空间几何中的角和距离的计算
暑假立体几何中的距离问题

立体几何中的距离问题【要点精讲】1.距离空间中的距离是立体几何的重要内容,其内容主要包括:点点距,点线距,点面距,线线距,线面距,面面距。
其中重点是点点距、点线距、点面距以及两异面直线间的距离.因此,掌握点、线、面之间距离的概念,理解距离的垂直性和最近性,理解距离都指相应线段的长度,懂得几种距离之间的转化关系,所有这些都是十分重要的求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离。
两条异面直线的距离两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离;求法:如果知道两条异面直线的公垂线,那么就转化成求公垂线段的长度点到平面的距离平面外一点P在该平面上的射影为P′,则线段PP′的长度就是点到平面的距离;求法:○1“一找二证三求”,三步都必须要清楚地写出来。
○2等体积法。
直线及平面的距离:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离;平行平面间的距离:两个平行平面的公垂线段的长度,叫做两个平行平面的距离。
求距离的一般方法和步骤:应用各种距离之间的转化关系和“平行移动”的思想方法,把所求的距离转化为点点距、点线距或点面距求之,其一般步骤是:①找出或作出表示有关距离的线段;②证明它符合定义;③归到解某个三角形.若表示距离的线段不容易找出或作出,可用体积等积法计算求之。
异面直线上两点间距离公式,如果两条异面直线a 、b 所成的角为 ,它们的公垂线AA ′的长度为d ,在a 上有线段A ′E =m ,b 上有线段AF =n ,那么EF =θcos 2222mn n m d ±++(“±”符号由实际情况选定)点到面的距离的做题过程中思考的几个方面: ①直接作面的垂线求解;②观察点在及面平行的直线上,转化点的位置求解; ③观察点在及面平行的平面上,转化点的位置求解; ④利用坐标向量法求解⑤点在面的斜线上,利用比例关系转化点的位置求解。
空间向量的应用求空间角与距离

空间向量的应用----求空间角与距离一、考点梳理1.自新教材实施以来,近几年高考的立体几何大题,在考察常规解题方法的同时,更多地关注向量法〔基向量法、坐标法〕在解题中的应用。
坐标法〔法向量的应用〕,以其问题〔数量关系:空间角、空间距离〕处理的简单化,而成为高考热点问题。
可以预测到,今后的高考中,还会继续表达法向量的应用价值。
2.利用法向量求空间角和空间距离,其常用技巧与方法总结如下:1)求直线和直线所成的角假设直线AB 、CD 所成的角是α,cos α=|,cos |><CD AB ||||||CD AB CD AB •=2).利用法向量求线面角设θ为直线l 与平面α所成的角,ϕ为直线l 的方向向量v 与平面α的法向量n 之间的夹角,那么有2πϕθ=-或2πϕθ=+。
特别地0ϕ=时, 2πθ=,l α⊥;2πϕ=时,0θ=,l α⊂或l α。
计算公式为:||sin cos ||||v n v n θϕ==或||sin sin()cos (0)2||||||||v n v n v n v n v n πθϕϕ=-=-=-=<3).利用法向量求二面角设1n 、2n 分别为平面α、β的法向量,二面角l αβ--的大小为θ,向量1n 、2n 的夹角为ϕ,那么有θϕπ+=或θϕ=。
计算公式为:1212cos cos ||||n n n n θϕ=-=1212cos cos ||||n n n n θϕ==4).利用法向量求点面距离如图点P 为平面外一点,点A 为平面内的任一点,平面的法向量为n ,过点P 作平面α的垂线PO ,记∠OPA=θ,那么点P 到平面的距离θcos ||||PA PO d ==||||||||||||n PA PA n PA n PA n •=⊗•=5).法向量在距离方面除应用于点到平面的距离外,还能处理异面直线间的距离,线面间的距离,以及平行平面间的距离等。
其一,这三类距离都可以转化为点面间的距离;其二,异面直线间的距离可用如下方法操作:在异面直线上各取一点A 、B ,AB 在n 上的射影长即为所求。
8.7.2 利用空间向量求空间角和距离

第24页
名师伴你行 ·高考一轮总复习 ·数学(理)
则各点的坐标分别为B(1,0,0),C(1,1,0),D(0,2,0),
P(0,0,2),
报
告 一
因为B→P=(-1,0,2),设B→Q=λB→P=(-λ,0,2λ)(0≤λ≤1), 课
时
又C→B=(0,-1,0),则C→Q=C→B+B→Q=(-λ,-1,2λ),
(1)证明:平面PEF⊥平面ABFD;
(2)求DP与平面ABFD所成角的正弦值.
