2010年中考数学试题分类4 三角函数和解三角形 冀教版

合集下载

2010年河北省中考数学试题(学生版)

2010年河北省中考数学试题(学生版)

2010年河北省中考数学试卷一、选择题(共12小题,每小题2分,满分24分)1.(2分)计算1﹣(﹣2)的结果是()A.3 B.﹣3 C.1 D.﹣12.(2分)如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90°3.(2分)下列计算中,正确的是()A.20=0 B.a+a=a2C.D.(a3)2=a6 4.(2分)如图,在▱ABCD中,AC平分∠DAB,AB=3,则▱ABCD的周长为()A.6 B.9 C.12 D.155.(2分)把不等式﹣2x<4的解集表示在数轴上,正确的是()A.B.C.D.6.(2分)如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点P B.点Q C.点R D.点M7.(2分)化简的结果是()A.a2﹣b2B.a+b C.a﹣b D.18.(2分)小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x张,根据题意,下面所列方程正确的是()A.x+5(12﹣x)=48 B.x+5(x﹣12)=48C.x+12(x﹣5)=48 D.5x+(12﹣x)=489.(2分)一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15km/h,水流速度为5km/h.轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t(h),航行的路程为s(km),则s 与t的函数图象大致是()A.B.C.D.10.(2分)如图,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是()A.7 B.8 C.9 D.1011.(2分)如图,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB 与x轴平行,其中点A的坐标为(0,3),则点B的坐标为()A.(2,3)B.(3,2)C.(3,3)D.(4,3)12.(2分)将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是()A.6 B.5 C.3 D.2二、填空题(共6小题,每小题3分,满分18分)13.(3分)﹣5的相反数是.14.(3分)如图,矩形ABCD的顶点A,B在数轴上,CD=6,点A对应的数为﹣1,则点B所对应的数为.15.(3分)在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从如图的四张卡片中任意拿走一张,使剩下的卡片从左到右连成一个三位数,该数就是他猜的价格.若商品的价格是360元,那么他一次就能猜中的概率是.16.(3分)已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为.17.(3分)某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO=8米,母线AB与底面半径OB的夹角为α,,则底面积是平方米(结果保留π).18.(3分)把三张大小相同的正方形卡片A,B,C叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图1摆放时,阴影部分的面积为S1;若按图2摆放时,阴影部分的面积为S2,则S1S2(填“>”、“<”或“=”).三、解答题(共8小题,满分78分)19.(8分)解方程:20.(9分)如图1,正方形ABCD是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图2的程序移动.(1)请在图1中画出光点P经过的路径;(2)求光点P经过的路径总长(结果保留π).21.(8分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.甲校成绩统计表分数7分8分9分10分人数11 0 8(1)在图1中,“7分”所在扇形的圆心角等于°.(2)请你将图2的统计图补充完整;(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?22.(9分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N.(1)求直线DE的解析式和点M的坐标;(2)若反比例函数(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;(3)若反比例函数(x>0)的图象与△MNB有公共点,请直接写出m的取值范围.23.(10分)观察思考:某种在同一平面进行传动的机械装置如图1,图2是它的示意图.其工作原理是:滑块Q 在平直滑道l上可以左右滑动,在Q滑动的过程中,连杆PQ也随之运动,并且PQ带动连杆OP绕固定点O摆动.在摆动过程中,两连杆的接点P在以OP为半径的⊙O上运动.数学兴趣小组为进一步研究其中所蕴含的数学知识,过点O作OH⊥l于点H,并测得OH=4分米,PQ=3分米,OP=2分米.解决问题:(1)点Q与点O间的最小距离是分米;点Q与点O间的最大距离是分米;点Q在l上滑到最左端的位置与滑到最右端位置间的距离是分米;(2)如图3,小明同学说:“当点Q滑动到点H的位置时,PQ与⊙O是相切的.”你认为他的判断对吗?为什么?(3)①小丽同学发现:“当点P运动到OH上时,点P到l的距离最小.”事实上,还存在着点P到l距离最大的位置,此时,点P到l的距离是分米;②当OP绕点O左右摆动时,所扫过的区域为扇形,求这个扇形面积最大时圆心角的度数.24.(10分)在图1至图3中,直线MN与线段AB相交于点O,∠1=∠2=45°.(1)如图1,若AO=OB,请写出AO与BD的数量关系和位置关系;(2)将图1中的MN绕点O顺时针旋转得到图2,其中AO=OB.求证:AC=BD,AC ⊥BD;(3)将图2中的OB拉长为AO的k倍得到图3,求的值.25.(12分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围);(2)当BP=1时,求△EPQ与梯形ABCD重叠部分的面积;(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.26.(12分)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润=销售额﹣成本﹣广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为w外(元)(利润=销售额﹣成本﹣附加费).(1)当x=1000时,y=元/件,w内=元;(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是().。

数学一轮复习第4章三角函数解三角形第4讲正余弦定理及解三角形试题2理

数学一轮复习第4章三角函数解三角形第4讲正余弦定理及解三角形试题2理

第四章 三角函数、解三角形第四讲 正、余弦定理及解三角形1.[2021湖北省四地七校联考]在一幢20 m 高的楼顶测得对面一座塔吊顶的仰角为60°,塔基的俯角为45°,如图4—4—1,那么这座塔吊的高是( ) A .20(1+√33) mB 。

20(1+√3) mC .10(√6+√2) mD .20(√6+√2) m图4-4—12。

[2021南京市学情调研]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.若2b cos C ≤2a -c ,则角B 的取值范围是( ) A 。

(0,π3] B 。

(0,2π3] C 。

[π3,π) D 。

[2π3,π)3.[2021贵阳市四校第二次联考]已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,若b sin A =2c sin B ,cos B =14,b =3,则△ABC的面积为( ) A.9√15 B 。

9√1516C.3√1516D.9164。

[2020南昌三模]在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,若ca+b+ba+c =1,则下列说法不一定成立的是( )A .△ABC 可能为正三角形B .角A ,B ,C 成等差数列 C .角B 可能小于π3D .B +C 为定值5。

[2020大同市高三调研]在△ABC 中,B =π4,BC 边上的高等于13BC ,则si n∠BAC = 。

6。

[2021洛阳市统考]在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若√2c -ba=sin C tan A —cos C.(1)求A ;(2)若b =3√2,c =2,点D 为BC 的中点,求a 及AD 。

7.[2020长春市质检]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A ,a >b.(1)求证:△ABC 是直角三角形。

(2)若c =10,求△ABC 的周长的取值范围.8。

2010年河北省中考数学试卷(含解析)

2010年河北省中考数学试卷(含解析)

2010年河北省中考数学试卷-全面解析版一、选择题(共12小题,每小题2分,满分24分)1、(2010•河北)计算1﹣(﹣2)的结果是()A、3B、﹣3C、1D、﹣1考点:有理数的减法。

分析:本题是对有理数减法的考查,减去一个数等于加上这个数的相反数.解答:解:1﹣(﹣2)=1+2=3.故选A.点评:有理数的减法法则:减去一个数等于加上这个数的相反数.2、(2010•河北)如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A、60°B、70°C、80°D、90°考点:三角形的外角性质。

