云南省八年级数学上册152分式的运算1521分式的乘除第2课时分式的乘方及乘除混合运算作业课件新版新人教版
八年级数学上册第十五章分式15.2分式的运算15.2.2分式的加减15.2.2.2分式的混合运算教案新版新人教版2

第2课时分式混合运算
◇教学目标◇
【知识与技能】
明确分式混合运算的顺序.
【过程与方法】
经历探索分式混合运算步骤的过程,能熟练地进行分式的混合运算.【情感、态度与价值观】
结合已有的数学经验解决新问题,获得成就感和克服困难的方法和勇气.
◇教学重难点◇
【教学重点】
分式混合运算的顺序.
【教学难点】
分式的混合运算.
◇教学过程◇
一、情境导入
我们学习了分式的加减乘除、乘方运算,你能解决下面的问题吗?
化简:.
二、合作探究
探究点1分式乘除混合运算
典例1化简:.
[解析]原式=-=-.
探究点2分式混合运算
第 1 页共 2 页
典例2先化简,再求值:,其中x=5.
[解析]原式=
=
=-(x-2)
=-x+2.
当x=5时,原式=-5+2=-3.
探究点3化简求值
典例3先化简,再求值:.其中x的值从不等式组的整数解中选取.
[解析]由不等式组可解得-1<x≤2.
∵x是整数,
∴x=0或1或2.
∴原式==(x+2)·,
当x=0时,原式=0.
当x=2时,原式=.
当x=1时,原式=.
三、板书设计
分式混合运算
分式混合运算
◇教学反思◇
本节是一节习题课,内容是分式的混合运算,要把握运算顺序.不少学生在分式运算中出错,就是因为不重视审题,题没看完就动笔计算,或者受题中部分算式的特殊结构的影响而不遵循运算顺序,如化简,就常出现乱约分而不遵循运算顺序的典型错误,要同学通过练习、板演充分暴露问题所在,纠正,最后总结出容易忽视和出错的地方,提醒自己.
第 2 页共 2 页。
人教版数学八年级上册15.2.1分式的乘方及乘方与乘除的混合运算教案

3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“分式乘方在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
3.重点难点解析:在讲授过程中,我会特别强调分式乘方的运算规则和乘方与乘除混合运算的顺序这两个重点。对于难点部分,如符号处理和混合运算的符号判断,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式乘方相关的实际问题,如计算物体的表面积、体积等。
举例解释:
-例如,对于分式乘方,重点讲解当分母含有变量时,如何正确对分式进行乘方运算,确保学生掌握这一核心知识。
2.教学难点
-分式乘方的符号处理:特别是当指数为偶数时,负数的乘方处理,如(-a/b)^2 = a^2 / b^2。
-混合运算的符号判断:在混合运算中,如何正确判断符号,特别是在连续乘方和除法运算中。
五、教学反思
在今天的课堂中,我发现学生们对分式乘方的概念和运算规则掌握得还算不错。通过引入日常生活中的实际问题,他们能够较好地理解分式乘方的实际意义和应用场景。在讲授新课的过程中,我注意到以下几点:
首先,对于分式乘方的运算规则,大部分学生能够快速理解并运用到具体的计算中。但在混合运算中,部分学生对于符号的处理还显得有些吃力,特别是在连续乘方和除法运算中。在以后的教学中,我需要针对这个难点进行更多的讲解和练习。
-对于实际问题的应用,难点在于如何引导学生将问题中的信息抽象成数学表达式,如计算物体的表面积时,涉及多个长、宽、高的乘方运算,需要学生能够正确构建表达式并进行计算。
最新人教版八年级数学上册《15.2.1 分式的乘除(第2课时)》优质教学课件

解:原式 =
2
2
5mnp
3 pq
4mn1=Fra bibliotek22n
课堂检测
能力提升题
先化简再求值:
a2 1
a 1
3
2
a 2a 1
a a2
其中a= 3.
a 1
解:原式 = 2
a 2a 1
2
当a = 3
时,原式 =
a 2 a 1
a 1
3
2
3.