第8章 第7节 第2课时
第33页
名师伴你行 ·高考一轮总复习 ·数学(理)
报 告
(1)[证明] 由已知可得,BF⊥PF,BF⊥EF,
一
又PF∩EF=F,所以BF⊥平面PEF.
课
时
又BF⊂平面ABFD,所以平面PEF⊥平面ABFD.
|AD||n|
3
2a = 32a2×1
22,
作 业
二
解得θ=45°,即AD与平面BCD所成的角为45°.
第8章 第7节 第2课时
第16页
名师伴你行 ·高考一轮总复习 ·数学(理)
报
(2)∵A→D·B→C=0,∴AD⊥BC,
告
一
∴AD与BC所成角为90°.
课
时
(3)设m=(x,y,z)是平面ABD的法向量,
作 业
报 告 二
第8章 第7节 第2课时
第3页
名师伴你行 ·高考一轮总复习 ·数学(理)
报
告
一
[考纲展示] 1.能用向量方法解决直线与直线、直线与平 课 时
面、平面与平面的夹角的计算问题.
作 业
报
2.了解向量方法在研究立体几何问题中的应用.
空间几何的距离与角度知识点总结

空间几何的距离与角度知识点总结空间几何是数学中研究物体形状和位置的一个分支,涉及到距离和角度的概念。
在空间几何中,距离用来衡量物体之间的长度或间隔,而角度则用来描述物体之间的夹角或转动程度。
本文将对空间几何中的距离与角度的知识进行总结。
一、距离的概念与计算距离是空间几何中最基本的概念之一,它用来描述两点之间的间隔长度。
在空间中,距离可以分为两维空间和三维空间。
在二维空间中,距离的计算可以使用勾股定理来求解,即d = √((x₁-x₂)²+(y₁-y₂)²),其中d表示距离,(x₁,y₁)和(x₂,y₂)表示两点的坐标。
在三维空间中,距离的计算可以使用三维勾股定理来求解,即d = √((x₁-x₂)²+(y₁-y₂)²+(z₁-z₂)²),其中d表示距离,(x₁,y₁,z₁)和(x₂,y₂,z₂)表示两点的坐标。
二、角度的概念与计算角度是描述物体之间夹角或转动程度的概念,在空间几何中也是非常重要的。
角度的单位有度和弧度两种。
在二维空间中,角度的计算可以使用三角函数来求解。
两个向量的夹角可以使用点积的性质来计算,即θ = arccos((A·B)/(|A| |B|)),其中θ表示夹角,A和B分别为两个向量。
在三维空间中,角度的计算可以通过向量的叉积来求解,即θ = arcsin(|A×B|/(|A||B|)),其中θ表示夹角,A和B分别为两个向量。
三、常见几何体的距离与角度在空间几何中,有一些常见的几何体,如直线、平面、球体等,它们之间的距离和角度也有一些特殊的计算方法。
对于直线与直线之间的距离,可以寻找垂直于两条直线的公共垂线,然后计算垂足之间的距离。
对于平面与平面之间的距离,可以寻找垂直于两个平面的直线,然后计算这条直线与两个平面的交点之间的距离。
对于球体与球体之间的距离,可以寻找两个球体的球心连线,然后计算球心连线的长度减去两个球体半径之和。
用空间向量研究距离、夹角问题

用空间向量研究距离问题课程标准学习目标1.能用向量方法解决点到直线、点到平面、相互平行的直线、相互平行的平面的距离问题.2.体会向量方法在研究几何问题中的作用 1.借助直线的方向向量和平面的法向量,能计算点到直线的距离、点到平面的距离,并知道两条平行直线之间的距离、直线与平面平行时两者间的距离、两个平行平面之间的距离. 2.能分析和解决一些立体几何中的距离问题,体会向量方法与综合几何方法的共性和差异,体会直线的方法向量和平面的法向量的作用,感悟向量是研究几何问题的有效工具知识点 用空间向量研究距离问题 1.点到直线的距离如图1-4-18,已知直线l 的单位方向向量为u ,A 是直线l 上的定点,P 是直线l 外一点,设AP ⃗⃗⃗⃗⃗ =a ,则向量AP ⃗⃗⃗⃗⃗ 在直线l 上的投影向量AQ ⃗⃗⃗⃗⃗ =(a ·u )u.在Rt △APQ 中,由勾股定理,得PQ= = .图1-4-182.点到平面的距离如图1-4-19,已知平面α的法向量为n ,A 是平面α内的定点,P 是平面α外一点.