分析:根据三角形的一个外角等于与它不相邻的两个内角的和,知∠ACD=∠A+∠B,从而求出∠A的度数.解答:解:∵∠ACD=∠A+∠B,∴∠A=∠ACD﹣∠B=120°﹣40°=80°.故选C.点评:本题主要考查三角形外角的性质,解答的关键是沟通外角和内角的关系.3、(2010•河北)下列计算中,正确的是()A、20=0B、a+a=a2C、错误!未找到引用源。

D、(a3)2=a6考点:零指数幂;算术平方根;合并同类项;幂的乘方与积的乘方。

专题:计算题。

分析:根据零指数幂的意义,合并同类项的法则,算术平方根的意义及幂的乘方的性质作答.解答:解:A、根据零指数幂的意义知,20=1,故选项错误;B、根据合并同类项的法则,知a+a=2a,故选项错误;C、根据算术平方根的意义,知错误!未找到引用源。

=3,故选项错误;D、正确.故选D.点评:本题考查了零指数幂的意义,合并同类项的法则,算术平方根的意义及幂的乘方的性质等多个考点,需同学们熟练掌握.4、(2010•河北)如图,在▱ABCD中,AC平分∠DAB,AB=3,则▱ABCD 的周长为()A、6B、9C、12D、15考点:平行四边形的性质。

分析:根据在▱ABCD中,AC平分∠DAB可以得到AB=BC,所以▱ABCD 为菱形,周长便不难求出.解答:解:在▱ABCD中,AD∥BC,∴∠DAC=∠ACB,∵AC平分∠DAB,∴∠DAC=∠BAC,∴∠ACB=∠BAC,∴AB=BC,∴▱ABCD是菱形,▱ABCD的周长为3×4=12.故选C.点评:根据角平分线和平行四边形的性质证出平行四边形是菱形是解本题的关键.5、(2010•河北)把不等式﹣2x<4的解集表示在数轴上,正确的是()A、B、C、D、考点:在数轴上表示不等式的解集。

“三角函数”中考试题分类汇编(含答案)

“三角函数”中考试题分类汇编(含答案)

1、锐角三角函数要点一:锐角三角函数的基本概念 一、选择题1.(2009·漳州中考)三角形在方格纸中的位置如图所示,则tan α的值是( )A .35B .43 C .34 D .452.(2008·威海中考)在△ABC 中,∠C =90°,tan A =13,则sin B =( )A .1010 B .23C .34D .310103.(2009·齐齐哈尔中考)如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32,2AC =,则sin B 的值是( )A .23 B .32 C .34 D .434.(2009·湖州中考)如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是( ) A .3sin A =B .1tan 2A = C .3cosB = D .tan 3B =5.(2008·温州中考)如图,在Rt ABC △中,CD 是斜边AB 上的中线,已知2CD =,3AC =,则sin B 的值是( )A .23B .32C .34D .436.(2007·泰安中考)如图,在ABC △中,90ACB ∠=,CD AB ⊥于D ,若23AC =,32AB =,则tan BCD ∠的值为( )(A )2 (B )22 (C )63(D )33二、填空题7.(2009·梧州中考)在△ABC 中,∠C =90°, BC =6 cm ,53sin =A ,则AB 的长是 cm . .(2009·孝感中考)如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .9.(2009·庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5A =,则这个菱形ACBD的面积= cm 2.答案:60 三、解答题10.(2009·河北中考) 如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin ∠DOE =1213.(1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降, 则经过多长时间才能将水排干? 【11.(2009·綦江中考)如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE .(1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值.12.(2008·宁夏中考)如图,在△ABC 中,∠C =90°,sin A =54,AB =15,求△ABC 的周长和tan A 的值.DABCEFOEC D14.(2007·芜湖中考)如图,在△ABC 中,AD 是BC 上的高,tan cos B DAC =∠,(1) 求证:AC=BD ; (2)若12sin 13C =,BC =12,求AD 的长.要点二、特殊角的三角函数值 一、选择题1.(2009·钦州中考)sin30°的值为( )A .32B .22C .12D .33答案:C2.(2009·长春中考).菱形OABC 在平面直角坐标系中的位置如图所示,452AOC OC ∠==°,,则点B 的坐标为( )A .2,B .2),C .211),D .(121),答案:C3.(2009·定西中考)某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( ) A .8米 B .3 C 83米 D 43米4.(2008·宿迁中考)已知α为锐角,且23)10sin(=︒-α,则α等于( ) A.︒50 B.︒60 C.︒70 D.︒805.(2008·毕节中考) A (cos60°,-tan30°)关于原点对称的点A 1的坐标是( )A .1323⎛⎫- ⎪ ⎪⎝⎭,B .3323⎛⎫- ⎪ ⎪⎝⎭,C .1323⎛⎫-- ⎪ ⎪⎝⎭, D .1322⎛⎫- ⎪ ⎪⎝⎭, 6.(2007·襄樊中考)计算:2cos 45tan 60cos30+等于( )(A )1 (B )2 (C )2 (D )3 二、填空题7. (2009·荆门中考)104cos30sin 60(2)(20092008)-︒︒+---=______.答案:238.(2009·百色中考)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).答案:439.(2008·江西中考)计算:(1)1sin 60cos302-= . 答案:1410.(2007·济宁中考)计算sin 60tan 45cos30︒-︒︒的值是 。