,
a2,
人教版 数学 八年级 上册
15.2
分式的运算
15.2.1 分式的乘除
第2课时
导入新知
我们学习过分数的乘除混合运算,那么
分式的乘除混合运算该如何进行呢?分式的
乘方又与分数的乘方有何异同呢?
素养目标
2. 掌握分式乘方的运算法则,并能灵活运
用法则进行分式乘方的运算.
1.熟练掌握分式的乘除混合运算顺序和方法.
2.发展型作业:完成本课时练习。
总结点评 反思
同学们,这节课你们表现得都非常棒。
在以后的学习中,请相信你们是存在着巨
大的潜力的,发挥想象力让我们的生活更
精彩吧。
课堂检测
拓广探索题
计算.
2
3
2x 2 y
2y
;
y 3x
x
2
2
4
4 x 4 8 y 6
x4
2 x5
解:原式 = 2
3
4 =
y
27 x
16 y
27
八年级上册数学15.2.1第2课时分式的乘方及乘除混合运算级

乘方
(x - y)2 x2 y2
(x2
y2)
(x
x3 - y)3
除法变乘法
(x - y)2 (x y)( x y) x3
x2 y2
(x - y)3
分解因式
x2 xy y2 .
乘法、约分
探索新知
知识点2 分式的乘方
含有乘方的分式乘除混合运算的步骤 (1)先算分式的乘方; (2)除法变乘法; (3)若分子或分母为多项式,要分解因式; (4)进行乘法运算,约分得到结果.
第十五章 分式
15.2.1 分式的乘除
第2课时 分式的乘方及乘除混合运算
学习目标-新课导入-探索新知-课堂小结-课堂练习
人教版·八年级上册
学习目标
1.进一步熟练分式的乘除法则,会进行乘、除法的混合运算.(重点) 2.了解并掌握分式的乘方法则.(重点) 3.能熟练运用分式的乘方法则进行计算,会进行含乘方的分式的乘 除混合运算.(难点)
(x
3)(x
3)
1.
课堂练习
7.(1)化简:a a
2 2
-
4 a
(
a -1 a2
)2
a a2
2 1 2a
.
解:原式 (a 2)(a 2) a(a 1)
a 12 a 22
a(a 2) (a 1)(a 1)
a a
2 1
.
1
(2)当a=5时,其结果为 2 .
(3)请你选择一个你喜欢的数作为a的值,则a不可以取 0,±1,-.2
(2)( 3xy 2 )3; 4z
解:(1)
( 2a2b )2 3c
( 2a 2b) 2 (3c)2
4a4b2 9c2
;
人教版八年级上册数学教案15.2 分式的运算(5课时)

15.2 分式的运算 15.2.1 分式的乘除 第1课时 分式的乘除一、基本目标 【知识与技能】理解分式乘除法的运算法则,并能正确进行计算. 【过程与方法】经历分析、对比的过程,类比分数的乘除法法则得出分式的乘除法法则,利用分式的乘除法法则进行计算,增强对法则的理解与掌握.【情感态度与价值观】通过探索分式的乘除法法则的过程,提高对比、归纳的能力,培养从已学知识中推导新知识的习惯.二、重难点目标 【教学重点】 分式的乘除法法则. 【教学难点】运用分式的乘除法法则进行计算并解决实际问题.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P135~P137的内容,完成下面练习. 【3 min 反馈】1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为a b ·c d =a ·c b ·d.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为a b ÷c d =a b ·d c =a ·db ·c.3.分式的乘除法运算,运算结果应化为最简分式.环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:(1)c 2ab ·a 2b 2c ; (2)y 7x ÷⎝⎛⎭⎫-2x . 【互动探索】(引发学生思考)利用分式的乘除法法则进行计算时,需要注意什么? 【解答】(1)原式=a 2b 2c 2abc =abc .(2)原式=y 7x ·⎝⎛⎭⎫-x 2=-xy 14x =-y 14. 