过点P 作平面α的垂线l ,交平面α于点Q ,则n 是直线l 的方向向量,且点P 到平面α的距离就是AP⃗⃗⃗⃗⃗ 在直线l 上的投影向量QP ⃗⃗⃗⃗⃗ 的长度.因此PQ=AP ⃗⃗⃗⃗⃗ ·n|n |= = . 图1-4-19【诊断分析】 判断正误.(请在括号中打“√”或“×”)(1)平面α外一点A 到平面α的距离,就是点A 与平面α内一点B 所成向量AB⃗⃗⃗⃗⃗ 的长度.( )(2)直线l∥平面α,则直线l到平面α的距离就是直线l上的点到平面α的距离.()(3)若平面α∥平面β,则两平面α,β的距离可转化为平面α内某条直线到平面β的距离,也可转化为平面α内某点到平面β的距离.()3.解决立体几何中问题的步骤用空间向量解决立体几何问题的“三步曲”可以概括为“一化二算三译”六字诀.“一化”就是把立体几何问题转化为向量问题;“二算”就是通过向量运算,研究点、线、面之间的位置关系以及它们之间的距离问题;“三译”就是把向量的运算结果“翻译”成相应的几何意义.探究点一点到直线的距离例1 如图1-4-20,在空间直角坐标系中有长方体ABCD-A'B'C'D',AB=1,BC=2,AA'=3,求点B到直线A'C的距离.图1-4-20变式1 [2020·潍坊高二期末] 已知A(0,0,2),B(1,0,2),C(0,2,0),则点A到直线BC的距离为()B.1A.2√23C.√2D.2√2变式2 已知正方体ABCD-A1B1C1D1中,E,F分别是C1C,D1A1的中点,求点A到直线EF的距离.[素养小结]用向量法求点到直线的距离的一般步骤:(1)建立空间直角坐标系;(2)求直线的方向向量;(3)计算所求点与直线上某一点所构成的向量在直线上的投影向量的长度;(4)利用勾股定理求解.另外,要注意平行直线间的距离与点到直线的距离之间的转化.探究点二点到平面的距离例2 如图1-4-21,已知正方体ABCD-A1B1C1D1的棱长为2,E,F,G分别是C1C,D1A1,AB的中点,求点A到平面EFG的距离.图1-4-21变式如图1-4-22所示,在四棱锥P-ABCD中,四边形ABCD为正方形,PD⊥平面ABCD,PD=DA=2,F,E分别为AD,PC的中点.(1)求证:DE∥平面PFB;(2)求点E到平面PFB的距离.图1-4-22[素养小结]用向量法求点到平面的距离的步骤:(1)建系:建立恰当的空间直角坐标系;(2)求点的坐标:写出(求出)相关点的坐标;(3)求向量:求出相关向量的坐标;(4)利用公式即可求得点到平面的距离.探究点三线面距和面面距例3 如图1-4-23所示,在直棱柱ABCD-A1B1C1D1中,底面为直角梯形,AB∥CD且∠ADC=90°,AD=1,CD=√3,BC=2,AA1=2,E是CC1的中点,求直线A1B1到平面ABE的距离.图1-4-23变式如图1-4-24,在棱长为1的正方体ABCD-A1B1C1D1中,求平面A1BC1与平面ACD1的距离.图1-4-24[素养小结](1)求线面距离可以转化为求直线上任意一点到平面的距离,利用求点到平面的距离的方法求解即可.(2)求两个平行平面间的距离可以转化为求点到平面的距离,利用求点到平面的距离的方法求解即可.拓展如图1-4-25,四棱锥P-ABCD的底面是边长为1的正方形,PD⊥平面ABCD,且PD=1,E,F 分别为AB,BC的中点.求:图1-4-25(1)点D到平面PEF的距离;(2)直线AC到平面PEF的距离.1.已知正方体ABCD-A1B1C1D1的棱长为2,点E是A1B1的中点,则点A到直线BE的距离为()A.6√55B.4√55C.2√55D.√552.在三棱锥P-ABC中,PA,PB,PC两两垂直,且PA=PB=PC=1,则点P到平面ABC的距离是()A.√66B.√63C.√36D.√333.若正方体ABCD-A1B1C1D1的棱长为3,则点B到平面ACD1的距离为()A.√3B.√33C.3√22D.324.如图1-4-26,在长方体ABCD-A1B1C1D1中,AA1=AB=2,AD=1,点F,G分别是AB,CC1的中点,则点D1到直线GF的距离为.图1-4-265.