初三数学解直角三角形试题答案及解析

初三数学解直角三角形试题答案及解析

初三数学解直角三角形试题答案及解析1.一测量爱好者,在海边测量位于正东方向的小岛高度AC,如图所示,他先在点B测得山顶点A的仰角为30°,然后向正东方向前行62米,到达D点,在测得山顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求小岛高度AC(结果精确的1米,参考数值:,)【答案】53米.【解析】首先利用三角形的外角的性质求得∠BAD的度数,得到AD的长度,然后在直角△ADC 中,利用三角函数即可求解.试题解析:∵∠ADC=∠B+∠BAD,∴∠BAD=∠ADC-∠B=60°-30°=30°,∴∠B=∠BAD,∴AD=BD=62(米).在直角△ACD中,AC=AD•sin∠ADC=62×=31≈31×1.7=52.7≈53(米).答:小岛的高度约为53米.【考点】解直角三角形的应用-仰角俯角问题.2.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.(1)求证:△ABC∽△BCD;(2)求x的值;(3)求cos36°-cos72°的值.【答案】(1)证明见解析;(2);(3).【解析】(1)由等腰三角形ABC中,顶角的度数求出两底角度数,再由BD为角平分线求出∠DBC的度数,得到∠DBC=∠A,再由∠C为公共角,利用两对角相等的三角形相似得到三角形ABC与三角形BCD相似;(2)根据(1)结论得到AD=BD=BC,根据AD+DC表示出AC,由(1)两三角形相似得比例求出x的值即可;(3)过B作BE垂直于AC,交AC于点E,在直角三角形ABE和直角三角形BCE中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果.试题解析:(1)∵等腰△ABC中,AB=AC,∠BAC=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=36°,∵∠CBD=∠A=36°,∠C=∠C,∴△ABC∽△BCD;(2)∵∠A=∠ABD=36°,∴AD=BD,∵BD=BC,∴AD=BD=CD=1,设CD=x,则有AB=AC=x+1,∵△ABC∽△BCD,∴,即,整理得:x2+x-1=0,解得:x1=,x2=(负值,舍去),则x=;(3)过B作BE⊥AC,交AC于点E,∵BD=CD,∴E为CD中点,即DE=CE=,在Rt△ABE中,cosA=cos36°=,在Rt△BCE中,cosC=cos72°=,则cos36°-cos72°=-=.【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.3.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,AD=3,cosB=3/5,则AC等于()A.4B.5C.6D.7【答案】B.【解析】∵∠BAC=90°,AD⊥BC于D,∴∠BAD+∠CAD=90°,∠BAD+∠B=90°,∴∠CAD=∠B,∴cos∠CAD=cosB=,在直角△ACD中,∵∠ADC=90°,AD=3,∴cos∠CAD=,∴AC=5.故选B.【考点】解直角三角形.4.在△ACB中,∠C=90°,AB=10,,,.则BC的长为()A.6B.7.5C.8D.12.5【答案】A.【解析】∵∠C=90°,∴.又∵AB=10,∴.故选A.【考点】1.解直角三角形;2.锐角三角函数定义.5.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)【答案】(1)10米;(2)19米.【解析】(1)过点A作AH⊥PQ,垂足为点H,利用斜坡AP的坡度为1:2.4,得出AH,PH,AH的关系求出即可;(2)利用矩形性质求出设BC=x,则x+10=24+DH,再利用tan76°=,求出即可.试题解析::(1)过点A作AH⊥PQ,垂足为点H.∵斜坡AP的坡度为1:2.4,∴,设AH=5k,则PH=12k,由勾股定理,得AP=13k.∴13k=26.解得k=2.∴AH=10.答:坡顶A到地面PQ的距离为10米.(2)延长BC交PQ于点D.∵BC⊥AC,AC∥PQ,∴BD⊥PQ.∴四边形AHDC是矩形,CD=AH=10,AC=DH.∵∠BPD=45°,∴PD=BD.设BC=x,则x+10=24+DH.∴AC=DH=x-14.在Rt△ABC中,tan76°=,即,解得x=,即x≈19,答:古塔BC的高度约为19米.【考点】1.解直角三角形的应用-坡度坡角问题;2.解直角三角形的应用-仰角俯角问题.6.超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin 75°≈0.965 9,cos 75°≈0.258 8,tan 75°≈3.732,≈1.732,60千米/小时≈16.7米/秒)【答案】(1)112(米) (2)此车没有超过限制速度【解析】解:(1)在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC·tan ∠BAC=30×tan 75°≈30×3.732≈112(米).(2)∵此车速度=112÷8=14(米/秒)<16.7(米/秒)=60(千米/小时)∴此车没有超过限制速度.7.在△ABC中,若∠A、∠B满足|cos A-|+=0,则∠C=________.【答案】75°【解析】∵|cos A-|+=0,∴cos A-=0,sin B-=0,∴cos A=,sin B=,∴∠A=60°,∠B=45°,则∠C=180°-∠A-∠B=180°-60°-45°=75°.8.在△ABC中,∠C=90°,,则().A.B.C.D.【答案】D.【解析】由sin A=,设∠A的对边是3k,则斜边是5k,∠A的邻边是4k.再根据正切值的定义,得tanA=.故选D.【考点】锐角三角函数.9.如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数约为cm.(结果精确到0.1cm,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】2.7【解析】过点B作BD⊥OA于D,过点C作CE⊥OA于E.在△BOD中,∠BDO=90°,∠DOB=45°,∴BD=OD=2cm,∴CE=BD=2cm.在△COE中,∠CEO=90°,∠COE=37°,∵tan37°=≈0.75,∴OE≈2.7cm.∴OC与尺上沿的交点C在尺上的读数约为2.7 cm.10.如图,一段河坝的横截面为梯形ABCD,试根据图中数据,求出坝底宽AD.(i=CE∶ED,单位:m)【答案】(7.5+4)m【解析】解:作BF⊥AD于点F.则BF=CE=4m,在直角△ABF中,AF===3m,在直角△CED中,根据i=,则ED===4m.则AD=AF+EF+ED=3+4.5+4=(7.5+4)m.11.如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号)【答案】(5+5-5)千米【解析】解:过C作CD⊥AB于D,在Rt△ACD中,∵AC=10,∠A=30°,∴DC=ACsin30°=5,AD=ACcos30°=5,在Rt△BCD中,∵∠B=45°,∴BD=CD=5,BC=5,则用AC+BC-(AD+BD)=10+5-(5+5)=5+5-5(千米).答:汽车从A地到B地比原来少走(5+5-5)千米.12.在Rt△ABC中,若∠C=90°,cosA=,则sinA的值为()A.B.C.D.【答案】A.【解析】先根据特殊角的三角函数值求出∠A的值,再求出sinA的值即可.∵Rt△ABC中,∠C=90°,∴∠A是锐角,∵cosA==,∴设AB=25x,BC=7x,由勾股定理得:AC=24x,∴sinA=.故选A.考点:同角三角函数的关系.13.如图,在△中,,,则△的面积是()A.B.12C.14D.21【答案】A【解析】如图,作因为,所以.由勾股定理得.又,所以所以所以所以14.计算下列各题:(1);(2).【答案】(1)2 (2)【解析】解:(1)(2)15.在Rt△ABC中,∠C=90°,sinA=,则cosB的值为()A.B.C.D.【答案】C.【解析】在Rt△ABC中,∠C=90°,sinA=,设BC=3x,则AB=5x,∴AC=4x.∴cosB=.故选C.考点: 互余两角三角函数的关系.16.计算:【答案】-2.【解析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简、负整数指数幂以及绝对值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:考点: 实数的混合运算.17.若(为锐角),则=【答案】1.【解析】因为所以得,代入可得值为1【考点】正切和正、余弦函数的关系.18.如图所示,直角三角形纸片的两直角边长分别为6,8,现将如图那样折叠,使点与点重合,折痕为,则的值是________【答案】.【解析】折叠后形成的图形相互全等,利用三角函数的定义可求出.根据题意,BE=AE.设CE=x,则BE=AE=8-x.在Rt△BCE中,根据勾股定理得:BE2=BC2+CE2,即(8-x)2=62+x2解得x=,∴tan∠CBE==考点:(1)锐角三角函数的定义;(2)勾股定理;(3)翻折变换(折叠问题).19.(1)一个人由山底爬到山顶,需先爬450的山坡200m,再爬300的山坡300m,求山的高度(结果可保留根号)。