【互动总结】(学生总结,老师点评)利用分式乘除法法则进行计算,运算结果应化为最简分式.活动2 巩固练习(学生独学)1.计算a 2-1(a +1)2÷a -1a ,结果正确的是( D )A.12 B .a +1a +2C .a +1aD .a a +12.计算: (1)x 2y x 3·⎝⎛⎭⎫-1y ; (2)a 2-4b 23ab 2·ab a -2b ;(3)x 2-x x -1÷(4-x ); (4)42(x 2-y 2)x ·-x 235(y -x )3.解:(1)原式=-x 2y x 3y =-1x.(2)原式=(a +2b )(a -2b )3ab 2·ab a -2b =a +2b3b .(3)原式=x (x -1)x -1·14-x =x4-x.(4)原式=42(x +y )(x -y )x ·x 235(x -y )3=6x (x +y )5(x -y )2.活动3 拓展延伸(学生对学)【例2】已知(a +b -2)2+||1-a =0,求4a 2-ab 16a 2-8ab +b 2·2a的值. 【互动探索】利用已知等式求出a 、b 的值→计算分式的乘法,化简所求式子→代入a 、b 值进行计算.【解答】∵(a +b -2)2+||1-a =0,∴⎩⎪⎨⎪⎧ a +b -2=0,1-a =0.解得⎩⎪⎨⎪⎧a =1,b =1.4a 2-ab16a 2-8ab +b 2·2a =a (4a -b )(4a -b )2·2a =24a -b. 将a =1,b =1代入上式,得原式=24a -b =24-1=23.【互动总结】(学生总结,老师点评)根据非负数的性质求出a 、b 的值后,要代入化简后的式子进行计算.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!第2课时 分式的乘方及乘除混合运算一、基本目标 【知识与技能】理解分式的乘方法则,掌握分式乘方与乘除混合运算的运算顺序. 【过程与方法】经历计算、思考、归纳的过程,归纳出分式的乘法法则,通过分式的乘除混合运算和乘方运算,加深对分式乘除法法则和乘方法则的记忆,并了解乘方与乘除法混合运算的运算顺序.【情感态度与价值观】通过归纳分式乘方法则的过程,养成归纳意识,通过运用分式的乘除法法则和乘方法则进行混合运算,提高计算能力.二、重难点目标 【教学重点】分式的乘方法则和混合运算顺序. 【教学难点】运用分式的乘除法法则和乘方法则正确计算.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P138~P139的内容,完成下面练习. 【3 min 反馈】1.教材第138页“思考”:⎝⎛⎭⎫a b 2=a 2b 2;⎝⎛⎭⎫a b 3=a 3b 3;⎝⎛⎭⎫a b 10=a10b 10.2.分式的乘方法则:分式乘方要把分子、分母分别乘方.用字母表示:⎝⎛⎭⎫a b n =a nb n . 3.分式的乘除法和乘方的混合运算,先算乘方,再算乘除法. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:2x -64-4x +x 2÷(x +3)·(x +3)(x -2)3-x. 【互动探索】(引发学生思考)类比整式的乘除混合运算顺序进行分式混合运算. 【解答】原式=2x -64-4x +x 2·1x +3·(x +3)(x -2)3-x =2(x -3)(2-x )2·1x +3·(x +3)(x -2)3-x =2(x -3)(x -2)2·1x +3·(x +3)(x -2)-(x -3)=-2x -2【互动总结】(学生总结,老师点评)计算分式的乘除混合运算时,先统一为乘法运算,再依次进行计算.【例2】计算:(1)⎝⎛⎭⎫-2b 2a 33; (2)⎝⎛⎭⎫c 3a 2b 2÷⎝⎛⎭⎫c 4a 3b 2·⎝⎛⎭⎫c a 4. 【互动探索】(引发学生思考)利用分式的乘方法则进行计算时应该注意什么?当式子里同时有乘除法和乘方时,运算顺序是怎样的?【解答】(1)原式=(-2b 2)3(a 3)3=-8b 6a 9.(2)原式=c 6a 4b 2÷c 8a 6b 2·c 4a 4=c 6a 4b 2·a 6b 2c 8·c 4a 4 =c 2a2. 