将军饮马问题
将军饮马问题的11个模型及例题

将军饮马问题的11个模型及例题将军饮马问题是一个经典的逻辑问题,涉及到将军如何用有限数量的马和酒到达目的地。
本文将介绍将军饮马问题的11个模型及相应的例题。
1. 直线模型将军与目的地之间没有障碍物,可以直线前进。
此时,将军只需将马拉到目的地即可。
例题1:将军与目的地之间距离为10公里,马的速度为每小时5公里,将军能否在2小时内到达目的地?2. 单个障碍物模型在将军与目的地之间存在一个障碍物,将军可以绕过该障碍物。
例题2:将军与目的地之间距离为15公里,马的速度为每小时4公里,障碍物位于距离将军起点5公里处,将军能否在3小时内到达目的地?3. 多个障碍物模型在将军与目的地之间存在多个障碍物,将军需要逐一绕过这些障碍物。
例题3:将军与目的地之间距离为20公里,马的速度为每小时6公里,障碍物位于距离将军起点分别为5公里、10公里和15公里的位置,将军能否在4小时内到达目的地?4. 跳跃模型将军可以让马跳过障碍物,从而直接到达目的地。
例题4:将军与目的地之间距离为12公里,马的速度为每小时8公里,将军在距离起点6公里处设置一个障碍物,将军能否在2小时内到达目的地?5. 限时模型将军需要在规定的时间内到达目的地。
例题5:将军与目的地之间距离为30公里,马的速度为每小时10公里,将军需要在3小时内到达目的地,是否可能?6. 守备模型目标地点有守备军,将军需要巧妙规避守备军。
例题6:将军与目的地之间距离为25公里,马的速度为每小时7公里,目的地有一支守备军位于距离目标地点10公里处,将军能否在4小时内到达目的地?7. 短平快模型将军不借助马匹,直接徒步走到目的地。
例题7:将军与目的地之间距离为8公里,将军的步行速度为每小时2公里,将军能否在4小时内到达目的地?8. 时间窗模型将军只能在规定时间范围内到达目的地。
例题8:将军与目的地之间距离为18公里,马的速度为每小时6公里,将军需要在3小时到4小时之间到达目的地,是否可能?9. 兵变模型将军需要利用敌军马匹达到目的地。
将军饮马18道典型习题

“将军饮马”常见模型及18道典型习题何为将军饮马?2000多年以前。
古希腊的亚历山大城里住着一位睿智的数学家海伦。
一天,城里来了一位将军,听闻海伦盛名,特来向他请教一个问题。
将军说,每天早上,他都骑着马儿从营帐出发,到河边让马儿饮水,然后,再去河岸同一侧的一块草地上带着马儿去吃草,问题时,在河岸的哪个具体位置喝水,行程最短?海伦略做沉思,给出了将军最佳方案。
此之谓“将军饮马”。
最佳方案为何?且阅下文:一、将军饮马常见的5种模型:1、一动两定(和最小):如图,点A是将军和马居住的营帐,点B是一块指定的草地,一条小河L潺潺流过,P是将军带着马儿喝水的地方,P点在何处时,将军和马儿走过的路PA+PB的值最小?解析:做A点关于L的对称点A’,连接A’B,与L的交点即为P点。
为什么这时PA+PB最小?假设L上有一点M(与P点不重合)。
∵A点与A’关于L对称∴AP=A’P;AM=A’M;∴AP + BP =A’P +BP =A’B而AM + BM = A’M +MB在△A’MB中,两边之和大于第三边∴A’B < A’M +MB;而M为L上任一点(与P点不重合)。
∴动点P在A’B与L交点处时AP+BP最小。
2、一定两动:如图,点A是将军和马居住的营帐,小河L1依然像上题中一样潺潺流过,P是将军带着马儿喝水的地方,不同的是,这次吃草的地方不在是一个指定的点,而是L2所代表的一片草地,Q则是将军骑马吃草的地方,水足草饱以后,将军和马儿会再回到营帐。
那么,P点、Q点在何处时,将军走过的路AP+PQ+QA的值最小?解析:做A点关于L1的对称点A’;做A点关于L2的对称点A‘’;连接A’A‘’,与L1和L2的交点即为P、Q。
为什么此时,AP+PQ+AQ的和最小?假设L1上有点M(不与P重合)、L2上有点N(不与Q重合)。
∵A点与A’关于L1对称;A点与A‘’关于L2对称。
∴AP=A’P;AQ=A”Q;AM=A’M;AN=A”N;∴AP+PQ+AQ = A’P+PQ+A”Q =A’A”;AM+MN+AN = A’M+MN+A”N在四边形A’MNA”中:A’M+MN+A”N >A’A”∴P、Q位于A’A”与L1和L2的交点处时,AP+PQ+AQ的和最小。
将军饮马问题例题