初中三角函数练习试题和答案解析

初中三角函数练习试题和答案解析
AB A
C
D
C
E
EH学习指导参考
B
F D
WORD格式整理版
0.7344九年级( 1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD 3m,
标杆与旗杆的水平距离BD 15m,人的眼睛与地面的高度EF 1。6m,人与标杆CD的
水平距离DF 2m,求旗杆AB的高度.
0.7345如图3,沿AC方向开山修路,为了加快施工速度,要在小山的另一边同时施工。从
(1)火箭到达B点时距离发射点有多远(精确到0.01km)?
(2)火箭从A点到B点的平均速度是多少(精确到0.1km/s )?
19、经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.
如图①,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A
点开始沿岸边向正东方向前进100米到达点C处,测得ACB 68.
tan 40 ≈ 0.8391,3 ≈ 1。732.
P

Q
C
30
B
40
A
18、如图10,一枚运载火箭从地面O处发射,当火箭到达A点时,从地面C处的雷
学习指导参考
B
A
WORD格式整理版
达站测得AC的距离是6km,仰角是43.1s后,火箭到达B点,此时测得BC的距离是
6.13km,仰角为45。54,解答下列问题:
7.已知Rt△ABC中,∠ C=90° ,AC=2,BC=3,那么下列各式中,正确的是()
2 2 2 3
A.sinB=
3B.cosB=3C.tanB=3D.tanB=2
8.点( -sin60 °,cos60 °)关于y轴对称的点的坐标是()

中考数学 考点系统复习 第四章 三角形 第六节 锐角三角函数与解直角三角形的实际应用


模型三:拥抱型
【模型突破】如图①,BF+FC+CE=BE;如图②,BC+CE=BE;如图③, AB=GE,AG=BE,BC+CE=AG,DG+AB=DE.
7.(2015·昆明第 20 题 6 分)如图,两幢建筑物 AB 和 CD,AB⊥BD,CD ⊥BD,AB=15 m,CD=20 m,AB 和 CD 之间有一景观池,小南在 A 点测得 池中喷泉处 E 点的俯角为 42°,在点 C 测得 E 点的俯角为 45°(点 B,E, D 在同一直线上),求两幢建筑物之间的距离 BD.(结果精确到 0.1 m,参 考数据:sin 42°≈0.67,cos 42°≈0.74,tan 42°≈0.90)
主义教育基地后,先从基地门口 A 处向正南方向走 300 米到达革命纪念 碑 B 处,再从 B 处向正东方向走到党史纪念馆 C 处,然后从 C 处向北偏 西 37°方向走 200 米到达人民英雄雕塑 D 处,最后从 D 处回到 A 处.已 知人民英雄雕塑在基地门口的南偏东 65°方向,求革命纪念碑与党史纪 念馆之间的距离(cos 37° ≈0.80,tan 37°≈0.75,sin 65°≈0.91,cos 65°≈0.42,tan 65° ≈2.14)
模型二:子母型
【模型突破】BC 为公共边,如图①,AD+DC=AC; 如图②,DC-BC=DB.
【模型演变】
【模型突破】如图③,DF=EC,DE=FC,BF+DE=BC, AE+DF=AC;如图④,AF=CE,AC=FE,BC+AF=BE.
6.(2016·昆明第 20 题 8 分)如图,大楼 AB 右侧有 一障碍物,在障碍物的旁边有一幢小楼 DE,在小楼 的顶端 D 处测得障碍物边缘点 C 的俯角为 30°,测 得大楼顶端 A 的仰角为 45°(点 B,C,E 在同一水平 直线上),已知 AB=80 m,DE=10 m,求障碍物 B,C 两点间的距离.(结果精确到 0.1 m.参考数据: 2≈1.414, 3≈1.732)

2010年部分省市中考数学试题分类汇编(共28专题)28.动态几何

(2010哈尔滨)1.如图,在△ABC中,∠ACB=90°,AC=BC=10,在△DCE中,∠DCE=90°,DC=EC=6,点D在线段AC上,点E在线段BC的延长线上.将△DCE绕点C旋转60°得到△D′CE′(点D的对应点为点D′,点E的对应点为点E′),连接AD′、BE′,过点C作CN⊥BE′,垂足为N,直线CN交线段AD′于点M,则MN的长为.(2010哈尔滨)2.如图,在平面直角坐标系中,点O是坐标原点,四边形AOCB是梯形,AB∥OC,点A的坐标为(0,8),点C的坐标为(10,0),OB=OC.(1)求点B的坐标;(2)点P从C点出发,沿线段CO以5个单位/秒的速度向终点O匀速运动,过点P作PH⊥OB,垂足为H,设△HBP的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(直接写出自变量t的取值范围);(3)在(2)的条件下,过点P作PM∥CB交线段AB于点M,过点M作MR⊥OC,垂足为R,线段MR分别交直线PH、OB于点E、G,点F为线段PM的中点,连接EF,当t为何值时,25EGEF=?(2010台州市)22.类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为3+(2-)=1.若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移a个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移b个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为}{}{}{dbcadcba++=+,,,.解决问题:(1)计算:{3,1}+{1,2};{1,2}+{3,1}.(2)①动点P从坐标原点O出发,先按照“平移量”{3,1}平移到A,再按照“平移量”{1,2}平移到B;若先把动点P按照“平移量”{1,2}平移到C,再按照“平移量”{3,1}平移,最后的位置还是点B吗? 在图1中画出四边形OABC.②证明四边形OABC是平行四边形.(3)如图2,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头P航行到码头Q(5,5),最后回到出发点O. 请用“平移量”加法算式表示它的航行过程.y Q(5, 5)y解:(1){3,1}+{1,2}={4,3}. ……………………………………………2分{1,2}+{3,1}={4,3}. …………………………………………………………………2分(2)①画图 …………………………………………………2分最后的位置仍是B .……………………………………1分② 证明:由①知,A (3,1),B(4,3),C (1,2) ∴OC=AB =2221+=5,OA=BC =2213+=10, ∴四边形OABC 是平行四边形.…………………………3分(3){2,3}+{3,2}+{-5,-5}={0, 0}.……………………2分(2010河南)19.(9分)如图,在梯形ABCD 中,AD //BC ,E 是BC 的中点,AD =5,BC =12,CD =24,∠C =45°,点P 是BC 边上一动点,设PB 的长为x .(1)当x 的值为____________时,以点P 、A 、D 、E 为顶点的四边形为直角梯形;(2)当x 的值为____________时,以点P 、A 、D 、E 为顶点的四边形为平行四边形;;(3)点P 在BC 边上运动的过程中,以P 、A 、D 、E 为顶点的四边形能否构成菱形?试说明理由.P E A B C D(1)3或8(2) 1或11(3)由(2)可知,当BP=11时,以点P 、A 、D 、E 为顶点的四边形是平行四边形∴EP=AD=5 过D 作DF ⊥BC 于F ,则DF=FC=4,∴FP=3 ∴ DP=5∴EP=DP 故此时□PDAE 是菱形即以点P 、A 、D 、E 为顶点的四边形能构成菱形。

