19立体几何中的计算问题

合集下载

专题19 解决立体几何中的计算问题-2021年高考数学二轮复习核心考点微专题(苏教版)(原卷版)

专题19 解决立体几何中的计算问题-2021年高考数学二轮复习核心考点微专题(苏教版)(原卷版)

1.如图,直三棱柱ABCA1B1C1中,AB=1,BC=2,AC=5,AA1=3,M为线段B1B上的一动点,则当AM +MC1最小时,△AMC1的面积为________.2.如图,在直三棱柱ABCA1B1C1中,AB=1,BC=2,BB1=3,∠ABC=90°,点D为侧棱BB1上的动点.当AD+DC1最小时,三棱锥D-ABC1的体积为________.(1) 若D为线段AC的中点,求证:AC⊥平面PDO;(2) 求三棱锥P-ABC体积的最大值;(3) 若BC=2,点E在线段PB上,求CE+OE的最小值.4.如图,在棱长为4的正方体ABCDA 1B 1C 1D 1中,E ,F 分别为棱AA 1,D 1 C 1上的动点,点G 为正方形B 1BCC 1的中心,则空间四边形AEFG 在该正方体各个面上的正投影所构成的图形中,面积的最大值为________.【考向分析】有关立体几何体的计算,是历年高考中命题的重点和难点,几乎每年都考,考查题目巧妙、灵活、新颖.近几年高考立体几何体计算除了通常的题型外,还有几何体的组合问题、翻折问题、以生活实际为背景的问题、融入数学文化的问题等渐成为亮点,集中考查距离、表面积、体积等计算问题.这类问题题目新颖,能够考查空间想象能力与思维能力(一)立体几何中关于面积计算的问题变式1 已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径,若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.变式2 正三棱锥S -ABC 中,BC =2,SB =3,D ,E 分别是棱SA ,SB 上的点,Q 为边AB 的中点,SQ ⊥平面CDE ,则△CDE 的面积为________.(二)立体几何中关于体积计算的问题例2. 已知棱长为3的正方体ABCD -A 1B 1C 1 D 1中,P ,M 分别为线段BD 1,B 1C 1上的点,若BP PD 1=12,则三棱锥M-PBC的体积为________.变式1如图,在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别在边CD,CB上,点E与点C,D 不重合,EF⊥AC,EF∩AC=O,沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.(1) 求证:BD⊥平面POA;(2) 当PB取得最小值时,求四棱锥P-BDEF的体积.变式2如图,在圆柱O1,O2内有一个球O,该球与圆柱的上、下面及母线均相切,记圆柱O1,O2的体积为V1,球O的体积为V2,则V1V2的值是________.(三)以实际生活为背景的立体几何问题例3.将一个半径为5 cm的水晶球放在如图所示的工艺支架上,支架是由三根细金属杆P A,PB,PC组成,它们两两成60°角,则水晶球的球心到支架顶点P的距离是________cm.变式1如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△F AB分别是以BC,CA,AB为底边的等腰三角形,沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△F AB,使得D、E、F重合,得到三棱锥,当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为________.变式2《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有________斛.(保留两位有效数字)3.在三棱锥S-ABC中,底面ABC是边长为3的等边三角形,SA⊥SC,SB⊥SC,SA=SB=2, 则该三棱锥的体积为________.4.如图,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD 沿BD折起,使平面ABD⊥平面BDC,E,F分别为棱AC,AD的中点.(1) 求证:DC⊥平面ABC;(2) 设CD=a,求三棱锥A-BFE的体积.1.已知正四棱锥的底面边长是6,高为7,则这个正四棱锥的侧面积是________.2.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =3 cm ,AA 1=2 cm ,则三棱锥A -B 1D 1D 的体积为______ cm 3.3.已知一个圆锥的底面积为2π,侧面积为4π,则该圆锥的体积为________.4.如图,已知正三棱柱ABCA 1B 1C 1的底面边长为2 cm ,高为5 cm ,一质点自点A 出发,沿着三棱柱的侧面绕行两周到点A 1点的最短路线的长为________cm.5. 若正四面体的棱长为a ,则其外接球的表面积为多少?6. 若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________. 7. 如图,在矩形ABCD 中,AD =2,AB =4,E ,F 分别为边AB ,AD 的中点,现将△ADE 沿DE 折起,得四棱锥ABCDE .(1) 求证:EF //平面ABC ;(2)若平面ADE ⊥平面BCDE ,求四面体FDCE 的体积.8. 如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB, AC ,AA 1的中点,设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=________.9. 一个长方体的三条棱长分别为3,8,9,若在该长方体上面钻一个圆柱形的孔后其表面积没有变化,则圆孔的半径为________.10.一块边长为10 cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形作侧面,以它们的公共顶点P为顶点,加工成一个如图所示的正四棱锥形容器,当x=6 cm时,该容器的容积为________cm3.11.(1) 给出两块面积相同的正三角形纸片(如图1,图2),要求用其中一块剪拼成一个正三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等.请设计一种剪拼方法,分别用虚线标示在图1、图2中,并作简要说明.(2) 试比较你剪拼的正三棱锥与正三棱柱的体积的大小.(3) 如果给出的是一块任意三角形的纸片(如图3),要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形的面积相等,请设计一种剪拼方法,用虚线标示在图3中,并作简要说明.12.如图,已知正方体ABCD -A1B1C1D1的棱长为1,E,F分别是棱AD,B1C1上的动点,设AE=x,B1F=y,若棱DD1与平面BEF有公共点,则x+y的取值范围________.。