将军饮马问题例题
例题:一个将军饮马,有三个酒坛,其中一个酒坛里装着毒酒,另外两个酒坛里装着普通的酒。
这三个酒坛外观相同,将军无法通过外观来判断哪个酒坛是有毒的。
在喝下一杯毒酒后,将军将会立即死亡。
现在将军有一匹马,这匹马可以闻出毒酒,如果马喝下一杯毒酒,它将会在30分钟后死亡。
将军只有30
分钟的时间来确定哪个酒坛里装着毒酒,并且不允许酒坛之间进行任何类型的测量。
解法:将军可以按照以下步骤确定毒酒所在的酒坛:
1. 为了节省时间,将将军的马分成三组,每组10匹马。
标记
这三组马为A、B、C。
2. 让A组的马尝试第一个酒坛,让B组尝试第二个酒坛,C
组尝试第三个酒坛。
3. 让所有的马者都喝下一杯酒。
4. 等待15分钟。
5. 如果A组的马中有马死亡,那么第一个酒坛是有毒的;如
果B组的马中有马死亡,那么第二个酒坛是有毒的;如果C
组的马中有马死亡,那么第三个酒坛是有毒的。
6. 如果在15分钟内没有任何马死亡,那么第一个酒坛是安全的,因此第二个酒坛是有毒的;如果A和B组的马都没有死
亡,那么第三个酒坛是有毒的。
这样,将军可以在30分钟内确定哪个酒坛里装着毒酒。
将军饮马问题

(二)一次轴对称: 两点在一条直线同侧
例2变式1:已知:P、Q是△ABC的边AB、 AC上的点,你能在BC上确定一点R, 使△PQR的周长最短吗?
(三)二次轴对称:一点在两相交直线内部
例3.如图:一位将军骑马从驻地A出发,先牵马去草地 OM吃草,再牵马去河边ON喝水, 最后回到驻地A,
问:这位将军怎样走路程最短?
将军每天骑马从城堡A出发,到城堡B,途中 马要到小溪边饮水一次。将军问怎样走路程最短?
这就是被称为"将军饮马"而广为流传的问题。
将军饮马:(一)两点在一条直线两侧
例1.如图:古希腊一位将军骑马从城堡A到城堡B,途中 马要到小溪边饮水一次。问将军怎样走路程最短?
A
最短路线:
P
A ---P--- B.
M
作法:(1)作点A关于OM的对称点A' ,
点B关于ON的对称点B'.
. (2)连结A'和B',交OM于C,交ON于D。 A
则点C、D为所求。
B.
.
N
.D
A.' .C
O
B'
将军饮马的实质: (1)求最短路线问题------
通过几何变换找对称图形。
(2)把A,B在直线同侧的问题转化为 在直线的两侧,化折线为直线,
(3)可利用“两点之间线段最短” 加以解决。
反
思
我的收获;
是
进
步 的
我的疑惑;
阶
梯
面对一个新的求线段最短问题时,
我们可以通过怎样的途径去研究它?
(四)二次轴对称:两点在两相交直线内部
例4答案:如图,A是马厩,B为帐篷,牧马人某一天要从 马厩牵出马,先到草地边某一处牧马,再到河边饮马, 然后回到帐篷.请你帮他确定这一天的最短路线.
将军饮马问题

将军饮马问题起源:古希腊亚里山大里亚城有一位久负盛名的学者,名叫海伦。
有一天,有位将军不远千里专程前来向海伦求教一个百思不得其解的问题:将军从A地出发到河边饮马,然后再到B地军营视察,显然有许多走法。
问走什么样的路线最短呢?精通数理的海伦稍加思索,便作了完善的回答。
这个问题后来被人们称作“将军饮马”问题。
让我们来看看数学家是怎样解决的。
海伦发现这是一个求折线和最短的数学问题。
根据公理1连接两点的所有线中,直线段最短。
只知道两点间直线段最短,那么显然要把折线变成直线再解。
如果直接连AB,与I不会相交,怎么办呢?当A、B位于I的异侧时,就有交点了。
于是我们就希望在I的另一侧找一点A ',使得连A ' B与I相交于P点后(这时A ' P+ PB最短)线段A ' P与AP 一样长.由对称的知识可知道,A关于I的对称点就有资格扮演A '的角色。
解:如图1先作A关于I的对称点A ',连接A ' B与I相交于P点,则AP + PB就最小.那么这样作出的AP + PB是否真的最小呢?要证明它只需要在I 上任取一点P',证明AP'+P‘ A >AP + PB就行了。
这点好证明:事实上因为A '、A关于I对称,有AP =A ' P、AP ' = A ' P',又由公理2:三角形的两边之和大于第三边.AP'+ P‘ B=A ' P'+ P‘ B>A ' B = A ' P+ PB= AP+ PB.原来海伦解决本问题时,是利用作对称点把折线问题转化成直线问题求解的。
后来这一方法已形成了思想,它在解决许多问题中都在起作用。
现在人们把凡是用对称点来实现解题的思想方法叫对称原理。
例题分析:1、已知A,B两点在MN同侧,如图所示,在MN上求一点P,使:I PA- PB| 最大连接BA并延长交MN于P | PA-PB| =|AB|在MN上再任意取一点P'三角形P'AB中 | P'A-P'B | <AB=| PA —PB| 2、两点在直线的异侧如何做直线上一点是其到两点之差最短作线段AB 的中垂线,交直线I于点P,点P即为所求。
将军饮马问题

