A =,则:A A 46.410.40.211846.410.4115.050.6p y p ⨯===⨯+⨯ 0.78820.21181B =-=y**A A B B 87.61 kPa p p x p x =+=2当溶液几乎全部气化,最后仅有一小滴液体时,气相的组成与原溶液的组成相同,即:y A =,y B = 则有:*A A*B B A Bp x y p p x y p= 解得:x A =,x B =*B 46.410.623072.28kPa 0.4p ⨯== 15.水和乙酸乙酯是部分互溶的,设在,两相互呈平衡,其中一相含有%酯,而令一相含水%都是质量分数;设Raoult 定律适用于各相的溶剂,在此温度时纯乙酸乙酯的蒸气压为,纯水的蒸汽压是;试计算:1酯的分压;2水蒸气分压;3总蒸气压; 解:酯相:0.161883.79100183.79183.79=-+=水x x 酯=1-=p 酯=×水相:0.0146186.75100886.75886.75=-+=酯x x 水=1-=p 水=× =p =p 酯+p 水=16.若在合成某有机化合物之后进行水蒸气压蒸馏,混合物的沸腾温度为;实验时的大气压为,的水饱和蒸汽压为;馏出物经分离、称重,知水的质量分数为%;试估计此化合物的分子量;解:222*H OH O H O *B B B 0.450.55W p M W p M ==图5-13 某二元凝聚系统相图 图5-14 各点对应系统的步冷曲222*H OH O B B *B H Op M W M p W = 2**B H O 99.2084.5314.67 kPa p p p =-=-=B 84.53180.55127 g/mol 14.670.45M ⨯⨯==⨯ 17.某二元凝聚系统的相图如图5-13;1试绘出分别从a 、b 、c 、d 、e 各点开始冷却的步冷曲线;2说明混合物d 和e 在冷却过程中的相变化;解:1a 、b 、c 、d 、e 各点对应系统的步冷曲线分别见图5-14;2d →d 1为液态混合物的恒压降温过程,d 1点开始析出固态B,d 1→d 2为固态B 与溶液二相共存,d 2点为固态B 、固态E 和溶液三相共存,d 2→d 3为固态E 与溶液二相共存,d 3以后为固态A 与固态E 二相共存;e →e 1为液态混合物的恒压降温过程,e 1点开始析出固态B,e 1 →e 2为固态B 与溶液二相共存,e 2点为固态B 、固态E 和溶液三相共存,e 2点以后为固态E 的恒压降温过程;18.下表列出邻-二硝基苯和对-二硝基苯的混合物在不同组成时的熔点数%,w/w K %,w/w K100 4090 3080 2070 1060 0501绘制x T -图,并求最低共熔点混合物的组成;2如果系统的原始组成分别为含对-二硝基苯75%和45%,问用结晶法能从上述混合物中回收得到纯对-二硝基苯的最大百分数为若干解: 1T -x 图如图5-15;图5-15 邻-二硝基苯和对-二硝基苯系统的T-x 图图5-15 邻-二硝基苯和对-二硝基苯系统的T-x 图由上图可知最低共熔混合物的组成为含对位化合物%;2设含对位化合物75%和45%的系统,冷却结晶可得到纯对位化合物的最大百分数分别为x 、y ,则:%7.675.221005.2275=--=x %0.295.221005.2245=--=y 19.图5-16是FeO n -Al 2O 3相图;请指出各相区相态;图5-16 FeO n -Al 2O 3相图解:1区:液相区;2区:浮士体+液相;3区:尖晶石+液相;4区:浮士体;5区:浮士体+尖晶石;6区:尖晶石+液相;7区:刚玉+ 液相;8区:尖晶石;9区:刚玉;10区:尖晶石+刚玉;图5-17 KNO 3-NaNO 3-H 2O 的相图 图5-18 水-乙醚-甲醇三组分系统相图 20.图5-17是三组分系统KNO 3-NaNO 3-H 2O 的相图,实线是298K 时的相图,虚线是373K 下的相图;一机械混合物含70%的KNO 3及30%的NaNO 3,请根据相图拟定分离步骤;解:设含70%KNO 3、30%NaNO 3的系统点在BC 线上的D 点;在298K 时向该系统中加水使其沿DA 线向A 点移动,直至进入KNO 3固体与KNO 3、NaNO 3水溶液二相共存区,此时NaNO 3全部溶解,剩余的固体是KNO 3,但其中可能混有不溶性杂质,这时加热至373K,在该温度时,系统点位于液相区,在高温下过滤除去杂质,再将滤液冷却至298K,即有KNO 3的晶体析出;21.KNO 3-NaNO 3-H 2O 系统在278K时有一三相点,在这一点无水KNO 3和无水NaNO 3同时与一饱和溶液达平衡;已知此饱和溶液含KNO 3为%质量分数,含NaNO 3为%质量分数;如果有一70g KNO 3和30g NaNO 3的混合物,欲用重结晶方法回收KNO 3,试计算在278K 时最多能回收KNO 3多少克解:最多可回收KNO 3为:30700.090463.4g 0.4101-⨯= 22.某温度时在水、乙醚和甲醇的各种三元混合物中二液层的组成如下:甲醇%质量分数 0 10 20 30水%质量分数 液层1 93 82 70 45 液层2 1 6 15 40根据以上数据绘制三组分系统相图,并指出图中各区相态;解:由已知数据绘制的三组分系统的相图及各区相态见图5-18;。