立体几何中的求距离问题

立体几何中的求距离问题

**立体几何中的求距离问题**1. **定义与公式**在立体几何中,距离是一个重要的概念。

它表示点与点之间、线与线之间、面与面之间的最短距离。

对于两点A和B,它们之间的距离称为AB的距离,用公式表示为:AB = sqrt[(x2 - x1)² + (y2 - y1)² + (z2 - z1)²]。

2. **求解方法**求两点间的距离主要依赖于坐标变换和勾股定理。

首先,需要确定两点的三维坐标,然后通过计算两坐标之间的差的平方,再开方得到距离。

3. **实际应用**在实际生活中,距离的概念广泛应用于各种场景,如地理学中的地球距离、物理学中的物体间距离、工程学中的结构尺寸等。

在科学研究和工程实践中,计算距离是一个必不可少的步骤。

4. **易错点**在计算距离时,容易出现错误的地方包括单位不一致、坐标表示错误或计算错误等。

为了避免这些问题,需要仔细检查并确保所有的单位和坐标都是正确的。

5. **真题演练**给定两点A(1,2,3)和B(4,5,6),求AB的距离。

解:根据公式,AB的距离为:sqrt[(4-1)² + (5-2)² + (6-3)²] = sqrt(9+9+9) = 3*sqrt(3)6. **知识点总结**求两点间的距离主要依赖于坐标变换和勾股定理。

在实际应用中,计算距离是一个重要的步骤。

为了避免错误,需要仔细检查坐标和单位。

7. **未来学习建议**在未来的学习中,可以进一步探索距离在不同领域的应用,如医学影像分析、地理信息系统等。

同时,可以尝试解决更复杂的几何问题,如多维空间中的距离计算、曲面上的最短路径等。

此外,可以学习更多关于向量和矩阵的知识,这些工具对于解决复杂的几何问题非常有帮助。

立体几何的计算

立体几何的计算

教案教师姓名授课班级授课形式授课日期年月日第周授课时数授课章节名称立体几何的计算教学目的计算立体几何中的有关角度和距离以及一些体积问题教学重点二面角和几何体的体积教学难点二面角的计算更新、补充、删节内容使用教具三角板课外作业补充课后体会注意立体图形与平面图形的转化授课主要内容或板书设计一、复习知识点 1. 有关角的计算 ⑴异面直线所成的角a . 定义:设,ab 是异面直线,过空间任一点o 引'',a a b b ,则'a 与'b 所成的锐角(或直角)叫异面直线,a b 所成的角。

b .范围(0,90]c . 求法:作平行线,将异面转化成相交 ⑵线面所成的角 a . 定义:平面的一条斜线和它在平面上的射影所成的锐角,叫这条斜线和这个平面所成的角。

b .范围:[0,90]c . 求法:作垂线,找射影 ⑶二面角 a . 定义:从一条直线出发的两个半平面所组成的图形叫二面角,其大小通过二面角的平面角来度量。

b .二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线所成的角叫二面角的平面角。

c . 范围:[0,]πd .作法:1定义法:过棱上任一点o 在两个半平面内分别引棱的两条垂线,OA OB ,则AOB ∠为二面角的平面角2三垂线定理法:过二面角的一个半平面内一点A ,作棱l 的垂线,垂足为O ,作另一个面的垂线,垂足为B ,连接OB ,则AOB ∠为二面角的平面角。

βαOBA3作棱的垂面法:过二面角内任意一点O ,分别向两个平面作垂线,垂足为,A B则,AO BO 所确定的平面与棱l 交于P ,则APB ∠为二面角的平面角。