【互动总结】(学生总结,老师点评)分式乘方时,注意分子、分母分别乘方,式子中有乘除法与乘方时,先算乘方,再算乘除法.活动2 巩固练习(学生独学)1.已知⎝⎛⎭⎫x 3y 22÷⎝⎛⎭⎫-x y 32=6,则x 4y 2的值是( A ) A .6 B .36 C .12 D .32.计算:(1)3ab 22x 3y ·⎝⎛⎭⎫-8xy 9a 2b ÷3x (-4b ); (2)3(x -y )2(y -x )3·(x -y )4÷9y -x ; (3)⎝⎛⎭⎫c 3a 2b 2÷⎝⎛⎭⎫c 4a 3b 2÷⎝⎛⎭⎫a c 4; (4)⎝⎛⎭⎫a -b ab 2·⎝ ⎛⎭⎪⎫-a b -a 3·(a 2-b 2). 解:(1)16b 29ax 3.(2)(x -y )43.(3)c 2a 2. (4)a (a +b )b 2.活动3 拓展延伸(学生对学)【例3】许老师讲完了分式的乘除一节后,给同学们出了这样一道题,若x =-2018,求代数式x 2-4x 2+x +1÷x 2-2x x 3+x 2+x ·1x +2的值.小明通过计算,发现题目中的x =-2018是多余的.你认为小明的发现是否正确?【互动探索】先计算分式乘除运算的值→验证分式乘除运算的结果与x 的关系. 【解答】x 2-4x 2+x +1÷x 2-2xx 3+x 2+x ·1x +2=(x +2)(x -2)x 2+x +1·x (x 2+x +1)x (x -2)·1x +2=1.∴代数式x 2-4x 2+x +1÷x 2-2xx 3+x 2+x ·1x +2的值是一个定值,与x 的取值无关.故小明的发现是正确的.【互动总结】(学生总结,老师点评)将代数式化简后,如果结果是一个常数,那么该代数式的值与其中字母的取值无关.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!15.2.2 分式的加减 第3课时 分式的加减一、基本目标 【知识与技能】1.理解分式的加减法法则,并能正确计算分式加减法. 2.掌握异分母分式加减法的计算步骤,并能正确计算. 【过程与方法】经历思考、类比、归纳的过程,理解分式的加减法法则,在掌握分式通分的基础上,掌握异分母分式加减法的计算方法.【情感态度与价值观】类比分数的加减法法则理解分式的加减法法则,养成类比思考的习惯,通过运用分式的加减法法则进行加减法运算,提高运算能力.二、重难点目标 【教学重点】 分式的加减法法则. 【教学难点】异分母分式的加减法的计算步骤.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P139~P140的内容,完成下面练习. 【3 min 反馈】 1.观察填空: (1)15+25=35; (2)15-25=-15; (3)12+13=36+26=56; (4)12-13=36-26=16. 同分母分数相加减,分母不变,把分子相加减. 异分母分数相加减,先通分,再把分子相加减. 2.类比分数的加减,你能说出分式的加减法则吗? (1)同分母分式相加减,分母不变,把分子相加减.用字母表示为a c ±b c =a ±bc.(2)异分母分式相加减,先先通分,变为同分母的分式,再加减. 用字母表示为a b ±c d =ad bd ±bc bd =ad ±bcbd .环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)x +3y x 2-y 2-x +2yx 2-y 2; (2)1a +3+6a 2-9; (3)m +2n n -m -n m -n +2m n -m ; (4)1x -3+1-x 6+2x -6x 2-9. 【互动探索】(引发学生思考)利用分式的加减法法则进行计算,异分母分式相加减时,应该注意什么?【解答】(1)原式=x +3y -(x +2y )x 2-y 2=5yx 2-y 2. (2)原式=a -3(a +3)(a -3)+6(a +3)(a -3)=a +3(a +3)(a -3)=1a -3. (3)原式=m +2n n -m +n n -m +2mn -m=3m +3n n -m.