第5章- 相平衡


独立组分数:C= S – R – R′
浓度限制条件:R′
例如,在真空容器中发生如下反应:
2NH3(g) N2(g) 3H2(g)
因为有一个独立的化学反应,所以 R=1 因为两种气体的量保持一定的比例
所以
N2 (g):H2 (g) 1:3 R' 1, C S R R' 1
浓度限制条件:R′,在同一相中,某些物质的浓度始终保持 某种数量关系
独立组分数:C= S – R – R′
独立化学反应数:R
例如系统中有如下反应:
(1) CO H2O CO2 H2
1 (2) CO 2 O2 CO2
(3)
H2

1 2
O2

H2O
这三个反应中只有两个是独立的,所以 R=2
冰点是在大气压力下, 水的气、液、固三相共存
大气压力为 101325 Pa 时
冰点温度为 273.15 K
改变外压,水的冰点也随之改变
三相点与冰点的区别
冰点温度比三相点温度低 0.01 K 是由两种因
素造成的:
(1)因外压增加,使凝
固点下降 0.00749 K;
(2)因水中溶有空气, 使凝固点下降
(2)沸点:与组成无关,且比TA*和 TB*都低
(3) 在一定温度下气相组成不变
nA (g) nB (g)

pA* pB*
2、 工业应用:水蒸气蒸馏
简单的低共熔二元相图
1.0Bi
0.4Cd 1.0Cd
0.2Cd 0.7Cd
a
bc d e
H
p
H
A' A
A 546
熔化物(单相)

物理化学题库5相平衡选择填空题


(2 分)25.2329
相律在下列体系中何者不适用?
()
(A)NaCl 水溶液
(B)NaCl 饱和水溶液
(C)NaCl 过饱和水溶液
(D)NaCl 水溶液与纯水达渗透平衡
(1 分)26.2513
碘的三相点处在 115℃和 12 kPa 上,这意味着液态碘:
()
(A) 比固态碘密度大 (B) 在 115℃以上不能存在
(2 分)28.2328
用什么仪器可以区分固溶体和低共熔混合物? ( )
(A)放大镜
(B)超显微镜
(C)电子显微镜
(D)金相显微镜
(2 分)29.2563 在 400 K 时,液体 A 的蒸气压为 4×104 Pa,液体 B 的蒸气压为 6×104 Pa,两者组成理
想液体混合物,平衡时在液相中 A 的摩尔分数为 0.6,在气相中 B 的摩尔分数为: ()
在三相平衡时,体系的自由度 f = 。但是,此时物系点都可以变化,而不至于导致新 相产生和旧相消失,这与自由度数目并不矛盾,因为,