OPBAβα2.有关距离的计算 ⑴线线距 a . 定义:两条异面直线的公垂线在这两条异面直线间的线段的长度叫两条异面直线间的距离。

b .求法:高考要求题中给出公垂线段,故只须直接找出即可。

⑵点面距 a . 定义:从平面外一点引一个平面的垂线,这个点和垂足间的距离叫这个点到这个平面的距离。

立体几何求点到面距离问题

立体几何求点到面距离问题

立体几何求点到面距离问题引言立体几何是研究空间中的图形和空间关系的一个分支学科。

在立体几何中,求点到面的距离是一个常见的问题。

本文将从基本概念出发,深入探讨立体几何中求点到面距离的问题。

什么是点到面的距离点到面的距离是指空间中一个点到平面的最短距离。

这个距离可以用于求解一系列实际问题,例如工程中的装配问题、机器人导航问题等。

点到面距离的计算方法在立体几何中,求点到面的距离可以采用多种方法。

下面将介绍几种常用的计算方法。

求点到平面的公式假设平面的方程为Ax+By+Cz+D=0,点的坐标为(x0,y0,z0),点到平面的距离可以通过公式计算:距离= |Ax0 + By0 + Cz0 + D| / √(A^2 + B^2 + C^2)其中,|x|表示x的绝对值。

点到三角形的距离若平面上有一个三角形ABC,点P到三角形的距离可以按照以下步骤计算:1.求三角形ABC的法向量N;2.用三角形ABC的一条边向量B-A和两个边向量C-A、P-A构造Gram矩阵,记作G;3.求Gram矩阵的特征值λ1、λ2、λ3;4.计算点到三角形的距离d = √(2* (λ1^2 + λ2^2 + λ3^2) / (λ1 +λ2 + λ3));其中,√表示平方根。

点到立方体的距离立方体是一个六个面都是正方形的多面体。

点到立方体的距离可按照以下步骤计算:1.将立方体视为六个平面;2.对于每个平面,计算点到平面的距离;3.取最小的平面距离作为点到立方体的距离。

点到面距离的应用点到面的距离在计算机图形学、计算机辅助设计、计算机视觉等领域有着广泛的应用。

计算机图形学中的应用在计算机图形学中,点到面的距离可以用于线框模型的绘制、曲面的包围盒计算等。

例如,当我们需要绘制一个线框模型时,可以通过计算点到平面的距离,来确定哪些线是显示的,哪些线是隐藏的。

计算机辅助设计中的应用在计算机辅助设计中,点到面的距离可以用于零件装配的碰撞检测、表面贴花等。

专题19 立体几何中体积与表面积—三年高考(2015-2017)数学(文)真题分项版解析(解析版)

专题19 立体几何中体积与表面积—三年高考(2015-2017)数学(文)真题分项版解析(解析版)