(4)原式=2(x +3)2(x +3)(x -3)+(1-x )(x -3)2(x +3)(x -3)-122(x +3)(x -3)=-(x 2-6x +9)2(x +3)(x -3)=-x -32x +6.【互动总结】(学生总结,老师点评)异分母分式相加减时,首先要通分,变为同分母分式再加减.活动2 巩固练习(学生独学) 1.下列运算中正确的是( C ) A.a a -b -b b -a=1 B .m a -n b =m -n a -bC.a 2a -b -b 2a -b =a +b D .b a -b +1a =1a3.计算: (1)3a +2b 5a 2b +a +b 5a 2b ;(2)b 2a -b +a 2b -a; (3)3b -a a 2-b 2-a +2b a 2-b 2-3a -4b b 2-a 2; (4)x x -y +x x +y -x 2x 2-y 2. 解:(1)4a +3b5a 2b .(2)-a -b .(3)a -3ba 2-b 2. (4)x 2(x +y )(x -y ). 活动3 拓展延伸(学生对学)【例2】已知3x +4x 2-x -2=A x -2-B x +1,其中A 、B 为常数,求4A -B 的值.【互动探索】要求4A -B 的值,需要先求出A 与B 的值.通过化简等式右边,再对比可求出A 、B 的值.【解答】Ax -2-Bx +1=A (x +1)(x +1)(x -2)-B (x -2)(x +1)(x -2)=(A -B )x +(A +2B )(x +1)(x -2).因为3x +4x 2-x -2=Ax -2-Bx +1=(A -B )x +(A +2B )(x +1)(x -2),所以⎩⎪⎨⎪⎧A -B =3,A +2B =4.解得⎩⎨⎧A =103,B =13.故4A -B =4×103-13=13.【互动总结】(学生总结,老师点评)通过对比等式中等号两边的分式,得出关于A 、B 的二元一次方程,求出A 、B 的值,从而求解.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!第4课时 分式的混合运算一、基本目标 【知识与技能】1.明确分式混合运算的运算顺序.2.运用分式的运算法则正确计算分式的混合运算. 【过程与方法】经历计算、对比、归纳的过程,明确分式混合运算的运算顺序,在明确运算顺序的基础上,正确计算分数的混合运算.【情感态度与价值观】类比分数的混合运算的运算顺序得出分式的混合运算顺序,养成类比思考的习惯,通过运用分式的运算法则进行混合运算,提高运算能力.二、重难点目标 【教学重点】分式混合运算的运算顺序.【教学难点】正确计算分式的混合运算.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P141~P142的内容,完成下面练习. 【3 min 反馈】1.分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,在运算过程中要注意正确地运用运算法则,灵活地运用运算律,使运算尽量简便.2.分式运算与分数运算一样,结果必须化为最简,能约分的要约分,保证结果是最简分式或整式.活动1 小组讨论(师生互学) 【例1】计算:(1)x x -y ·y 2x +y -x 4y x 4-y 4÷x 2x 2+y 2; (2)⎝⎛⎭⎫2a b 2·1a -b -a b ÷b 4; (3)⎝⎛⎭⎪⎫x +2x 2-2x -x -1x 2-4x +4÷4-x x. 【互动探索】(引发学生思考)利用分式的混合运算运算顺序计算. 【解答】(1)原式=xx -y ·y 2x +y -x 4y(x 2+y 2)(x 2-y 2)·x 2+y 2x2=xy 2(x -y )(x +y )·-x 2yx 2-y 2=xy (y -x )(x -y )(x +y )=-xy x +y .(2)原式=4a 2b 2·1a -b -a b ÷b 4=4a 2b 2(a -b )-4a b2=4a 2-4a (a -b )b 2(a -b ) =4abb 2(a -b )=4ab (a -b ).