2010河北省中考数学试卷及答案

2 010 年 河 北 省 初 中 毕 业 生 升 学 文 化 课 考 试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为 120 分,考试时间为 120 分钟.卷Ⅰ(选择题,共 24 分)注意事项:1.答卷 I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上;考试 结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑;答在试 卷上无效.一、选择题(本大题共 12 个小题,每小题 2 分,共 24 分.在每小题给出的四个选项中, 只有一项是符合题目要求的)1.计算 3×( - 2) 的结果是A .5B . - 5C .6D . - 62.如图 1, 在 △ ABC 中 , D 是 BC 延 长 线 上 一 点 , ∠B = 40°,∠ACD = 120°,则∠A 等于 A .60° B .70°C .80°D .90° 3.下列计算中,正确的是A40°120°BCD 图 1A . 2 0 = 0B . a + a = a 2C 9= ±D . (a 3 )2= a 64.如图 2,在□ABCD 中,AC 平分∠DAB ,AB = 3, D则□ABCD 的周长为 A .6 B .9 ACC .12D .155.把不等式 -2 x < 4 的解集表示在数轴上,正确的是B 图 2-22AB-C D 6.如图 3,在 5×5 正方形网格中,一条圆弧经过 A ,B ,C 三点, 的圆心是A .点 PB .点 QC .点 RD .点 M图 3a 2b 27.化简 - 的结果是 a - b A . a 2 - b 2a - bB . a + bC . a - bD .18.小悦买书需用 48 元钱,付款时恰好用了 1 元和 5 元的纸币共 12 张.设所用的 1 元纸币 为 x 张,根据题意,下面所列方程正确的是A . x + 5(12 - x ) = 48C . x + 12(x - 5) = 48B . x + 5(x - 12) = 48 D . 5x + (12 - x ) = 48 9.一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为 15 km /h ,水流速 度为 5 km /h .轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航 行返回到甲地.设轮船从甲地出发后所用时间为 t (h ),航行的路程为 s (km ),则 s 与t 的函数图象大致是sOA B CD10.如图 4,两个正六边形的边长均为 1,其中一个正六边形的一 边恰在另一个正六边形的对角线上,则这个图形(阴影部分) 外轮廓线的周长是 A .7 B .8 C .9 D .1011.如图 5,已知抛物线 y = x 2+ bx + c 的对称轴为 x = 2 ,点 A ,B 均在抛物线上 ,且 AB 与 x 轴平行,其中点 A 的坐标为 (0,3),则点 B 的坐标为 A .(2,3) B .(3,2)C .(3,3)D .(4,3)12.将正 方 体 骰 子( 相 对 面 上 的 点 数 分 别 为 1 和 6、 2 和 5、3 和 4)放置于水平桌面上,如图 6-1.在图 6-2 中,将骰子 向右翻滚 90°,然后在桌面上按逆时针方向旋转 90°,则完成 一次变换.若骰子的初始位置为图 6-1 所示的状态,那么按 上述规则连续完成 10 次变换后,骰子朝上一面的点数是图 4图 6-1 图 6-2A .6B .5C .3D .2C年河北省初中毕业生升学文化课考试数 学 试 卷卷 II (非选择题,共 96 分)注意事项:1.答卷 II 前,将密封线左侧的项目填写清楚.2.答卷 II 时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.6 个小题,每小题 3 分,共 18 分.把答案13. - 的相反数是 .14.如图 7,矩形 ABCD 的顶点 A ,B在数轴上, CD = 6,点 A对应的数为 - 1 ,则点 B 所对应的数为 .15.在猜一商品价格的游戏中,参与者事先不知道该商品的价 格,主持人要求他从图 8 的四张卡片中任意拿走一张,使 剩下的卡片从左到右连成一个三位数,该数就是他猜的价 格.若商品的价格是 360 元,那么他一次就能猜中的概率 是 . 16.已知 x = 1 是一元二次方程 x 2 + mx + n = 0 的一个根,则 m 2 + 2mn + n 2 的值为 .17.某盏路灯照射的空间可以看成如图 9 所示的圆锥,它的高AO = 8 米,母线 AB 与底面半径 OB 的夹角为 ,tan = 4,3 则圆锥的底面积是 平方米(结果保留 π). 18.把三张大小相同的正方形卡片 A ,B ,C 叠放在一个底面为 正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若 按图 10-1 摆放时,阴影部分的面积为 S 1;若按图 10-2 摆 放时,阴影部分的面积为 S 2,则 S 1 S 2(填“>”、 图 7图 8图 9“<”或“=”). 10-三、解答题(本大题共 8 个小题,共 78 分.解答应写出文字说明、证明过程或演算步骤)8 分) 解方程: 1=2.x - 1x + 18 分)如图 11-1,正方形 ABCD 是一个 6 × 6 网格电子屏的示意图,其中每个小正方形的边长 为 1.位于 AD 中点处的光点 P 按图 11-2 的程序移动.(1)请在图 11-1 中画出光点 P 经过的路径; (2)求光点 P 经过的路径总长(结果保留 π).APDB图 11-1图 11-29 分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后, 发现学生成绩分别为 7分、8 分、9 分、10 分(满分为 10 分).依据统计数据绘制了如下尚 不完整的统计图表. 甲校成绩统计表 乙校成绩扇形统计图10 分72°(1)在图 12-1 中,“7 分”所在扇形的圆心角 等于.°(2)请你将图 12-2 的统计图补充完整.(3)经计算,乙校的平均分是 8.3 分,中位数 是 8 分,请写出甲校的平均分、中位数; 并从平均分和中位数的角度分析哪个学校成绩较好.(4)如果该教育局要组织 8 人的代表队参加市 级团体赛,为便于管理,决定从这两所学 校中的一所挑选参赛选手,请你分析,应乙校成绩条形统计图 选哪所学校?图 12-2x9 分)如图 13,在直角坐标系中,矩形 OABC 的顶点 O 与坐标原点重合,顶点 A ,C 分别在 坐标轴上,顶点 B 的坐标为(4,2).过点 D (0,3)和 E (6,0)的直线分别与 AB ,BC 交于点 M ,N .(1)求直线 DE 的解析式和点 M 的坐标;(2)若反比例函数 y = m(x >0)的图象经过点 M ,求该反比例函数的解析式,并通x 过计算判断点 N 是否在该函数的图象上;(3)若反比例函数 y = m (x >0)的图象与△MNB 有公共点,请直.接.写出 m 的取值范围.AO10 分)观察思考某种在同一平面进行传动的机械装置如图 14-1,图 14-2 是它的示意图.其工作原理是:滑块 Q 在平直滑道 l 上可以 左右滑动,在 Q 滑动的过程中,连杆 PQ 也随之运动,并且 PQ 带动连杆 OP 绕固定点 O 摆动.在摆动过程中,两连杆的 接点 P 在以 OP 为半径的⊙O 上运动.数学兴趣小组为进一步研 究其中所蕴含的数学知识,过点 O 作 OH ⊥l 于点 H ,并测得 OH = 4 分米,PQ = 3 分米,OP = 2 分米.解决问题(1)点 Q 与点 O 间的最小距离是 分米;点 Q 与点 O 间的最大距离是 分米; l点 Q 在 l 上滑到最左端的位置与滑到最右端位置间 的距离是 分米. (2)如图 14-3,小明同学说:“当点 Q 滑动到点 H 的位置时,PQ 与⊙O 是相切的.”你认为他的判断对吗? 为什么? (3)①小丽同学发现:“当点 P 运动到 O H 上时,点 P 到 l的距离最小.”事实上,还存在着点 P 到 l 距离最大 的位置,此时,点 P 到 l 的距离是 分米; ②当 OP 绕点 O 左右摆动时,所扫过的区域为扇形, 积最大时圆心角的度数.l 滑道滑块连杆图 14-1Q图 14-2图 14-310分)在图15-1至图15-3中,直线MN与线段AB相交于点O,∠1=∠2=45°.(1)如图15-1,若AO=OB,请写出AO与BD的数量关系和位置关系;(2)将图15-1中的MN绕点O顺时针旋转得到图15-2,其中AO=OB.