在长方体ABCD-A 1B 1C 1D 1中,AA 1=1,AD=DC=√3,Q 是线段A 1C 1上一点,且C 1Q=13C 1A 1,则点Q 到平面A 1DC 的距离为 .用空间向量研究距离问题参考答案【课前预习】知识点1.√|AP ⃗⃗⃗⃗⃗ |2-|AQ ⃗⃗⃗⃗⃗ |2 √a 2-(a ·u )22.|AP ⃗⃗⃗⃗⃗ ·n |n |||AP ⃗⃗⃗⃗⃗ ·n ||n |诊断分析 (1)× (2)√ (3)√ 【课中探究】探究点一例1 解:因为AB=1,BC=2,AA'=3, 所以A'(0,0,3),C (1,2,0),B (1,0,0), 所以直线A'C 的方向向量A'C ⃗⃗⃗⃗⃗⃗ =(1,2,-3). 又BC ⃗⃗⃗⃗⃗ =(0,2,0),所以BC ⃗⃗⃗⃗⃗ 在A 'C ⃗⃗⃗⃗⃗⃗ 上的投影向量的长度为|BC ⃗⃗⃗⃗⃗ ·A 'C ⃗⃗⃗⃗⃗⃗||A 'C ⃗⃗⃗⃗⃗⃗|=√14,所以点B 到直线A'C 的距离d=√|BC ⃗⃗⃗⃗⃗ |2-(|BC ⃗⃗⃗⃗⃗ ·A 'C ⃗⃗⃗⃗⃗⃗ ||A 'C ⃗⃗⃗⃗⃗⃗|) 2=√4-1614=2√357. 变式1 A [解析] ∵A (0,0,2),B (1,0,2),C (0,2,0),AB ⃗⃗⃗⃗⃗ =(1,0,0),BC ⃗⃗⃗⃗⃗ =(-1,2,-2),∴点A 到直线BC 的距离d=|AB ⃗⃗⃗⃗⃗ |√1-(cos <AB ⃗⃗⃗⃗⃗ ,BC⃗⃗⃗⃗⃗ >)2=1×√1-(-11×3)2=2√23.故选A .变式2 解:连接AF ,以D 为原点,DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系,如图所示,设DA=2,则A (2,0,0),E (0,2,1),F (1,0,2),则EF ⃗⃗⃗⃗⃗ =(1,-2,1),FA ⃗⃗⃗⃗⃗ =(1,0,-2). |EF⃗⃗⃗⃗⃗ |=√12+(-2)2+12=√6,FA ⃗⃗⃗⃗⃗ ·EF⃗⃗⃗⃗⃗ =1×1+0×(-2)+(-2)×1=-1, FA ⃗⃗⃗⃗⃗ 在EF ⃗⃗⃗⃗⃗ 上的投影向量的长度为|FA ⃗⃗⃗⃗⃗ ·EF ⃗⃗⃗⃗⃗ ||EF ⃗⃗⃗⃗⃗|=√6, 所以点A 到直线EF 的距离d=√|FA |2-(√6) 2=√296=√1746. 探究点二例2 解:以D 为坐标原点,DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向分别为x 轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐标系,则A (2,0,0),E (0,2,1),F (1,0,2),G (2,1,0), 所以AG ⃗⃗⃗⃗⃗ =(0,1,0),GE ⃗⃗⃗⃗⃗ =(-2,1,1),GF ⃗⃗⃗⃗⃗ =(-1,-1,2). 设n=(x ,y ,z )是平面EFG 的法向量, 点A 到平面EFG 的距离为d ,则{n ·GE⃗⃗⃗⃗⃗ =0,n ·GF⃗⃗⃗⃗⃗ =0,所以{-2x +y +z =0,-x -y +2z =0,取z=1,得n=(1,1,1),所以d=|AG ⃗⃗⃗⃗⃗ ·n ||n |=√3=√33,即点A 到平面EFG 的距离为√33.变式 解:(1)证明:以D 为原点,建立如图所示的空间直角坐标系,则P (0,0,2),F (1,0,0),B (2,2,0),E (0,1,1), 所以FP⃗⃗⃗⃗⃗ =(-1,0,2),FB ⃗⃗⃗⃗⃗ =(1,2,0),DE ⃗⃗⃗⃗⃗ =(0,1,1), 所以DE ⃗⃗⃗⃗⃗ =12FP ⃗⃗⃗⃗⃗ +12FB ⃗⃗⃗⃗⃗ ,又因为DE ⊄平面PFB , 所以DE ∥平面PFB. (2)因为DE ∥平面PFB ,所以点E 到平面PFB 的距离等于点D 到平面PFB 的距离. 设平面PFB 的法向量为n=(x ,y ,z ), 则{n ·FB ⃗⃗⃗⃗⃗ =0,n ·FP ⃗⃗⃗⃗⃗ =0,即{x +2y =0,-x +2z =0,取x=2,得n=(2,-1,1). 