好教育云平台 1.【2017课标3,文9】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为() A .πB .3π4C .π2D .π4【答案】B【解析】如果,画出圆柱的轴截面,11,2AC AB ==,所以32r BC ==,那么圆柱的体积是2233124V r h πππ⎛⎫==⨯⨯= ⎪ ⎪⎝⎭,故选B.【考点】圆柱体积【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.2.【2015高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) (A )(B )(C )(D )【答案】【考点定位】1.旋转体的几何特征;2.几何体的体积.【名师点睛】本题考查了旋转体的几何特征及几何体的体积计算,解答本题的关键,是理解所得旋转体的几何特征,确定得到计算体积所需要的几何量.本题属于基础题,在考查旋转体的几何特征及几何体的体积计算方法的同时,考查了考生的空间想象能力及运算能力,是“无图考图”的一道好题.3.【2016高考新课标1文数】平面过正文体ABCD—A1B1C1D1的顶点A,,,则m,n所成角的正弦值为()(A)(B)(C)(D)【答案】A【解析】考点:平面的截面问题,面面平行的性质定理,异面直线所成的角.【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.4.【2017天津,文11】已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.【答案】92π 【解析】试题分析:设正方体边长为a ,则226183a a =⇒=,外接球直径为34427923,πππ3382R V R ====⨯=. 【考点】球与几何体的组合体【名师点睛】正方体与其外接球的组合体比较简单,因为正方体的中心就是外接球的球心,对于其他几何体的外接球,再找球心时,注意球心到各个顶点的距离相等,1.若是柱体,球心肯定在中截面上,再找底面外接圆的圆心,过圆心做底面的垂线与中截面的交点就是球心,2.若是锥体,可以先找底面外接圆的圆心,过圆心做底面的垂线,再做一条侧棱的中垂线,两条直线的交点就是球心,构造平面几何关系求半径,3.若是三棱锥,三条侧棱两两垂直时,也可补成长方体,长方体的外接球就是此三棱锥的外接球,这样做题比较简单. 5.【2015新课标2文10】已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为()A.B.C.D.【答案】C 【解析】【考点定位】本题主要考查球与几何体的切接问题及空间想象能力. 【名师点睛】由于三棱锥底面AOB 面积为定值,故高最大时体积最大,本题就是利用此结论求球的半径,然后再求出球的表面积,由于球与几何体的切接问题能很好的考查空间想象能力,使得这类问题一直是高考中的热点及难点,提醒考生要加强此方面的训练. 6. [2016高考新课标Ⅲ文数]在封闭的直三棱柱内有一个体积为的球,若,,,,则的最大值是()(A )4π (B )(C )6π (D )【答案】B【解析】试题分析:要使球的体积最大,必须球的半径最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值,此时球的体积为,故选B.考点:1、三棱柱的内切球;2、球的体积.【思维拓展】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.7.【2014全国2,文7】正三棱柱的底面边长为,侧棱长为,为中点,则三棱锥的体积为( )(A)(B)(C)(D)【答案】C【考点定位】棱柱、棱锥、棱台的体积【名师点睛】本题考查几何体的体积的求法,属于中档题,求解几何体的底面面积与高是解题的关键,对于三棱锥的体积还可利用换底法与补形法进行处理.8.【2015高考新课标1,文6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有()(A)斛(B)斛(C)斛(D)斛【答案】B【解析】设圆锥底面半径为r ,则,所以,所以米堆的体积为=,故堆放的米约为÷1.62≈22,故选B.【考点定位】圆锥的性质与圆锥的体积公式【名师点睛】本题以《九章算术》中的问题为材料,试题背景新颖,解答本题的关键应想到米堆是圆锥,底面周长是两个底面半径与圆的和,根据题中的条件列出关于底面半径的方程,解出底面半径,是基础题.9.【2017课标1,文16】已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________. 【答案】36π因为平面SAC ⊥平面SBC 所以OA ⊥平面SBC 设OA r =3111123323A SBC SBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=所以31933r r =⇒=,所以球的表面积为2436r ππ=【考点】三棱锥外接球【名师点睛】本题考查了球与几何体的问题,是高考中的重点问题,要有一定的空间想象能力,这样才能找准关系,得到结果,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.10.【2017课标II ,文15】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 【答案】14π.【解析】球的直径是长方体的体对角线,所以224π14π.R S R ==== 【考点】球的表面积【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.11.