(2 分)3.2679
当用三角形坐标(三个顶点为 A,B,C)来表示三组分体系时,若物系点在通过 A 点
的一条直线上变动时,则此物系的特点是

(1 分)4.2309 相是热力学体系中 和
(B) 通常发现在很靠近正常沸点的某一温度
(C) 液体的蒸气压等于 25℃时的蒸气压三倍数值时的温度
(D) 固体、液体和气体可以平衡共存时的温度和压力
(2 分)21.2644
水与苯胺的最高临界溶点温度为 T。在某工艺中需用水萃取苯胺中的某物质时,操作的
最佳温度应该是:
()
(A)T > T0 (C)T = T0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章相平衡一、单选题1.体系中含有H2O、H2SO4·4H2O、H2SO4·2H2O、H2SO4·H2O、H2SO4,其组分数K为:()(A) 1 (B) 2 (C) 3 (D) 42.在410 K,Ag2O(s)部分分解成Ag(s)和O2(g),此平衡体系的自由度为:()(A) 0 (B) 1 (C) 2 (D)-13.某平衡体系含有NaCl(s)、KBr(s)、K+(aq)、Na+(aq)、Br-(aq)、Cl-(aq)、H2O,其自由度为:()(A) 2 (B) 3 (C) 4 (D) 54.一个水溶液包含n个溶质,该溶液通过一半透膜与纯水相平衡,半透膜仅允许溶剂水分子通过,此体系的自由度为:()(A)n(B) n-1 (C)n+1 (D)n+25.绝热条件下,273.15K的NaCl加入273.15K的碎冰中,体系的温度将如何变化? ()(A)不变(B)降低(C)升高(D)不能确定6.下图中,从P点开始的步冷曲线为:图 17.图1中,生成固体化合物的经验式为:()(A) CCl4·C4H10O2(B) CCl4·(C4H10O2)2(C) (CCl4)2·C4H10O2(D) CCl4(C4H10O2)38.图1中,区域H的相态是:()(A)溶液(B)固体CCl4 (C)固体CCl4+溶液(D)固体化合物+溶液9.在通常情况下,对于二组分物系能平衡共存的最多相为: ( )(A) 1 (B) 2 (C) 3 (D) 410. CuSO4 与水可生成CuSO4·H2O, CuSO4·3H2O , CuSO4·5H2O三种水合物,则在一定温度下与水蒸气平衡的含水盐最多为: ( )(A) 3种(B) 2种(C) 1种(D)不可能有共存的含水盐11. CuSO4 与水可生成CuSO4·H2O, CuSO4·3H2O , CuSO4·5H2O三种水合物,则在一定压力下和CuSO4水溶液及冰共存的含水盐有: ( )(A) 3种(B) 2种(C) 1种(D)不可能有共存的含水盐12.如图所示,物系处于容器内,容器中间的半透膜AB只允许O2通过,当物系建立平衡时,则物系中存在的相为: ( )(A) 1气相,1固相(B) 1气相,2固相(C) 1气相,3固相(D) 2气相,2固相13.如上题插图,当达渗透平衡时,该体系的自由度为: ( )(A) 1 (B) 2 (C) 3 (D) 414. CaCO3(s), CaO(s), BaCO3(s), BaO(s)及CO2(g)构成的平衡物系,其组分数为: ( )(A) 2 (B) 3 (C) 4 (D) 515.由CaCO3(s), CaO(s), BaCO3(s), BaO(s)及CO2(s)构成的平衡体系其自由度为: ( )(A)f =2 (B)f = 1 (C)f = 0 (D)f = 316.三相点是: ( )(A)某一温度,超过此温度,液相就不能存在(B)通常发现在很靠近正常沸点的某一温度(C)液体的蒸气压等于25℃时的蒸气压三倍数值时的温度(D)固体、液体和气体可以平衡共存时的温度和压力17.某一固体在25℃和p∅压力下升华,这意味着: ( )(A)固体比液体密度大些(B)三相点的压力大于p∅(C)固体比液体密度小些(D)三相点的压力小于p∅18.碘的三相点处在115℃和12kPa上,这意味着液态碘: ( )(A)比固态碘密度大(B)在115℃以上不能存在(C)在p∅压力下不能存在(D)不能有低于12kPa的蒸气压19.N2的临界温度是124K,室温下想要液化 N2,就必须: ( )(A)在恒温下增加压力(B)在恒温下降低压力(C)在恒压下升高温度(D)在恒压下降低温度20.对于与本身的蒸气处于平衡状态的液体,通过下列哪种作图法可获得一直线:( )(A)p对T(B) lg(p/Pa) 对T (C) lg(p/Pa) 对1/T(D) 1/p对lg(T/K)21.当克劳修斯_克拉贝龙方程应用于凝聚相转变为蒸气时,则: ( )(A)p 必随T 之升高而降低(B)p 必不随T 而变(C)p必随T之升高而变大(D)p随T之升高可变大或减少22.水的三相点附近,其蒸发热和熔化热分别为44.82和5.994kJ·mol-1。