因为FD ⃗⃗⃗⃗⃗ =(-1,0,0),所以点D 到平面PFB 的距离d=|FD ⃗⃗⃗⃗⃗ ·n ||n |=√6=√63,所以点E 到平面PFB 的距离为√63.探究点三例3 解:如图,以D 为坐标原点,分别以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系,则A 1(1,0,2),A (1,0,0),E (0,√3,1),C (0,√3,0). 过点C 作AB 的垂线交AB 于点F ,易得BF=√3, ∴B (1,2√3,0),∴AB ⃗⃗⃗⃗⃗ =(0,2√3,0),BE ⃗⃗⃗⃗⃗ =(-1,-√3,1). 设平面ABE 的法向量为n=(x ,y ,z ), 则{n ·AB⃗⃗⃗⃗⃗ =0,n ·BE ⃗⃗⃗⃗⃗ =0,即{2√3y =0,-x -√3y +z =0,取x=1,得n=(1,0,1).∵AA 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2),∴点A 1到平面ABE 的距离d=|AA 1⃗⃗⃗⃗⃗⃗⃗⃗ ·n ||n |=√2=√2.∵直线A 1B 1到平面ABE 的距离等于点A 1到平面ABE 的距离, ∴直线A 1B 1到平面ABE 的距离为√2.变式 解:如图,建立空间直角坐标系,AC ⃗⃗⃗⃗⃗ =(-1,1,0),AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),设平面ACD 1的法向量为n=(x ,y ,z ),由n ⊥AC ⃗⃗⃗⃗⃗ ,n ⊥AD 1⃗⃗⃗⃗⃗⃗⃗ 得{-x +y =0,-x +z =0,取x=1,得n=(1,1,1),所以平面ACD 1的一个法向量为n=(1,1,1),因为AB ⃗⃗⃗⃗⃗ =(0,1,0),所以点B 到平面ACD 1的距离d=|AB ⃗⃗⃗⃗⃗ ·n ||n |=√3=√33. 因为平面A 1BC 1与平面ACD 1的距离等于点B 到平面ACD 1的距离, 所以平面A 1BC 1与平面ACD 1的距离为√33.拓展 解:(1)连接DE.∵PD ⊥平面ABCD ,∴PD ⊥AD ,PD ⊥CD ,又AD ⊥CD , ∴可建立如图所示的空间直角坐标系,则P (0,0,1),A (1,0,0),C (0,1,0),E 1,12,0,F 12,1,0,∴PE ⃗⃗⃗⃗⃗ =1,12,-1,EF ⃗⃗⃗⃗⃗ =-12,12,0. 设平面PEF 的法向量为n=(x ,y ,z ), 则{n ·EF ⃗⃗⃗⃗⃗ =0,n ·PE ⃗⃗⃗⃗⃗ =0,即{-12x +12y =0,x +12y -z =0,取x=1,则平面PEF 的一个法向量为n=1,1,32.易知DE⃗⃗⃗⃗⃗ =1,12,0,设D 到平面PEF 的距离为d , 则d=|DE ⃗⃗⃗⃗⃗⃗ ·n ||n |=|1+12|√172=3√1717, 故点D 到平面PEF 的距离为3√1717.(2)由(1)知,平面PEF 的一个法向量为n=1,1,32.∵EF ⃗⃗⃗⃗⃗ =-12,12,0,AC ⃗⃗⃗⃗⃗ =(-1,1,0), ∴AC ⃗⃗⃗⃗⃗ =2EF ⃗⃗⃗⃗⃗ ,∴AC ⃗⃗⃗⃗⃗ ∥EF⃗⃗⃗⃗⃗ . ∵AC ,EF 不共线,∴AC ∥EF ,又∵AC ⊄平面PEF ,EF ⊂平面PEF ,∴AC ∥平面PEF. 易得AE ⃗⃗⃗⃗⃗ =0,12,0,设直线AC 到平面PEF 的距离为h , 则h=|AE ⃗⃗⃗⃗⃗ ·n ||n |=12√172=√1717, 故直线AC 到平面PEF 的距离为√1717. 【课堂评价】1.B [解析] 如图,以B 为原点,分别以BC ⃗⃗⃗⃗⃗ ,BA ⃗⃗⃗⃗⃗ ,BB 1⃗⃗⃗⃗⃗⃗⃗ 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,则BA ⃗⃗⃗⃗⃗ =(0,2,0),BE ⃗⃗⃗⃗⃗ =(0,1,2),设∠ABE=θ,则cos θ=|BA ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗||BA ⃗⃗⃗⃗⃗ ||BE ⃗⃗⃗⃗⃗ |=2×√5=√55,则sin θ=√1-cos 2θ=2√55,故点A 到直线BE 的距离d=|AB⃗⃗⃗⃗⃗ |sin θ=2×2√55=4√55. 