求证:AC=BD,AC⊥BD;(3)将图15-2中的OB拉长为AO的k倍得到图15-3,求BD的值.MD2OA 1 BN图15-1DMAC2OA B1 CN 图15-2DM2OA B1 CN 图15-312 分)如图 16,在直角梯形 ABCD 中,AD ∥BC , ∠ B = 90︒ ,AD = 6,BC = 8, AB = 3 3 ,点 M 是 BC 的中点.点 P 从点 M 出发沿 MB 以每秒 1 个单位长的速度向点 B 匀速运动,到 达点 B 后立刻以原速度沿 BM 返回;点 Q 从点 M 出发以每秒 1 个单位长的速度在射线 MC上匀速运动.在点 P ,Q 的运动过程中,以 PQ 为边作等边三角形 EPQ ,使它与梯形 ABCD在射线 BC 的同侧.点 P ,Q 同时出发,当点 P 返回到点 M 时停止运动,点 Q 也随之停止. 设点 P ,Q 运动的时间是 t 秒(t >0).(1)设 PQ 的长为 y ,在点 P 从点 M 向点 B 运动的过程中,写出 y 与 t 之间的函数关 系式(不必写 t的取值范围).(2)当 BP = 1 时,求△EPQ 与梯形 ABCD 重叠部分的面积.(3)随着时间 t 的变化,线段 AD 会有一部分被△EPQ 覆盖,被覆盖线段的长度在某 个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直.接.写出 t 的取值范围;若不能,请说明理由.ABPQ 图 16AB(备用图)12 分)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售. 若只在国内销售,销售价格 y(元/件)与月销量 x (件)的函数关系式为 y = - 1x +150,100 成本为 20 元/件,无论销 售多少,每月 还需支出 广 告费 62500 元,设月利润为 w 内(元)(利润 = 销售额-成本-广告费). 若只在国外销售,销售价格为 150 元/件,受各种不确定因素影响,成本为 a 元/件(a 为常数,10≤a ≤40),当月销量为 x (件)时,每月还需缴纳 1 x 2元的附加费,设月利润为100 w 外(元)(利润 = 销售额-成本-附加费).(1)当 x = 1000 时,y = 元/件,w 内 = 元;(2)分别求出 w 内,w 外与 x 间的函数关系式(不必写 x 的取值范围);(3)当 x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国 内销售月利润的最大值相同,求 a 的值;(4)如果某月要将 5000 件产品全部销售完,请你通过分析帮公司决策,选择在国内 还是在国外销售才能使所获月利润较大?b 4ac - b 2参考公式:抛物线 y = ax2+ bx + c (a ≠ 0) 的顶点坐标是 (- , ) .2a 4a2 010 年 河 北 省初 中 毕 业 生 升学 文化 课 考 试数学试题参考答案一、选择题二、填空题13. 514.515.116.1 17.36 π18. =4三、解答题19.解: x + 1 = 2(x - 1) ,x = 3 .经检验知, x = 3 是原方程的解.20.解: AB (1)如图 1; 【注:若学生作图没用圆规,所画路线光滑且基本准 确即给】 (2)∵ 4 ⨯ 90π ⨯ 3 = 6π , 180 图 1∴点 P 经过的路径总长为 6 π. 21.解:(1)144;乙校成绩条形统计图 人数 8 8 6(2)如图 2; )甲校的平均分为 8.3 分,中位数为 7 分; 由于两校平均分相等,乙校成绩的中位数大于甲 校的中位数,所以从平均分和中位数角度上判断, 42 名学生参加市级口语团体赛,甲校得 07 分 图 2数 10 分的有 8 人,而乙校得 10 分的只有 5 人,所 以应选甲校. 22.解:(1)设直线 D E 的解析式为 y = kx + b ,⎧∵点 D ,E 的坐标为(0,3)、(6,0),∴ ⎨3 = b ,⎩0 = 6k + b .⎧1 解得 ⎪k = - , ∴ y = - 1x + 3 .⎨ 2⎩⎪ b = 3.2∵ 点 M 在 A B 边上,B (4,2),而四边形 O ABC 是矩形,∴ 点 M 的纵坐标为 2.又 ∵ 点 M 在直线 y = - 1 x + 3 上,2 ∴ 2 = - 1x + 3 .∴ x = 2.∴ M (2,2).2 (2)∵ y = m (x >0)经过点 M (2,2),∴ x m = 4 .∴ y = 4.x 又 ∵ 点 N 在 B C 边上,B (4,2),∴点 N 的横坐标为 4.∵ 点 N 在直线 y = - 1 x + 3 上, ∴ 2 y = 1 .∴ N (4,1). ∵ 当 x = 4 时,y = 4 = 1,∴点 N 在函数 x y = 4x的图象上. (3)4≤ m ≤8.23.解:(1)456;(2)不对.∵OP = 2,PQ = 3,OQ = 4,且 42≠32 + 22,即 O Q 2≠PQ 2 + OP 2, ∴OP 与 P Q 不垂直.∴PQ 与⊙O 不相切. (3)① 3;②由①知,在⊙O 上存在点 P , P ' 到 l 的距离为 3,此时,OP 将不能再向下 转动,如图 3.OP 在绕点 O 左右摆动过程中所扫过的最大扇形就是 P ' OP .Q 'HQlP 'DP O24.解:(1)AO = BD ,AO ⊥BD ;连结 P ' P ,交 O H 于点 D .∵PQ , P ' Q ' 均与 l 垂直,且 P Q = P ' Q ' = 3 ,∴四边形 P Q Q ' P ' 是矩形.∴OH ⊥P P ' ,PD = P ' D . 由 O P = 2,OD = OH - HD = 1,得∠DOP = 60°. ∴∠PO P ' = 120°.∴ 所求最大圆心角的度数为 120°.(2)证明:如图 4,过点 B 作 B E ∥CA 交 D O 于 E ,∴∠ACO = ∠BEO .A 1 N又∵AO = OB ,∠AOC = ∠BOE ,∴△AOC ≌ △BOE .∴AC = BE .又∵∠1 = 45°, ∴∠ACO = ∠BEO = 135°.∴∠DEB = 45°.=.∴ BDA∵∠2 = 45°,∴BE = BD ,∠EBD = 90°.∴AC = BD . 延长 A C 交 D B 的延长线于 F ,如图 4.∵BE ∥AC ,∴∠AFD = 90°.∴AC ⊥BD .(3)如图 5,过点 B 作 B E ∥CA 交 D O 于 E ,∴∠BEO = ∠ACO .又∵∠BOE = ∠AOC ,M BOE ∽ △AOC .∴ BE BOACAOA N又∵OB = kAO , 由(2)的方法易得 BE = BD .= k . AC25.解:(1)y = 2t ;(2)当 B P = 1 时,有两种情形:①如图 6,若点 P 从点 M 向点 B 运动,有 MB = 1BC = 4,MP= MQ = 3, 2A∴PQ = 6.连接 E M ,∵△EPQ 是等边三角形,∴EM ⊥PQ .∴ E M = 3 3 .33 ,∴点 E 在 A D 上.B P图 6∴△EPQ 与梯形 A BCD 重叠部分就是△EPQ ,其面积为9 3 .②若点 P 从点 B 向点 M 运动,由题意得 t = 5 .PQ = BM + M Q - BP = 8,PC = 7.设 P E 与 A D 交于点 F ,QE 与 A D 或 A D 的HF 延长线交于点G ,过点 P 作 PH ⊥AD 于点 H ,则3 ,AH = 1.在R t △HPF 中,∠HPF = 30°,,PF = 6.∴FG = FE = 2.又∵FD = 2,B P∴点 G 与点 D 重合,如图 7.此时△EPQ 与梯形 A BCD图 7(3)能.4≤t ≤5.26.解:(1)14057500;的重叠部分就是梯形 F PCG ,其面积为273 . 21 (2)w 内 = x (y -20)- 62500 =1- x 2+130 x - 62500 , 100w 外 =- x 2+(150 - a )x . 100(3)当 x = - 130= 6500 时,w 2 ⨯ (- 1 ) 100 内最大;分由题意得0 - (150 - a )24 ⨯ (- 1 ) ⨯ (- 62500) - 1302= 100 ,4 ⨯ (- 1 )4 ⨯ (- 1)100 100解得 a 1 = 30,a 2 = 270(不合题意,舍去).所以 a = 30.(4)当 x = 5000 时,w 内 = 337500, w 外 = -5000a + 500000 . 若 w 内 < w 外,则 a<32.5;若 w 内 = w 外,则 a = 32.5; 若 w 内 > w 外,则 a >32.5.所以,当 10≤ a <32.5 时,选择在国外销售; 当 a = 32.5 时,在国外和国内销售都一样;当 32.5< a ≤40 时,选择在国内销售.。