【2017江苏,6】如图,在圆柱12,O O 内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱12,O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是 ▲ .【答案】32【考点】圆柱体积【名师点睛】空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.12【2015高考四川,文14】在三棱住ABC -A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B 1C 1的中点,则三棱锥P -A 1MN 的体积是______. 【答案】【解析】由题意,三棱柱是底面为直角边长为1的 等腰直角三角形,高为1的直三棱柱,底面积为如图,因为AA 1∥PN ,故AA 1∥面PMN , 故三棱锥P -A 1MN 与三棱锥P -AMN 体积相等, 三棱锥P -AMN 的底面积是三棱锥底面积的,高为1故三棱锥P -A 1MN 的体积为【考点定位】本题主要考查空间几何体的三视图、直观图及空间线面关系、三棱柱与三棱锥的体积等基础知识,考查空间想象能力、图形分割与转换的能力,考查基本运算能力. 【名师点睛】解决本题,首先要正确画出三棱柱的直观图,包括各个点的对应字母所在位置,结合条件,三棱锥P -A 1MN 的体积可以直接计算,但转换为三棱锥P -AMN 的体积,使得计算更为简便,基本上可以根据条件直接得出结论.属于中档偏难题.13.【2016高考浙江文数】某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.【答案】80;40.PC 1B 1A 1NCMBA考点:三视图.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积. 14.【2017课标II ,文18】如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,01,90.2AB BC AD BAD ABC ==∠=∠= (1)证明:直线//BC 平面PAD ;(2)若△PAD 面积为P ABCD -的体积.【答案】(Ⅰ)见解析(Ⅰ)4√3 【解析】试题解析:(1)在平面ABCD 内,因为∠BAD=∠ABC=90°,所以BC ∥AD.又BC PAD ⊄平面,AD PAD ⊂平面,故BC ∥平面PAD.(2)取AD 的中点M ,连结PM ,CM ,由12AB BC AD ==及BC ∥AD ,∠ABC=90°得四边形ABCM 为正方形,则CM ⊥AD.因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD∩平面ABCD=AD,所以PM ⊥AD,PM⊥底面ABCD,因为CM ABCD底面,所以PM⊥CM.设BC=x,则CM=x,CD=√2x,PM=√3x,PC=PD=2x.取CD的中点N,连结PN,则PN⊥CD,所以PN=√142x因为△PCD的面积为2√7,所以1 2×√2x×√142x=2√7,解得x=-2(舍去),x=2,于是AB=BC=2,AD=4,PM=2√3,所以四棱锥P-ABCD的体积V=13×2(2+4)2×2√3=4√3.【考点】线面平行判定定理,面面垂直性质定理,锥体体积【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.15.【2017课标3,文19】如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.【答案】(1)详见解析;(2)1试题解析:(1)证明:取AC 中点O ,连OB OD , ∵CD AD =,O 为AC 中点, ∴OD AC ⊥,又∵ABC ∆是等边三角形, ∴OB AC ⊥,又∵O OD OB = ,∴⊥AC 平面OBD ,⊂BD 平面OBD , ∴BD AC ⊥.(2)设2==CD AD ,∴22=AC ,22==CD AB , 又∵BD AB =,∴22=BD , ∴≅∆ABD CBD ∆,∴EC AE =, 又∵EC AE ⊥,22=AC , ∴2==EC AE , 在ABD ∆中,设xDE =,根据余弦定理DEAD AE DE AD BD AD AB BD AD ADB ⋅-+=⋅-+=∠22cos 222222 x x ⨯⨯-+=⨯⨯-+=22222222)22()22(2222222解得2=x ,∴点E 是BD 的中点,则ACE B ACE D V V --=,∴1=--ACEB ACED VV . 【考点】线面垂直判定及性质定理,锥体体积【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.16.【2017北京,文18】如图,在三棱锥P –ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(Ⅰ)求证:PA ⊥BD ;(Ⅱ)求证:平面BDE ⊥平面PAC ;(Ⅲ)当PA ∥平面BD E 时,求三棱锥E –BCD 的体积. 【答案】详见解析 【解析】试题解析:证明:(I )因为PA AB ⊥,PA BC ⊥,所以PA ⊥平面ABC , 又因为BD ⊂平面ABC ,所以PA BD ⊥.(II )因为AB BC =,D 为AC 中点,所以BD AC ⊥, 由(I )知,PA BD ⊥,所以BD ⊥平面PAC , 所以平面BDE ⊥平面PAC .(III )因为PA ∥平面BDE ,平面PAC 平面BDE DE =,所以PA DE ∥.因为D 为AC 的中点,所以112DE PA ==,BD DC ==. 由(I )知,PA ⊥平面PAC ,所以DE ⊥平面PAC .所以三棱锥E BCD -的体积1163V BD DC DE =⋅⋅=. 【考点】1.线面垂直的判断和性质;2,。