则在三相点附近冰的升华热约为: ( )(A)38.83 kJ·mol-1 (B)50.81 kJ·mol-1(C)-38.83 kJ·mol-1(D)-50.81 kJ·mol-123.在0℃到100℃的范围内液态水的蒸气压p与T的关系为:lg(p/Pa)= -2265k/T +11.101, 某高原地区的气压只有59995Pa,则该地区水的沸点为: ( )(A) 358.2K (B) 85.2K (C)358.2℃ (D) 373K24.固体六氟化铀的蒸气压p与T的关系式为lg(p/Pa) = 10.65 - 2560/(T/K),则其平均升华热为: ( )(A) 2.128 kJ·mol-1(B)49.02 kJ·mol-1(C) 9.242 kJ·mol-1(D) 10.33 kJ·mol-125.二元合金处于低共熔温度时,物系的自由度: ( )(A)f = 0 (B)f = 1 (C)f = 3 (D)f = 226.区域熔炼技术主要是应用于: ( )(A)制备低共熔混合物(B)提纯(C)制备不稳定化合物(D)获得固熔体27.已知苯一乙醇双液体系中,苯的沸点是353.3K, 乙醇的沸点是351.6K, 两者的共沸组成为:含乙醇47.5%(摩尔分数),沸点为341.2K。

今有含乙醇77.5%的苯溶液,在达到气、液平衡后,气相中含乙醇为y2,液相中含乙醇为x2。

问:下列结论何者正确? ( )(A)y2 >x2 (B)y2 =x2 (C)y2<x2 (D)不确定28.如上题,若将上述溶液精馏,则能得到: ( )(A)纯苯(B)纯乙醇(C)纯苯和恒沸混合物(D)纯乙醇和恒沸混合物29.当用三角形坐标来表示三组分物系时,若某物系其组成在平行于底边BC的直线上变动时,则该物系的特点是: ( )(A) B的百分含量不变(B) A的百分含量不变(C) C的百分含量不变(D) B和C的百分含量之比不变30.如图所示,当物系点在通过A点的一条直线上变动时,则此物系的特点是: ( )(A) B和C的百分含量之比不变(B) A的百分含量不变(C) B的百分含量不变(D) C的百分含量不变31. H2O-NaCl-Na2SO4的三元系中,Na2SO4和H2O能形成水合物Na2SO4·10H2O(D),在DBC区中存在的是: ( )(A)水合物D和溶液(B)水合物D和Na2SO4及NaCl三相共存(C)水合物D、NaCl和组成为G的溶液(D)纯NaCl,纯Na2SO4和水溶液32. H2O-KNO3-NaNO3的相图如下,则BEC相区内是: ( )(A)纯NaNO3和其饱和溶液(B)纯KNO3和其饱和溶液(C)含有NaNO3和KNO3的不饱和溶液和溶液的单相区(D) KNO3,NaNO3和组成为E的饱和溶液三相共存33.三液系的相图如下,把相图分为三个相区:I,II,III。