小学数学中的三角函数与解三角形

小学数学中的三角函数与解三角形三角函数是数学中一个重要的概念,也是解决三角形相关问题的基础知识。

在小学数学中,介绍三角函数和解三角形的原理和方法可以帮助学生更深入地理解和应用数学知识。

本文将从基本概念开始,逐步介绍三角函数和解三角形的相关内容。

1. 三角函数的基本概念三角函数是以角为自变量、以某一边的比值为函数值的函数。

在小学数学中,我们主要学习正弦、余弦和正切三种基本的三角函数。

其中,正弦函数的定义为:在一个任意角的单位圆上,该角的终边上某一点的纵坐标与半径之比;余弦函数的定义为:该角的终边上某一点的横坐标与半径之比;正切函数的定义为:正弦函数值与余弦函数值的比值。

2. 三角函数的性质三角函数有许多重要的性质,其中最基本的性质是正弦函数和余弦函数在单位圆上的坐标关系。

根据单位圆的定义和三角函数的定义,可以得出正弦函数和余弦函数的周期性、奇偶性和范围等性质。

此外,正切函数的性质也是我们需要关注的内容,例如正切函数的周期为180度(或π弧度)。

3. 解三角形的基本原理解三角形是根据已知条件求解三角形的各个角度和边长的过程。

在小学数学中,常见的解三角形方法有正弦定理和余弦定理。

正弦定理适用于已知一个角度和与之对应的两条边长,可以求解其他边长和角度;余弦定理适用于已知三条边长,可以求解三个角度。

这两个定理是解决三角形相关问题的重要工具。

4. 解三角形的实例分析通过分析一个具体的解三角形实例,可以更好地理解三角函数和解三角形的应用。

假设已知三角形的两边长分别为5厘米和7厘米,夹角为60度。

我们可以通过正弦定理和余弦定理求解这个三角形的其他角度和边长。

首先,根据正弦定理可以求解夹角对应的边长:sin 60° = x / 5,解得 x = 4.33 厘米。

接下来,通过余弦定理可以求解剩余边长:c² = a² + b² - 2ab cos 60°,代入已知条件,解得 c = 8.66 厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A Ca α四.三角函数与解三角形一.选择题1.如图,在等腰梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD 于点O ,AE ⊥BC ,DF ⊥BC ,垂足分别为E 、F , AD =4,BC =8,则AE +EF 等于()A .9B .10C .11D .122.如图,一个小球由地面沿着坡度i =1∶2的坡面向上前进了10 m ,此时小球距离地面的高度为( ) A .5 m B .52m C .54m D .310m3.在△ABC 中,∠C =90°,sinA =45,则tanB =( )A .43B .34C .35D .454.如图所示,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,sin A=53,则下列结论正确的个数有①cm DE 3= ②cm BE 1= ③菱形的面积为215cm ④cm BD 102= A . 1个 B . 2个 C . 3个 D . 4个第11题图5. 如图,⊙O 的直径AB =4,点C 在⊙O 上,∠ABC =30°,则AC 的长是A .1B .C .D .26.在平面直角坐标系xOy 中,已知点P (2,2),点Q 在y 轴上,△PQO 是等腰三角形,则满足条件的点Q 共有 A .5个B .4个C .3个D .2个7.如图,为了测量河两岸A 、B 两点的距离,在与AB 垂直的方向点C 处测得AC =a ,∠ACB=α,那么AB 等于 ( )iA 、a ·sin αB 、a ·tan αC 、a ·cos αD 、αtan a 第6题图(第5题)·O ABC图9AB CDMNO 第9题图8. 若二次函数52++=bx x y 配方后为k x y +-=2)2(则b 、k 的值分别为………………( )A )0.5B )0.1C )—4.5D )—4.19.在Rt △ABC 中,∠C =90°,∠B =35°,AB =7,则BC 的长为( ). (A ) 7sin35° (B )35cos 7 (C )7cos35° (D )7tan35°10.设x 为锐角,若x sin =3K-9,则K 的取值范围是 A. 3<K B. 3103<<K . C. 3103<>或K D. 310<K11.将宽为cm 2的长方形折叠成如图所示的形状,那么折痕AB 的长是 A.334 B. 22 C. 4 D.33212.如图所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则cos ∠OMN 的值为 A .12B.2C2D .1二.填空题:1.某盏路灯照射的空间可以看成如图9所示的圆锥,它的高AO = 8米,母线AB 与底面半径OB 的夹角为α,34tan =α,则圆锥的底面积是 平方米(结果保留π).2.如图,已知R t △ABC 中,斜边BC 上的高AD =4,cosB =54,则AC = .3.如图,在△ABC 中,∠B=45°,cos ∠C=53,AC=5a ,则△ABC 的面积用含a的式子表示是 .4.如图5,某渔船在海面上朝正东方向匀速航行,在A 处观测到灯塔M 在北偏东60º方向上,航行半小时后到达B 处,此时观测到灯塔M 在北偏东30º方向上,那么该船继续航行____________分钟可使渔船到达离灯塔距离最近的位置.5、如图,AB 是伸缩性遮阳棚,CD 是窗户,要想夏至正午时的阳光刚好不能射入窗户,则AB 的长度是 (假如夏至正午时的阳光与地平面的夹角是600) 6.若o 60<α,且)60sin(0α-=1512,则=+)30cos(0α____________。