立体几何的最值问题

立体几何的最值问题

立体几何最值问题立体几何是数学中的一个重要分支,它研究的是空间图形的性质和数量关系。

在立体几何中,我们经常遇到最值问题,即寻找某个量的最大值或最小值。

本文将介绍立体几何中最值问题的几个方面:1.立体几何位置关系立体几何中的位置关系是指空间中点、线、面之间的相对位置。

解决位置关系问题需要运用空间想象和逻辑推理。

在立体几何中最值问题中,位置关系往往与距离、角度等问题交织在一起,需要综合考虑多种因素。

2.立体几何中的距离立体几何中的距离是指空间中两点之间的直线距离,或者是点与线、线与面之间的距离。

在解决最值问题时,我们需要考虑如何利用距离公式来计算最短路径、最大距离等。

3.立体几何中的体积立体几何中的体积是指空间中封闭图形的体积,或者是两个平面图形之间的距离。

计算体积需要运用体积公式,而解决最大或最小面积问题则需要考虑如何调整图形的形状和大小。

4.立体几何中的最短路径立体几何中的最短路径问题是指寻找空间中两点之间的最短距离。

解决这类问题需要运用距离公式和几何定理,有时还需要借助对称、旋转等技巧。

5.立体几何中的最大/最小面积立体几何中的最大/最小面积问题通常涉及到平面图形在空间中的展开和折叠。

解决这类问题需要运用面积公式和平面几何定理,同时要注意图形的对称性和边长之间的关系。

6.立体几何中的角度问题立体几何中的角度问题是指空间中两条直线或两个平面之间的夹角。

解决这类问题需要运用角度公式和空间向量,同时要注意图形的对称性和边长之间的关系。

7.立体几何中的轨迹问题立体几何中的轨迹问题是指一个点或一条线在空间中按照一定规律移动所形成的轨迹。

解决这类问题需要运用轨迹方程和运动学原理,同时要注意轨迹的形状和大小随时间的变化情况。

专题08 立体几何中的计算(原卷版)