2.D [解析] 以P 为原点,分别以PA ,PB ,PC 所在的直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A (1,0,0),B (0,1,0),C (0,0,1),则PA⃗⃗⃗⃗⃗ =(1,0,0),AB ⃗⃗⃗⃗⃗ =(-1,1,0),AC ⃗⃗⃗⃗⃗ =(-1,0,1),易得平面ABC 的一个法向量为n=(1,1,1),则P 到平面ABC 的距离d=|PA ⃗⃗⃗⃗⃗ ·n ||n |=√33.3.A [解析] 如图,以D 为原点,分别以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向为x ,y ,z 轴的正方向,建立空间直角坐标系,则B (3,3,0),A (3,0,0),C (0,3,0),D 1(0,0,3),所以AC ⃗⃗⃗⃗⃗ =(-3,3,0),AD 1⃗⃗⃗⃗⃗⃗⃗ =(-3,0,3),AB ⃗⃗⃗⃗⃗ =(0,3,0).设平面ACD 1的法向量为n=(x ,y ,z ),则{n ·AC ⃗⃗⃗⃗⃗ =-3x +3y =0,n ·AD 1⃗⃗⃗⃗⃗⃗⃗ =-3x +3z =0,取x=1,得n=(1,1,1),∴点B 到平面ACD 1的距离d=|AB ⃗⃗⃗⃗⃗ ·n ||n |=√3=√3.故选A . 4.√423 [解析] 连接GD 1.以D 为坐标原点,分别以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向为x ,y ,z 轴的正方向,建立空间直角坐标系,则D 1(0,0,2),F (1,1,0),G (0,2,1),所以GF ⃗⃗⃗⃗⃗ =(1,-1,-1),GD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,-2,1),所以GF ⃗⃗⃗⃗⃗ ·GD 1⃗⃗⃗⃗⃗⃗⃗⃗ |GF ⃗⃗⃗⃗⃗ |=2-1√3=1√3,|GD 1⃗⃗⃗⃗⃗⃗⃗⃗ |=√5,所以点D 1到直线GF 的距离为√5-13=√423. 5.√33 [解析] 连接DQ ,建立如图所示的空间直角坐标系,则D (0,0,1),C (0,√3,1),A 1(√3,0,0),C 1(0,√3,0),由C 1Q=13C 1A 1,得Q √33,2√33,0,∴DC ⃗⃗⃗⃗⃗ =(0,√3,0),DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(√3,0,-1),DQ ⃗⃗⃗⃗⃗⃗ =√33,2√33,-1.设平面A 1DC 的法向量为n=(x ,y ,z ),由{n ·DC ⃗⃗⃗⃗⃗ =0,n ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =0,得{√3y =0,√3x -z =0,可取n=(1,0,√3),∴点Q 到平面A 1DC 的距离d=|DQ ⃗⃗⃗⃗⃗⃗ ·n ||n |=√33.。
空间几何中的角和距离的计算

空间角和距离的计算(1)一线线角1. 直三棱柱A i B i C i-ABC , / BCA=90 0,点D〔,F i 分别是A i B i 和A i C i 的中点,若BC=CA=CC 1, 求BD i与AF i所成角的余弦值.2. 在四棱锥P-ABCD 中,底面ABCD 是直角梯形,/ BAD=90 °, AD // BC, AB=BC=a , AD=2a , 且PAL面ABCD , PD与底面成30°角.(1) 若AE ± PD , E为垂足,求证:BE ± PD;(2) 若AE ±PD,求异面直线AE与CD所成角的大小.二.线面角i .