7. 选做题(从下面两题中任选一题,如果做了两题的,只按第(1)题评分)(1)如图,从点C 测得树的顶端的仰角为33º,BC =20米,则树高AB ≈___________米(用计算器计算,结果精确到0.1米)(2)计算:sin30º·cos30º-tan30º=___________(结果保留根号). 8.如图,已知Rt △ABC 中,斜边BC 上的高AD =4,cosB =54,则AC =____________。

三.解答题1.图1为已建设封项的16层楼房和其塔吊图,图2为其示意图,吊臂AB 与地面EH 平行,测得A 点到楼顶D 点的距离为5m ,每层楼高3.5m ,AE 、BF 、CH 都垂直于地面,EF =16cm ,求塔吊的高CH 的长. 解:2.(本小题8分)永乐桥摩天轮是天津市的标志性景观之一.某校数学兴趣小组要测量摩天轮的高度.如图,他们在C第11题AABM图5北北30º 60º 东第8题图ABC D处测得摩天轮的最高点A 的仰角为45︒,再往摩天轮的方向前进50 m 至D 处,测得最高点A 的仰角为60︒.求该兴趣小组测得的摩天轮的高度AB1.732≈, 结果保留整数).3.如图,直角A B C ∆中,90C ∠=︒,AB =sin 5B =,点P 为边B C 上一动点,P D ∥A B ,P D 交A C 于点D ,连结A P .(1)求A C 、B C 的长;(2)设P C 的长为x ,AD P ∆的面积为y . 当x 为何值时,y 最大,并求出最大值.4. 2009年首届中国国际航空体育节在莱芜雪野举办,期间在市政府广场进行了热气球飞行表演.如图,有一热气球到达离地面高度为36米的A 处时,仪器显示正前方一高楼顶部B 的仰角是37°,底部C 的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米)(参考数据:,75.037tan ,80.037cos ,60.037sin ≈︒≈︒≈︒73.13≈)5.如图,A 、B 两地被一大山阻隔,汽车从A 地到B 须经过C 地中转.为了促进A 、B 两地的经济发展,现计划开通隧道,使汽车可以直接从A 地到B 地.已知∠A =30°,∠B =45°,BC =215千米.若汽车的平均速度为45千米/时,则隧道开通后,汽车直接从A 地到B 地需要多长时间?(参考数据:7.13,4.12≈≈)6.如图.是一座人行天桥的示意图,天桥的高是l0米,坡面的倾斜角为45°,为了方便行人安全过天桥,市政部门决定降低坡度.使新坡面的倾斜角为30°若新坡脚前需留2 .5米的人行道,问离原坡脚10米的建筑物是否需要拆除?请说明理由 (1.732≈≈)PDCBAA BCD7.已知:线段OA ⊥OB ,点C 为OB 中点,D 为线段OA 上一点。

连结AC ,BD 交于点P .(1) 如图1,当OA=OB ,且D 为OA 中点时,求A P P C的值;(2) 如图2,当OA=OB ,且A D 1A O4=时,求tan ∠BPC 的值.(3) 如图3,当AD ∶AO ∶OB=1∶n∶时,直接写出tan ∠BPC 的值.(图1) (图2) (图3)8.(2010通化)(本题满分12分)如图,在ABC Rt ∆中,︒︒=∠=∠30,90A C ,BD 是ABC ∠的平分线,AD=20,求BC 的长.9.如图,△ABC 内接于⊙O ,AB =6,AC =4,D 是AB 边上一点,P 是优弧BAC 的中点,连结PA 、PB 、PC 、PD.(1)当BD 的长度为多少时,△PAD 是以AD 为底边的等腰三角形?并证明; (2)若cos ∠PCB=55,求PA 的长.10.如图,某天然气公司的主输气管道从A 市的东偏北30°方向直线延伸,测绘员在A 处测得要安装天然气的M 小区在A 市东偏北60°方向,测绘员沿主输气管道步行2000米到达C 处,测得小区M 位于C 的北偏西60°方向,请你在主输气管道上寻找支管道连接点N ,使到该小区铺设的管道最短,并求AN 的长.第23题图11.如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB 长为4米.(1)求新传送带AC 的长度; (2)如果需要在货物着地点C 的左侧留出2米的通道,试判断距离B 点4米的货物MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)第24题图12.如图所示,小杨在广场上的A 处正面观测一座楼房墙上的广告屏幕,测得屏幕下端D处的仰角为30º,然后他正对大楼方向前进5m 到达B 处,又测得该屏幕上端C 处的仰角为45º.若该楼高为26.65m ,小杨的眼睛离地面1.65m ,广告屏幕的上端与楼房的顶端平齐.求广告屏幕上端与下端之间的距离( 3 ≈1.732,结果精确到0.1m ).13.如图,台风中心位于点P ,并沿东北方向PQ 移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B 市位于点P 的北偏东75°方向上,距离点P 320千米处. (1) 说明本次台风会影响B 市; (2)求这次台风影响B 市的时间.AB C DE(第23题)14.目前世界上最高的电视塔是广州新电视塔.如图8所示,新电视塔高AB 为610米,远处有一栋大楼,某人在楼底C 处测得塔顶B 的仰角为45°,在楼顶D 处测得塔顶B 的仰角为39°.(1)求大楼与电视塔之间的距离AC ; (2)求大楼的高度CD (精确到1米)45°39°D CE B15.某公园有一滑梯,横截面如图薪示,AB 表示楼梯,BC 表示平台,CD 表示滑道.若点 E ,F 均在线段AD 上,四边形BCEF 是矩形,且sin ∠BAF=23,BF=3米,BC=1米,CD=6米.求:(1) ∠D 的度数; (2)线段AE 的长.16.庞亮和李强相约周六去登山,庞亮从北坡山脚C 处出发,以24米/分钟的速度攀登,同时李强从南坡山脚B 处出发。

如图,已知小山北坡的坡度3:1 i ,山坡重工业240米,南坡的坡角是45°。

问李强以什么速度攀登才能和庞亮同时到达山顶A ?(将山路AB 、AC 看成线段,结果保留根号)17. 若河岸的两边平行,河宽为900米,一只船由河岸的A 处沿直线方向开往对岸的B 处,AB 与河岸的夹角是600,船的速度为5米/秒,求船从A 到B 处约需时间几分。

相关文档
最新文档