衡水中学内部资料群:591993305,高中各科学霸资料群:680662798,专题08 立体几何中的计算1、【2019年江苏数】.如图,长方体1111ABCD A B C D 的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.2、【2018年高考江苏数】.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.3、【2019年高考全国Ⅰ卷文数】已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BCP 到平面ABC 的距离为___________.4、【2019年高考全国Ⅱ卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48衡水中学内部资料群:591993305,高中各科学霸资料群:680662798,的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)5、【2019年高考全国Ⅲ卷文数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.6、【2019年高考北京卷文数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.7、【2019.若圆柱的一个底衡水中学内部资料群:591993305,高中各科学霸资料群:680662798,面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.8、【2018年高考全国II 卷文数】已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30 ,若SAB △的面积为8,则该圆锥的体积为__________.一、柱、锥、台和球的侧面积和体积注意:(1)分的处理.(2)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.衡水中学内部资料群:591993305,高中各科学霸资料群:680662798,二、在求解一些不规则的几何体的体积以及两个几何体的体积之比时,常常需要用到分割法.在求一个几何体被分成两部分的体积之比时,若有一部分为不规则几何体,则可用整个几何体的体积减去规则几何体的体积求出其体积.(1)解决空间几何体表面上的最值问题的根本思路是“展开”,即将空间几何体的“面”展开后铺在一个平面上,将问题转化为平面上的最值问题.(2)如果已知的空间几何体是多面体,则根据问题的具体情况可以将这个多面体沿多面体中某条棱或者两个面的交线展开,把不在一个平面上的问题转化到一个平面上.如果是圆柱、圆锥则可沿母线展开,把曲面上的问题转化为平面上的问题. 三、方法与技巧(1)棱柱、棱锥要掌握各部分的结构特征,计算问题往往转化到一个三角形中进行解决.旋转体要抓住“旋转”特点,弄清底面、侧面及展开图形状. (2)要注意将空间问题转化为平面问题.(3)求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解. (4)一些几何体表面上的最短距离问题,常常利用几何体的展开图解决. 四、失误与防范(1)几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.(2)与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.题型一 多面体的表面积与体积求多面体的表面积与体积常用方法:1、公式法:可以运用规则的几何体;2、割补法:把不规则的图衡水中学内部资料群:591993305,高中各科学霸资料群:680662798,形分割成规则的图形,或者把几何体补成熟悉的几何体。

2020届高考数学专题:立体几何计算问题(答案不全)

立体几何中的计算问题1.三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形;2.直观图——是观察着站在某一点观察一个空间几何体而画出的图形。

直观图通常是在平行投影下画出的空间图形。

3斜二测法:1.画直观图时,把它画成对应的轴'',''o x o y ,取'''45(135)x o y o r ∠=︒︒,它们确定的平面表示水平平面;2.在坐标系'''x o y 中画直观图时,已知图形中平行于数轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。

结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的4倍. 例1.下列命题:①如果一个几何体的三视图是完全相同的,那么这个几何体是正方体;②如果一个几何体的主视图和俯视图都是矩形,那么这个几何体是长方体; ③如果一个几何体的三视图都是矩形,那么这个几何体是长方体;④如果一个几何体的主视图和左视图都是等腰梯形,那么这个几何体是圆台.其中正确的是( )A .①②B .③C .②③D .④ 2、异面直线所成的角(1)定义:a 、b 是两条异面直线,经过空间任意一点O ,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a 和b 所成的角.(2)取值范围:0°<θ≤90°. (3)求解方法①根据定义,通过平移,找到异面直线所成的角θ; ②解含有θ的三角形,求出角θ的大小.例2.在长方体1111ABCD A B C D -中,11BC CC ==,13AD B π∠=,则直线1AB 与1BC 所成角的余弦值为( )ABCD【答案】D例3.直三棱柱ABC ﹣A 1B 1C 1中,若∠BAC=90°,AB=AC=AA 1,则异面直线 BA 1与AC 1所成的角为( ) A .60°B .90°C .120°D .150°例4.在四面体ABCD 中,AC 与BD 的夹角为30°,2AC =,BD =M ,N 分别是AB ,CD 的中点,则线段MN 的长度为________. 【答案】13.二面角 找(或作)二面角的平面角的主要方法.(i)定义法(ii)垂面法 (iii)三垂线法(Ⅳ)根据特殊图形的性质 (4)求二面角大小的常见方法先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.例5.已知正三棱锥底面边长为2,侧棱长为3,则它的侧面与底面所成二面角的余弦值为________.【答案】12例6.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,E .F 分别为1A B ,1A C 的中点,D 为11B C 上的点,且11A D B C ⊥.(1)求证://EF 平面ABC . (2)求证:平面1A FD ⊥平面11BCC B .(3)若三棱柱所有棱长都为a ,求二面角111A B C C --的平面角的余弦值.【答案】(1)见解析;(2)见解析;(3)74.空间几何体的表面积、体积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+ 圆锥的表面积:2S rl r ππ=+圆台的表面积:22Srl r Rl Rππππ=+++扇形的面积公式2211=36022n R S lr r πα==扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积柱体的体积 :V S h =⨯底,锥体的体积 :13V S h =⨯底台体的体积 :1)3V S S h =+⨯下上( ,球体的体积:343V R π= 点到平面的距离(1)定义 面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.(2)求点面距离常用的方法: 1)直接利用定义求①找到(或作出)表示距离的线段; ②抓住线段(所求距离)所在三角形解之.2)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V 和所取三点构成三角形的面积S ;③由V=31S·h ,求出h 即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.例8.在长、宽、高分别为a b c ,,的长方体中,以它的各面的中心为顶点可得到一个八面体,则该八面体的体积为________.【答案】16abc例9.如图,在上、下底面对应边的比为1:2的三棱台中,过上底面的一边作一个平行于棱的平面11A B EF ,则这个平面分三棱台成两部分的体积之比为( ).A .1:2B .2:3C .3:4D .4:5【答案】C例10.如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,PA=AD=4,AB=2,以BD 的中点O 为球心、BD 为直径的球面交PD 于点M.⑴求证:平面ABM ⊥平面PCD ; (2)求点O 到平面ABM 的距离.【答案】(1)见解析(2)3例11.如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA⊥底面ABCD,//FD EA,且112FD EA==.(1)求多面体EABCDF的体积;(2)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面ECF平行,要求保留作图痕迹,但不要求证明.【答案】(1)103V=多面体;(2)见解析.5.与球有关的组合体7-2 球的结构特征⑴球心与截面圆心的连线垂直于截面;⑵截面半径等于球半径与截面和球心的距离的平方差:r2 = R2– d2★7-3 球与其他多面体的组合体的问题球体与其他多面体组合,包括内接和外切两种类型,解决此类问题的基本思路是:⑴根据题意,确定是内接还是外切,画出立体图形;⑵找出多面体与球体连接的地方,找出对球的合适的切割面,然后做出剖面图;⑶将立体问题转化为平面几何中圆与多边形的问题;例11.已知棱长为a的正四面体,其内切球的半径为r,外接球的半径为R,则:r R= ________.【答案】1:3例12.已知棱长为a的正方体,甲球是正方体的内切球,乙球是正方体的外接球,丙球与正方体的各棱都相切,则甲、乙、丙三球的表面积之比为().A.91:3:4B.1:3:2C.D.31:2【答案】B例13.已知,,,S A B C是球O表面上的点,SA⊥平面,,1,ABC AB BC SA AB BC⊥===则球O的体积为__________.例14.已知一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球.求:圆锥内切球的体积.(2)2563Vπ=立体几何中的计算问题一、三视图1.将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.【答案】B2.如图所示,A O B '''∆表示水平放置的AOB ∆的直观图,B '在x '轴上,A O ''与x '轴垂直,且2A O ''=,则AOB ∆的OB 边上的高为______.【答案】二、线线角3.已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则AM 与1BC 所成角的余弦值为( ) A.3B.3C.4D.4【答案】D4.如图所示为一个正方体的展开图.对于原正方体,给出下列结论: ①AB 与EF 所在直线平行; ②AB 与CD 所在直线异面; ③MN 与BF 所在直线成60︒角;④MN 与CD 所在直线互相垂直. 其中正确结论的序号是________. 【答案】②④5.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,1AA AB AC ==,AB AC ⊥,M 是1CC 的中点,Q 是BC 的中点,点P 在11A B 上,则直线PQ 与直线AM 所成的角为( ). A .30° B .45︒C .60︒D .90︒【答案】D 三、二面角问题二面角:关键是找出二面角的平面角。