(3)原式=[x +2x (x -2)-x -1(x -2)2]·x -(x -4) =[(x +2)(x -2)x (x -2)2-x (x -1)x (x -2)2]·x -(x -4)=x 2-4-x 2+x x (x -2)2·x -(x -4)=-1x 2-4x +4.【互动总结】(学生总结,老师点评)分式混合运算,先乘方,再乘除,最后加减,注意结果化成最简分式或整式.活动2 巩固练习(学生独学)1.若代数式⎝⎛⎭⎫A -3a -1·2a -2a +2的化简结果为2a -4,则整式A =( A ) A .a +1 B .a -1 C .-a -1 D .-a +12.计算:(1)⎝⎛⎭⎫x 2x -2+42-x ÷x +22x ; (2)⎝⎛⎭⎫a a -b -b b -a ÷⎝⎛⎭⎫1a -1b ; (3)⎝⎛⎭⎫1+y x -y ⎝⎛⎭⎫1-xx +y ;(4)⎝⎛⎭⎫x 2y 2·y 2x -x y 2·2y 2x.解:(1)2x . (2)-ab (a +b )(a -b )2. (3)xy x 2-y 2. (4)x -16y 8y.活动3 拓展延伸(学生对学)【例3】先化简⎝⎛⎭⎫1-1x -1÷x 2-4x +4x 2-1,再从不等式2x -1<6的正整数解中选择一个适当的数代入求值.【互动探索】先化简代数式→解一元一次不等式→从解集中选择一个数代入求值. 【解答】原式=x -2x -1÷(x -2)2(x +1)(x -1)=x +1x -2.由2x -1<6,得x <72.故不等式的正整数解为1,2,3.当x =3时,原式=x +1x -2=3+13-2=4.【互动总结】(学生总结,老师点评)选择x 的值时,要使每个分式都有意义. 环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!15.2.3 整数指数幂(第5课时)一、基本目标 【知识与技能】1.理解负整数指数幂的意义,掌握整数指数幂的运算性质.2.掌握利用10的负整数次幂,用科学记数法表示一些小于1的正数. 【过程与方法】经历思考、计算、对比的过程,理解负整数指数幂的意义,在此基础上,将正整数指数幂的性质推广到任意整数,从而掌握整数指数幂的性质.【情感态度与价值观】类比正整数幂的性质,结合负整数指数幂的意义,推导出整数指数幂的性质,养成类比思考的习惯,通过运用10的负整数次幂,用科学记数法表示一些小于1的正数,提高运用所学知识的能力.二、重难点目标 【教学重点】负整数指数幂的意义,整数指数幂的运算性质. 【教学难点】用科学记数法表示一些小于1的正数.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P142~P145的内容,完成下面练习. 【3 min 反馈】 一、负整数指数幂1.正整数指数幂的运算有:(a ≠0,m 、n 为正整数) (1)a m ·a n =a m +n ; (2)(a m )n =a mn ; (3)(ab )n =a n b n ; (4)a m ÷a n =a m -n ; (5)⎝⎛⎭⎫a b n =a nb n ; (6)a 0=1.2.负整数幂:一般地,当n 是正整数时,a -n =1a n(a ≠0),这就是说,a -n (a ≠0)是a n 的倒数.二、科学记数法1.绝对值大于10的数记成a ×10n 的形式,其中1≤︱a ︱<10,n 是正整数.n 等于原数的整数数位减去1.(2)用科学记数法表示:100=102;2000=2.0×103;33000=3.3×104.2.类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值小于1的数,即将它们表示成a ×10-n 的形式.(其中n 是正整数,1≤|a |<10)3.用科学记数法表示:0.01=1×10-2;0.001=1×10-3;0.0033=3.3×10-3. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)x 2y -3(x -1y )3;(2)(2ab 2c -3)-2÷(a -2b )3;(3)3a -2b ·(2ab -2)-2;(4)4xy 2z ÷(-2x -2yz -1).【互动探索】(引发学生思考)利用整数指数幂的运算性质进行计算时应该注意些什么? 【解答】(1)原式=x 2y -3x -3y 3=x -1y 0=1x .(2)原式=14a -2b -4c 6÷(a -6b 3)=14a 4b -7c 6=a 4c 64b 7.(3)原式=3a -2b ·14a -2b 4=34a -4b 5=3b 54a4.(4)原式=-2x 3yz 2.【互动总结】(学生总结,老师点评)利用整数指数幂的运算性质进行计算,结果负整数指数幂写成分数的形式.【例2】用科学记数法表示下列各数: (1)0.0000001; (2)0.00024; (3)0.0000000035.【互动探索】(引发学生思考)用科学记数法表示小于1的正数,一般形式是怎样的? 【解答】(1)0.0000001=1×10-7. (2)0.00024=2.4×10-4. (3)0.0000000035=3.5×10-9.【互动总结】(学生总结,老师点评)小于1的正数可以用科学记数法表示为a ×10-n 的形式,其中1≤a <10,n 是正整数.【例3】计算:(1)(2×10-6)2·(3×10-4);(2)(3×10-5)3÷(10-3)-2.【互动探索】(学生总结,老师点评)用科学记数法表示的数的有关计算应该注意些什么?【解答】(1)(2×10-6)2·(3×10-4)=(4×10-12)·(3×10-4)=12×10-16=1.2×10-15. (2)(3×10-5)3÷(10-3)-2=(27×10-15)÷106=27×10-21=2.7×10-20.【互动总结】(学生总结,老师点评)用科学记数法表示的数的有关计算,结果应符合科学记数法.活动2 巩固练习(学生独学)1.计算(-π )0÷⎝⎛⎭⎫-13-2的结果是( D ) A .-16B .0C .6D .192.计算:(1)(m 3n )-2·(2m -2n -3)-2;(2)(2xy -1)2·xy ÷(-2x -2y );(3)⎝⎛⎭⎫b a -2·⎝⎛⎭⎫a b 2; (4)(2m 2n -1)2÷3m 3n -5.解:(1)n 44m 2.(2)-2x 5y 2.(3)a 4b 4.(4)43mn 3.3.用科学记数法表示下列各数:(1)0.000021; (2)0.00000034; (3)0.00102. 解:(1)2.1×10-5. (2)3.4×10-7. (3)1.02×10-3.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!。
人教版数学八年级上册15.2.1.3《分式的乘方及乘方与乘除混合运算》教学设计

人教版数学八年级上册15.2.1.3《分式的乘方及乘方与乘除混合运算》教学设计一. 教材分析人教版数学八年级上册15.2.1.3《分式的乘方及乘方与乘除混合运算》这一节主要介绍了分式的乘方运算以及乘方与乘除混合运算的法则。
学生需要掌握分式乘方的概念,了解分式乘方的运算规则,并能灵活运用到实际问题中。
教材通过具体的例题和练习,帮助学生理解和掌握分式乘方的运算方法,培养学生的数学思维能力和解决问题的能力。
二. 学情分析学生在学习这一节内容前,已经学习了分式的基本概念和运算规则,对分式的加减乘除有一定的了解。
但是,对于分式的乘方运算,学生可能还存在一定的困惑和难度。
因此,在教学过程中,需要引导学生将已知的分式运算规则与乘方运算相结合,通过实例和练习,让学生逐步理解和掌握分式的乘方运算方法。
三. 教学目标1.了解分式的乘方概念,掌握分式乘方的运算规则。
2.能够运用分式乘方的运算规则,解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.分式的乘方概念的理解和掌握。
2.分式乘方运算规则的应用和实际问题的解决。