每个相区所存在的相数为:( )(A) I区1,II区1,III区1(B) I区1,II区3,III区2(C) I区2,II区2,III区2(D) I区1,II区2,III区1二、多选题1.哪一种相变过程可以用来提纯化学药品? ( )(A)凝固 (B)沸腾 (C)升华 (D)其中任一种2.某一物质X在三相点时的温度是20℃,压力是2p∅。

下列哪一种说法是正确的: ( )(A)在20℃以上X能以液体存在(B)在20℃以下X能以固体存在(C)在25℃,p∅下液体X是稳定的(D)在25℃时,液体X和固体X有可能具有相同的蒸气压3.在相图上,当体系处于下列哪一点时存在二个相: ( )(A)恒沸点(B)熔点(C)临界点(D)低共熔点4.液氦(I) 液氦(II)是属于二级相变,对这类相变特征的描述,哪一点是正确的: ( )(A)无相变热(B)相变时无熵变化(C)相变时两相的密度相同(D)相变时两相的热容相同5.如图,下面哪一种表述是正确的:(A)有稳定化合物形成(B)有不稳定化合形成(C) C6H10O有晶型转变(D)有三个低共熔点6.在CHCl3 - C6H10O相图(上题图)中,下面表述哪一种是正确的?(A) 265.15K 下,两个液相与固体化合物平衡共存(B) 220.53K 下,两个环已酮与液相平衡共存(C) 194.62K 下,两个固体化合物与液相平衡共存(D) 199.45K 下,固体环已酮与两个固体化合物平衡共存三、填空题1. 40公斤乙醇和60公斤水的混合物在某温度成气液两相平衡,乙醇在气、液相中的重量百分数分别为60%和20%,那么气相混合物的重量W气 ___ W液(液相混合物重量)。

2. CO2的三相点为216.15K, 5.1×p∅,可见固体CO2(干冰)升华的压力范围是p___ 5.1×p∅。

3.在H2和石墨的体系中,加一催化剂,H2和石墨反应生成n种碳氢化合物,此体系的独立组分数为____。

4. NaCl(s)和含有稀HCl的NaCl饱和水溶液的平衡体系,其独立组分数是_______。

5.在p∅压力下,NaOH与H3PO4的水溶液达平衡,则此体系的自由度数为________。

6. NiO(s)与Ni(s),H2O(g), H2(g), CO2(g)及CO(g)呈平衡,则该体系的独立组分数为______,自由度数为_______。

7. 含有KNO3和NaCl的水溶液与纯水达渗透平衡时,其组分数为____,相数为______,自由度数为______。

8. 如上图,环已酮C6H10O的熔点是 K,C6H10O·CHCl3的熔点____K,(CHCl3)2·C6H10O的转熔温度是____K,C6H10O ,C6H10O·CHCl3与液相的平衡共存温度是____K。

四、是非题1.等温等容条件下,B在α、β两相中达平衡,有μB α = μBβ。

2.二元体系两相平衡,平衡压力仅取决于平衡温度。

3.根据相律,单组分体系相图只能有唯一的一个三相共存点。

4.液态CO2在p∅压力下的任何温度,都是不稳定的。

(CO2三相点压力为5.11×p∅)。

5.在一个密封的钟罩内,一个烧杯盛有纯液体苯,另一烧杯盛有苯和甲苯溶液,长时间放置,最后两个烧杯内溶液浓度相同。

相关文档
最新文档