立体几何体积计算练习题

立体几何体积计算练习题1. 正方体计算(1) 已知一个正方体的边长为5cm,计算其体积。

解答:正方体的体积计算公式为V = a³,其中a为正方体的边长。

代入已知数据可得,V = 5cm × 5cm × 5cm = 125cm³。

(2) 若正方体的体积为64cm³,求其边长。

解答:将正方体的体积计算公式改写为a³ = V。

代入已知数据可得,a³ = 64cm³。

对等式两边开立方根可得,a = ∛(64cm³) = ∛(4 × 4 × 4cm³) = 4cm。

因此,正方体的边长为4cm。

2. 长方体计算(1) 已知一个长方体的长、宽、高分别为8cm、6cm和4cm,计算其体积。

解答:长方体的体积计算公式为V = lwh,其中l、w和h分别为长方体的长、宽和高。

代入已知数据可得,V = 8cm × 6cm × 4cm = 192cm³。

(2) 若长方体的体积为360cm³,已知长和宽的比为2:3,求长方体的长、宽和高。

解答:设长和宽分别为2x和3x(其中x为比例系数),代入长方体的体积计算公式可得,(2x) × (3x) × h = 360cm³。

化简该方程可得,6x²h = 360cm³。

解方程可得,h = 360cm³ / (6x²)。

同时,已知长和宽的比为2:3,即有 (2x) / (3x) = 2/3。

解方程可得,x = 3。

代入h的表达式可得,h = 360cm³ / (6 × 3²) = 10cm。

因此,长方体的长为2x = 2 × 3 = 6cm,宽为3x = 3 × 3 = 9cm,高为10cm。

3. 圆柱体计算(1) 已知一个圆柱体的底面半径为4cm,高为10cm,计算其体积。

习题范例解决立体几何中的表面积问题

习题范例解决立体几何中的表面积问题在立体几何中,我们常常会遇到计算各种形状的表面积的问题。

本文将通过习题范例的方式,帮助读者解决立体几何中的表面积问题。

习题一:计算长方体表面积已知一个长方体的长、宽、高分别为a、b、c,请计算长方体的表面积。

解答:长方体的表面积可以通过计算各个面的面积之和得到。

长方体有六个面,分别是底面、顶面、前面、后面、左面和右面。

底面和顶面的面积相等,等于a*b;前面和后面的面积相等,等于a*c;左面和右面的面积相等,等于b*c。

所以长方体的表面积等于2ab + 2ac + 2bc。

习题二:计算圆柱体的表面积已知圆柱体的底面直径为d,高为h,请计算圆柱体的表面积。

解答:圆柱体的表面积由三个部分组成,上底面、下底面和侧面。

上底面和下底面的面积都等于π * (d/2)^2,即π * (d^2)/4;侧面的面积等于圆周长乘以高,即2π * (d/2) * h = πdh。

所以圆柱体的表面积等于2 * (π * (d^2)/4) + πdh = (πd/2) * (d/2 + h)。

习题三:计算球体的表面积已知球体的半径为r,请计算球体的表面积。

解答:球体的表面积等于4πr^2。

习题四:计算锥体的表面积已知锥体的底面半径为r,母线长度为l,请计算锥体的表面积。

解答:锥体的表面积等于底面的面积加上锥面的面积。

底面的面积等于πr^2;锥面的面积等于πrl。

所以锥体的表面积等于πr^2 + πrl = πr(r + l)。

通过以上习题范例,我们可以看到计算不同形状立体几何的表面积时,可以根据不同的公式进行计算,而不同形状的表面积计算公式也有一定的规律可循。

在实际应用中,掌握这些表面积的计算方法可以帮助我们更好地理解和解决立体几何问题。

同时,熟练掌握这些计算方法也有助于我们在解决实际问题时更加便捷和准确地计算出表面积。

例如在装修房间时,需要计算墙面的面积;在包装物品时,需要计算包装盒的表面积等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19立体几何中的计算问题——求空间角和距离
1.两条异面直线所成角的求法
设a ,b 分别是两异面直线l 1,l 2的方向向量,则
2.直线与平面所成角的求法
设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则 3.求二面角的大小
如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 4.如何求空间点面之间的距离?
|BO →|=|AB →||cos 〈AB →
,n 〉|.
1.(1)两直线的方向向量所成的角就是两条直线所成的角.( )
(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( ) (3)两个平面的法向量所成的角是这两个平面所成的角.( )
(4)两异面直线夹角的范围是⎝⎛⎦⎤0,π2,直线与平面所成角的范围是⎣⎡⎦⎤0,π
2,二面角的范围是[0,π]. ( )
(5)若二面角α-a -β的两个半平面α,β的法向量n 1,n 2所成角为θ,则二面角α-a -β的大小是π-θ.( )
2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A .45° B .135° C .45°或135°
D .90°
3.如图,正三棱柱(底面是正三角形的直棱柱)ABC -A 1B 1C 1的底面边长为2,侧棱长为22,则AC 1与侧面ABB 1A 1所成的角为______.
4.在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( ) A.110 B.25 C.3010 D.22
5.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则
l 与α所成的角为________.
题型一 求异面直线所成的角
例1 三棱柱ABC -A 1B 1C 1中,△ABC 为等边三角形,AA 1⊥平面ABC ,AA 1=AB ,N ,M 分别是A 1B 1,A 1C 1的中点,则AM 与BN 所成角的余弦值为( ) A.110 B.35 C.710 D.45
题型二 求直线与平面所成的角
例2 (2018·全国Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .
(1)证明:平面PEF ⊥平面ABFD ;
(2)求DP与平面ABFD所成角的正弦值.
跟踪训练2 (2018·全国Ⅱ)如图,在三棱锥P-ABC中,AB=BC=22,P A=PB=PC=AC =4,O为AC的中点.
(1)证明:PO⊥平面ABC;
(2)若点M在棱BC上,且二面角M-P A-C为30°,求PC与平面P AM所成角的正弦值.
题型三求二面角
例3 如图1,在高为6的等腰梯形ABCD中,AB∥CD,且CD=6,AB=12,将它沿对称轴OO1折起,使平面ADO1O⊥平面BCO1O.如图2,点P为BC中点,点E在线段AB上(不同于A,B两点),连接OE并延长至点Q,使AQ∥OB.
(1)证明:OD⊥平面P AQ;
(2)若BE=2AE,求二面角C—BQ—A的余弦值.
跟踪训练3 (2018·全国Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.
(1)证明:平面AMD ⊥平面BMC ;
(2)当三棱锥M -ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值.
例 (12分)如图,四棱锥S -ABCD 中,△ABD 为正三角形,∠BCD =120°,CB =CD =CS =2,∠BSD =90°.
(1)求证:AC ⊥平面SBD ;
15.在四棱锥P -ABCD 中,AB →=(4,-2,3),AD →=(-4,1,0),AP →
=(-6,2,-8),则这个四棱锥的高h 等于( ) A .1 B .2 C .13 D .26。

相关文档
最新文档