五. 教学方法1.讲授法:通过讲解和解释,让学生理解和掌握分式的乘方概念和运算规则。
2.案例分析法:通过具体的例题和练习,让学生将分式乘方的运算规则应用到实际问题中,培养学生的解决问题的能力。
3.小组合作学习法:学生进行小组讨论和合作,共同解决问题,培养学生的团队合作能力和交流能力。
六. 教学准备1.教材和教案。
2.投影仪和幻灯片。
3.练习题和答案。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考和讨论分式的乘方问题,激发学生的学习兴趣和思考能力。
2.呈现(10分钟)讲解和解释分式的乘方概念,引导学生理解和掌握分式乘方的运算规则。
通过具体的例题,让学生观察和分析分式乘方的运算过程,总结和归纳运算规则。
3.操练(10分钟)让学生进行一些分式乘方的练习题,巩固学生对分式乘方运算规则的理解和掌握。
人教版八年级数学上册《1521分式的乘除法》课件

(x( x1 )1 x ()2 1)•x x 1 1•x x 1 1注运法意算运转算:化,将为再除乘对法
分子,分母的
x 1
多项式进行因 式分解,最后
x 1
约分,化成最 简分式。
计算4: a a b b22 3a a 3 2b ba2abb2
注意:分式 的乘方
除法转化乘
解:原式
(ab)2 2a2b ab 法时,把除
x 1
计算2: x28x16 x216
x21 x22x1
解:原式=
x28x16x22x1 x21 x216
x x1 4 x 21x x4 1 x2 4
xx14xx41
x2 5x 4 x2 5x4
注意:将除 法运算转化 为乘法运算, 再对分子, 分母的多项 式进行因式 分解,最后 约分,化成 最简分式。
除法转化乘法时, 把除式中的分子 分母位置颠倒, 而被除式不变
计算3
x2x22x11xx 1 1•1 1 xx
调整升降幂 排列
除法转化乘
解:原式 x2x22x11x x 1 1•x x 1 1
法时,把除 式中的分子 分母位置颠
知 识 拓 展:
x2x22x11•x x 1 1•x x 1 1
倒,而被除 式不变
温故知新:
计算1
x210x25x2x x21 x5
x52 xx1 解:原式 x1x1 x5
注意:在分式 乘法中,分子、 分母含有多项 式,先考虑将 多项式进行因 式分解,再约 分计算。
xx5
x1
分式的乘法法则:分式乘分式,
x2 5x
用分子的积作为积的分子,分 母的积作为积的分母.
•8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。 2021/11/72021/11/72021/11/72021/11/7
八年级数学上册教学课件《分式的乘除混合运算与分式的乘方》

【选自教材P139 练习 第1题】
(2) 16 a2 a 4 a 2
a2 8a 16 2a 8 a 2
解:原式=
4
a 4 a 42
a
2
a 4
a4
a a
2 2
= 2a 4 a2
3. 计算:
(1)
2x4 3z
y2
3
;
【选自教材P139 练习 第2题】
(2)
2ab3 c2d
< 针对训练 >
计算: 2x y x2 xy x
x2 y2 x y x y
解:原式
x
2x y
y x
y
x x y
x y
x
x
y
2x y x y
知识点2 分式的乘方
根据乘方的意义填空:
1 2
2
11 _2___2________
12 ___2_2 _ ;
1 3
2
=
2x 5x-3
25x2 -9 3
x 5x+3
= 2x2 . 3
乘除混合运算可以 统一为乘法运算.
分式乘除混合运算的计算方法: (1)分式乘除混合运算,先依据分式的乘除法法则, 把分式乘除法统一成乘法. (2)当分式的分子分母为多项式时,应先进行因式 分解,然后约去分子分母的公因式,计算结果应为最 简分式或整式.
探究新知
知识点1 分式的乘除混合运算
9 3 27 9 3 10 9 3 10 1 8 5 10 8 5 27 8 5 27 4
b d f b d e bde a c e a c f acf
例4
计算:52x-x3
3 25x2 -9
x. 5x+3