A
B
编辑课件
河
7
(二)一次轴对称:两点在一条直线同侧
例2作法:
(1)作点B关于直线 MN 的对称点 B’ (2)连结B’A,交MN于点 C;
∴ 点C就是所求的点.
B
A
M
N
C
B’
编辑课件
8
(二)一次轴对称: 两点在一条直线同侧
例2证明:在MN 上任取另一点C’, B
A
连结BC、BC’、 AC’ 、 B’C’ .
(2)连结A'和A'',交OM 于B,交ON于C。
则点B, C为所求。
编辑课件
12
(三)二次轴对称:一点在两相交直线内部
例3变式1:已知P是△ABC的边BC上的点, 你能在AB、AC上分别确定一点Q和R, 使△PQR的周长最短吗?
编辑课件
13
(四)二次轴对称:两点在两相交直线内部
例4:如图,A为马厩,B为帐篷,将军某一天要 从马厩牵出马,先到草地边某一处牧马, 再到河边饮马,然后回到帐篷, 请你帮助确定这一天的最短路线。
(3)可利用“两点之间线段最短” 加以解决。
编辑课件
19
反 思 阶是 梯进 步 的
我的收获;
我的疑惑;
面对一个新的求线段最短问题时, 我们可以通过怎样的途径去研究它?
编辑课件
20
编辑课件
9
(二)一次轴对称: 两点在一条直线同侧
例2变式1:已知:P、Q是△ABC的边AB、 AC上的点,你能在BC上确定一点R, 使△PQR的周长最短吗?
编辑课件
10
(三)二次轴对称:一点在两相交直线内部
例3.如图:一位将军骑马从驻地A出发,先牵马去草地 OM吃草,再牵马去河边ON喝水, 最后回到驻地A,
将军饮马做题顺序

将军饮马做题顺序
“将军饮马”问题的做题顺序可以遵循以下步骤:
1.确定动点和定点:在题目中,将军的行走路径是动态的,而马的位置和军营是固定的。
因此,首先需要确定这些动点和定点。
2.转化动点为定点:根据“两点之间线段最短”的原则,可以通过找对称点的方法,将动点(将军的位置)转化为定点。
具体来说,就是找到将军关于河岸的对称点,这个点就是将军饮马的位置。
3.连接定点:连接军营(起点)、饮马点(转化后的定点)和B地(终点),形成一条线段。
这条线段就是将军行走的最短路径。
4.计算最短路径的长度:利用勾股定理或其他方法,计算出这条最短路径的长度。
以上就是“将军饮马”问题的做题顺序。
需要注意的是,在实际做题过程中,还需要根据题目的具体情况进行灵活处理。
将军饮马问题的原理