正方体ABCD-A i B i C i D i中,E, F分别为BB i、CD的中点,且正方体的棱长为2.(1) 求直线DiF和AB和所成的角;(2) 求D i F与平面AED所成的角.2. 在三棱柱A i B1C1-ABC中,四边形AA侣侣是菱形,四边形BCC i B i是矩形,C i Bi± AB , AB=4 , C i B i=3, ZABB i=600,求AC i与平面BCC i B i所成角的大小.三.二面角i .已知A i B i C i-ABC是正三棱柱,D是AC中点.(1) 证明AB i //平面DBC i;(2) 设AB i±BC i,求以BC i为棱,DBC i与CBC i为面的二面角的大小.2. ABCD 是直角梯形,Z ABC=90°, SAX面ABCD , SA=AB=BC=i , AD=0.5 .(1) 求面SCD与面SBA所成的二面角的大小;(2) 求SC与面ABCD所成的角.3. 已知A i B i C i-ABC是三棱柱,底面是正三角形, —C 的大小. ZA i AC=60°, / A i AB=45°,求二面角B— AA iB iC iB・A i空间角和距离的计算⑵四空间距离计算(点到点、异面直线间距离)1. 在棱长为a的正方体ABCD-A 1B1C1D1中,P是BC的中点,DP 交AC 于M, B1P 交BC1 于N.(1) 求证:MN上异面直线AC和BC1的公垂线;(2) 求异面直线AC和BC1间的距离.(点U线,点到面的距离)2. 点P为矩形ABCD所在平面外一点,PAL面ABCD , Q为线段AP的中点,AB=3 , CB=4 ,PA=2,求:(1) 点Q到直线BD的距离;(2) 点P到平面BDQ的距离.3. 边长为a的菱形ABCD中,/ ABC=60 0, PCX平面ABCD , E是PA的中点,求E到平面PBC 的距离.(线到面、面到面的距离)4, 已知斜三棱柱A i B1C1-ABC 的侧面A i ACC 1 与底面ABC 垂直,/ ABC=90 0, BC=2 , AC=2 J3 ,且AA i±A i C, AA i=A i C.(1) 求侧棱AA i与底面ABC所成角的大小;(2) 求侧面A i ABB 1与底面ABC所成二面角的大小;(3) 求侧棱B i B和侧面A i ACC i距离.5. 正方形ABCD和正方形ABEF的边长都是1,且平面ABCD、ABFE互相垂直,点M在AC 上移动,点N在BF上移动,若CM=NB=a ( 0 a ^2 ).(1) 求MN的长;(2) 当a为何值时,MN的长最小.。
空间几何中的角度计算和距离计算

(
).
A.2 2
B.2 3
C.2 6
D.4
【解析】 取 BE 中点为 F,C'E=C'B=4,所以 C'F⊥BE,
所以 C'F⊥平面 ABED,作 C'G⊥AB,连接 FG,易证
FG⊥AB,所以 FG=2,C'F=2 2,所以 C'G=2 3.
3.三棱锥 P-ABC,PA=PB=PC= 73,AB=10,BC=8,CA=6,则二面
,AB=4,PC=3.
(1)求证:EF⊥平面PCH;
(2)求点B到平面PEF的距离.
【解析】 (1)∵E,F 是 AB,AD 的中点,
∴EF∥BD,且在正方形 ABCD 中,AC⊥BD,
∴EF⊥HC.
又∵PC⊥平面 ABCD,EF⊂平面 ABCD,
∴EF⊥PC,HC∩PC=C,∴EF⊥平面 PCH.
1 1
=
E
1 -B1
1
1
3
3
,即 h△1 1 E = ·C1F·△ 1 E ,
E
因为 AB=AA1=2 2,AC=BC=2,
所以 B1E=BE= 10,BB1=2 2,
1
所以Δ ห้องสมุดไป่ตู้ E = ×2 2×2 2=4,
2
又因为 B1E= 10,C1E= 4 + 2= 6,B1C1=2,
成的平面角,
所以∠ABC 为二面角 α-l-β 的平面角,所以
∠ABC=45°,
所以 AD=BD=AB×sin 45°= 3,
所以 CD=BC-BD=1,tan∠ACD=
= 3,
所以∠ACD=60°.
故直线 AC 与平面 β 所成角的大小为 60°.