将军饮马问题的原理
将军饮马问题是一个经典的数学问题,它的原理是利用线性方程组来解决实际问题。
这个问题的背景是:有一位将军要带兵过河,他手下有若干个骑兵和步兵,每个骑兵需要2匹马来驮运,每个步兵需要1匹马来驮运。
现在将军手中有一定数量的马,问能否满足所有人的渡河需求?
为了解决这个问题,我们可以设骑兵的数量为x,步兵的数量为y,马的数量为z。
根据题意,我们可以得到以下两个方程:2x + y = z (每匹马可以驮运一个骑兵或两个步兵)
x + y = z/2 (将军手中的马只能驮运部分人)
将第二个方程式变形得到 x = z/2 - y,将其代入第一个方程式中,消去x,得到:
2(z/2 - y) + y = z
化简后得到:
3y = z
因此,无论将军手中的马有多少只,只要骑兵和步兵的数量之比为2:1,就可以满足所有人的渡河需求。
这就是将军饮马问题的原理。
通过建立线性方程组并求解,我们可以找到问题的最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B
河
(二)一次轴对称:两点在一条直线同侧
例2作法:
(1)作点B关于直线 MN 的对称点 B’
(2)连结B’A,交MN于点 C;
所以 点C就是所求的点.
B
A
M
N
C
B’
(二)一次轴对称: 两点在一条直线同侧
例2证明:在MN 上任取另一点C’, B
A
连结BC、BC’、 AC’ 、 B’C’ .
(二)一次轴对称: 两点在一条直线同侧
例2变式1:已知:P、Q是△ABC的边AB、 AC上的点,你能在BC上确定一点R, 使△PQR的周长最短吗?
(三)二次轴对称:一点在两相交直线内部
例3已知如图 MON 和 MON内一点A ,
求作:OM上一点B, ON上一点C, 使AB+BC+AC最小
.A '
A'
M
C . .A
.B
O
.N
D .B '
(四)二次轴对称:两点在两相交直线内部
• 例4变式2:如图,OMCN是矩形的台球桌面, 有黑、白两球分别位于B、A两点的位置上,
• 试问怎样撞击白球,使白球A依次碰撞球台边 OM、ON后,反弹击中黑球?
C
B N
M A
O
(四)二次轴对称:两点在两相交直线内部
通过几何变换找对称图形。
(2)把A,B在直线同侧的问题转化为 在直线的两侧,化折线为直线,
(3)可利用“两点之间线段最短” 加以解决。
反
思
我的收获;
是
进
步 的
我的疑惑;
阶
梯
面对一个新的求线段最短问题时,
我们可以通过怎样的途径去研究它?
课题学习:最短路径
看图思考: 为什么有的人会经常践踏草地呢?
禁爱止护践草踏坪 绿地里本没有路,走的人多了… …
两点之间,线段最短 连接直线外一点与直线上各点的所有线段中,垂线段最短
将军饮马问题:
将军每天骑马从城堡A出发,到城堡B, 途中马要到小溪边饮水一次。将军问怎样走 路程最短?
这就是被称为"将军饮马"而 广为流传的问题。
(四)二次轴对称:两点在两相交直线内部
例4答案:如图,A是马厩,B为帐篷,牧马人某一天要从 马厩牵出马,先到草地边某一处牧马,再到河边饮马, 然后回到帐篷.请你帮他确定这一天的最短路线.
A′ C
D
B′
A B
(四)二次轴对称:两点在两相交直线内部
例4变式1:已知:MON和 MON内两点A、B。 求作:点C和点D,使得点C在OM上, 点D在ON上,且AC+CD+BD+AB最短。
M
B.
.A
作法(1)作点A关于OM、 O
ON的对称点A’、A”
.N . C
A ''
( 2 ) 连 结 A '和 A '', 交 O M 于 B , 交 O N 于 C 。
则点B,C为所求。
(三)二次轴对称:一点在两相交直线内部
例3.如图:一位将军骑马从驻地A出发,先牵马去草地 OM吃草,再牵马去河边ON喝水, 最后回到驻地A,
M
N
C
C'
∵ 直线MN是点B、B’的对称轴, 点C、C’在对称轴上,∴BC=B’C,BB'C’=B’C’.
∴BC+AC = B’C+AC = B’A.
∴BC ’ +AC ’ = B’C ’ +AC ’
在△AB ’ C’中,AB ’ < AC’+B ’ C’,
∴ BC+AC < BC ’ +AC ’ ,即AC+BC最小.
将军饮马:(一)两点在一条直线两侧
例1.如图:古希腊一位将军骑马从城堡A到城堡B, 途中马要到小溪边饮水一次。问将军怎样走路程 最短?
A
最短路线:
P
A ---P--- B.
根据:
B 两点之间线段最短.
(二)一次轴对称: 两点在一条直线同侧
例2.如图:一位将军骑马从城堡A到城堡B, 途中马要到河边饮水一次,
例4变式2:
M
作 法 :(1)作 点 A关 于 O M 的 对 称 点 A',
点 B关 于 O N的 对 称 点 .
. ( 2 ) 连 结 A '和 B ', 交 O M 于 C , 交 O N 于 D 。 A
A.'
则 点 C、 D为 所 求 。
.C
B.
.
N
.D
O
B'
将军饮马的实质: (1)求最短路线问题------
问:这位将军怎样走路程最短?
M 草地
O
.驻地A
N 河边
(三)二次轴对称:一点在两相交直线内部
例3变式1:已知P是△ABC的边BC上的点, 你能在AB、AC上分别确定一点Q和R, 使△PQR的周长最短吗?
(四)二次轴对称:两点在两相交直线内部
例4:如图,A为马厩,B为帐篷,将军某一天要 从马厩牵出马,先到草地边某一处牧马, 再到河边饮马,然后回到帐篷, 请你帮助确定这一天的最短路线。