向量法求空间的距离和角

所以异面直线BD与D1A间的距离为
3 。 3
(2) A1 B1 = (0,1, 0), 设n = ( x, y, z )是平面A1DB的一 个法向量,因为DA1 = (1, 0,1), DB = (1,1, 0), ì ì x +z = 0 nDA1 = 0 镲 由眄 即 取x = - 1, 镲 î x+y =0 î nDB = 0 | nA1 B1 | 1 2 于是n = (-1,1,1, ),且 = = 。 2 |n| 2 2 所以点B1到平面A1 BD的距离为 。 2
例1:如图1所示: 三棱柱ABC - A1 B1C1中,CA=CB, AB = AA1, ? BAA1 60o, ( 1)求证:AB^ A1C (2)若平面ABC ^ 平面AA1 B1 B, AB =CB,求直线A1C与平面BB1C1C 所成角的正弦值。
C C1
B A A1
B1
图1
C
C1
O
B A1
Z
解:由(1)知OC ^ AB,OA1 ^ AB, 又平面ABC ^ 平面AA1 B1 B,交线 为AB,所以OC ^ 平面AA1 B1 B, 故OA、OA1、OC两两相互垂直。 建立如图所示的空间直角坐标系 A
O
C
C1
B A1
B1 图1-2
X o - xyz 设AB = 2,由题设知A(1, 0, 0)、B(- 1, 0, 0)、C (0, 0, 3)、A1 (0, 3, 0), 则BC = (1, 0, 3)、 BB1 = AA1 = (- 1, 3, 0)、 A1C = (0, - 3, 3). 设n = ( x, y, z )是平面BBCC的法向量,则 ì x + 3z = 0 ì nBC = 0 镲 即 可取n = ( 3,1, -1), 眄 镲 î nBB1 = 0 î - x + 3y = 0 nA1C 10 故 cos < n, A1C >= =. 5 | n | ×| A1C |
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间角和距离的计算(1)
一 线线角
1.直三棱柱A 1B 1C 1-ABC ,∠BCA=900,点D 1,F 1分别是A 1B 1和A 1C 1的中点,若BC=CA=CC 1,求BD 1与AF 1所成角的余弦值.
2.在四棱锥P-ABCD 中,底面ABCD 是直角梯形,∠BAD=900,AD ∥BC ,AB=BC=a ,AD=2a ,且PA ⊥面ABCD ,PD 与底面成300角.
(1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ;
(2)若AE ⊥PD ,求异面直线AE 与CD 所成角的大小.
二.线面角
1.正方体ABCD-A 1B 1C 1D 1中,E ,F 分别为BB 1、CD 的中点,且正方体的棱长为2. (1)求直线D 1F 和AB 和所成的角; (2)求D 1F 与平面AED 所成的角.
F 1D 1B 1
C 1A 1
B
A C A
B
C D
P E C D E
F
D 1
C 1
B 1
A 1
A
B
2.在三棱柱A 1B 1C 1-ABC 中,四边形AA 1B 1B 是菱形,四边形BCC 1B 1是矩形,C 1B 1⊥AB ,AB=4,C 1B 1=3,∠ABB 1=600,求AC 1与平面BCC 1B 1所成角的大小.
三.二面角
1.已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点. (1)证明AB 1∥平面DBC 1;
(2)设AB 1⊥BC 1,求以BC 1为棱,DBC 1与CBC 1为面的二面角的大小.
2.ABCD 是直角梯形,∠ABC=900,SA ⊥面ABCD ,SA=AB=BC=1,AD=0.5. (1)求面SCD 与面SBA 所成的二面角的大小; (2)求SC 与面ABCD 所成的角.
3.已知A 1B 1C 1-ABC 是三棱柱,底面是正三角形,∠A 1AC=600,∠A 1AB=450,求二面角B —AA 1—C 的大小.
B 1
C 1
A 1
B
A C
D
B 1
C 1
A 1B
A C B
A
D
C S
B 1
C 1
B
C A 1
空间角和距离的计算(2)
四 空间距离计算
(点到点、异面直线间距离)
1.在棱长为a 的正方体ABCD-A 1B 1C 1D 1中,P 是BC 的中点,DP 交AC 于M ,B 1P 交BC 1于N . (1)求证:MN 上异面直线AC 和BC 1的公垂线;
(2)求异面直线AC 和BC 1间的距离.
(点到线,点到面的距离)
2.点P 为矩形 ABCD 所在平面外一点,PA ⊥面ABCD ,Q 为线段AP 的中点,AB=3,CB=4,PA=2,求:
(1)点Q 到直线BD 的距离; (2)点P 到平面BDQ 的距离.
3.边长为a 的菱形ABCD 中,∠ABC=600,PC ⊥平面ABCD ,E 是PA 的中点,求E 到平面PBC 的距离.
C
D N
M
P D 1
C 1B 1A 1
A
B
(线到面、面到面的距离)
4. 已知斜三棱柱A 1B 1C 1-ABC 的侧面A 1ACC 1与底面ABC 垂直,∠ABC=900,BC=2,AC=23,且AA 1⊥A 1C ,AA 1=A 1C . (1)求侧棱AA 1与底面ABC 所成角的大小;
(2)求侧面A 1ABB 1与底面ABC 所成二面角的大小; (3)求侧棱B 1B 和侧面A 1ACC 1距离.
5.正方形ABCD 和正方形ABEF 的边长都是1,且平面ABCD 、ABFE 互相垂直,点M 在AC 上移动,点N 在BF 上移动,若CM=NB=a (20<<a ).
(1)求MN 的长;
(2)当a 为何值时,MN 的长最小.
B 1
C 1
B A
C A 1。