2013-2014学年江苏省苏州市工业园区七年级(下)期末数学试卷

合集下载

江苏省苏州市吴中区2013-2014学年八年级下期末调研测试数学试题及答案

江苏省苏州市吴中区2013-2014学年八年级下期末调研测试数学试题及答案

苏州市吴中区2013-2014学年第二学期期末调研测试初二数学试卷 2014.06本试卷由选择题、填空题和解答题三大题组成,共29题,满分130分.考试用时120分钟.注意事项:1.答题前,考生务必将学校、姓名、考试号填写在答题卷相应的位置上. 2.考生答题必须在答题卷上,答在试卷和草稿纸上一律无效. 一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卷上作答.) 1.下列调查适合普查的是A .夏季冷饮市场上冰淇淋的质量B .某本书中某页的印刷错误C .公民保护环境的意识D .某批灯泡的使用寿命2.下列事件是随机事件的是 A .没有水分,种子发芽B .367人中至少有2人的生日相同C .在标准气压下,-1℃冰融化D .小瑛买了一张彩票获得500万大奖3.下列是中心对称图形的是4.下列各式成立的是A 34=+B 34=+C 12=±D 12=-5.下列分式中,属于最简分式的是 A .42xB .221xx + C .211x x -- D .11xx -- 6.在反比例函数2k y x-=图象的每个象限内,y 随x 的增大而减少,则k 值可以是 A .3 B .2 C .1 D .-17.如图,在等腰梯形ABCD 中,AD ∥B C ,AB =AD =DC ,∠B =60°, DE//AB ,梯形ABCD 的周长等于20 cm ,则DE 等于 A .6 cm B .5 cm C .4 cmD .3 cm8.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB'C'D'的位置, 旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是 A .68° B .20° C .28°D .22°9.已知m A .0B .1C .2D .310.如图,正方形ABCD 内有两点E 、F 满足AE =4,EF =FC =12,AE ⊥EF ,CF ⊥EF ,则正方形ABCD 的边长为A .252B .C .20D .二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卷相对应的位置上)11.当x 等于 ▲ 时,分式223x x --无意义. 12.抛掷一枚质地均匀的骰子,出现点数向上为偶数的概率为 ▲ .13.如图,平行四边形ABCD 的对角线相交于点O ,BC =7cm ,BD =10 cm ,AC =6cm ,则△AOD 的周长是 ▲ cm . 14+= ▲ .15.如图,在△ABC 中,己知∠ACB =90°,CD ⊥AB 于D .若AD =8,BD =2,则AC = ▲ .16.如图,已知BE 平分∠ABC ,DE// BC ,AD =3,DE =2,AC =10,则AE 的长度是▲. 17.如图,在平行四边形ABCD 中,E 是BC 的中点,F 是BE 上的点,且EF =2FB ,记AE 与DF 交于H ,则△ADH 与△ABF 的面积之比为 ▲ .18.如图,已知四边形OABC 是矩形,边OA 在x 轴上,边OC 在y 轴上,双曲线y =kx与边BC 交于点D 、与对角线OB 交于点E ,且OE :EB =1:2,若△OBD 的面积为8,则k的值是 ▲ .三、解答题:(本大题共11小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.) 19.(本题满分6分,每小题3分)化简与计算:;(2)()30b ⎛≥ ⎝20.(本题满分8分,每小题4分)解下列方程:(1)30201x x =+ (2)11322xx x-=---21.(本题满分5分)先化简,再求值:2111211x x x x x x +⎛⎫+÷ ⎪--+-⎝⎭,其中x 1+.22.(本题满分6分)如图,在边长为1个单位长度的小正方形组成的网格中,点A 、B 、C 都是格点.建立如图所示的坐标系。

江苏省苏州市工业园区2020-2021学年七年级下学期期中数学试卷(word版 含答案)

江苏省苏州市工业园区2020-2021学年七年级下学期期中数学试卷(word版 含答案)
解得m=2.
故选:D.
【点睛】
本题考查了多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.合并同类项时要注意项中的指数及字母是否相同.
7.C
【分析】
借助已知条件用b表示a,再代入 中化简即可.
【详解】
∵ ,
∴ ,
∴原式 .
故选:C.
【点睛】
考查完全平方公式,熟悉完全平方公式及代数式求值技巧是关键.
13.55°.
【详解】
∵∠EFD为△ECF的外角,∠C=25°,∠E=30°,
∴∠EFD=∠C+∠E=55°.
∵CD∥AB,∴∠A=∠EFD=55°.
14.17
【分析】
题中没有指明哪个是底哪个腰,故应该分两种情况进行分析,注意利用三角形三边关系进行检验.
【详解】
解:当7为腰时,周长=7+7+3=17cm;
B、ax+ay+a=a(x+y+1),故本选项错误;
C、x2+2x-1不能转化成几个整式积的形式,故本选项错误;
D、 x2+2x+4= ,故本选项正确.
故选D.
【点睛】
本题考查了多项式的因式分解,符号的变化是学生容易出错的地方,要克服.
5.C
【详解】
试题分析:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=6.则这个正多边形的边数是6.故选C.
故答案是:110°.
18.45°、60°、105°或135°
【分析】
根据题意画出图形,再由平行线的判定定理即可得出结论.
【详解】
解:如图,
当AC∥DE时,∠BAD=∠DAE=45°;
当BC∥AD时,∠DAB=∠B=60°;

江苏省苏州市苏州工业园区苏州中学园区校2023-2024学年七年级上学期10月月考数学试题

江苏省苏州市苏州工业园区苏州中学园区校2023-2024学年七年级上学期10月月考数学试题

江苏省苏州市苏州工业园区苏州中学园区校2023-2024学年七年级上学期10月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .①③B .②③C .①④7.20192018(8)(8)-+-能被下列哪个数整除()A .3B .5C .78.下列说法中,①最大的负整数是-1;②平方后等于9的数是3,③(-则a<0,⑤若a ,b 互为相反数,则ab<0;⑥2232xy x y -+-是关于x 其中正确的有()A .2个B .3个C .4个A .2-B .1-10.定义一种对正整数n 的“F ”运算,①当n 为奇数时,结果为结果为2k n (其中k 是使2kn为奇数的正整数),并且运算重复进行,例如,取图所示,若449n =,则第201次“F ”的运算的结果是(A .1B .4C .6D 二、填空题11.单项式3225x yz -的系数是.12.比较大小:()8-+9--(填“>”、“<”、或“=”符号)2731⎛⎫⎛⎫⎛⎫⎛⎫18.规定:log a b (a >0,a≠1,则:log nn a =n .log N M =log log n n MNlog 5=10log 5,则log 32=.三、解答题19.计算:(1)求出点A、点B运动的速度,并在数轴上标出置;(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到。

江苏省苏州市工业园区2013-2014学年九年级数学第一学期期中试卷(含答案)

江苏省苏州市工业园区2013-2014学年九年级数学第一学期期中试卷(含答案)

苏州市工业园区2013-2014学年第一学期九年级数学期中试卷 苏科版第一部分(共54分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案填在答题纸相对应的位置上..........) 1.一元二次方程x 2+kx-3=0的一个根是x=1,则另一个根是(▲)A.-3B. -2C. -1D. 32.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于(▲)A .1B .2C .1或2D .03.二次函数c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是(▲)A .直线x =4B .直线x =3C .直线x =-5D .直线x =-1. 4.在锐角ABC ∆中,B ,且AB=4,则ABC ∆的面积等于(▲) A .4 B .2 C..5. 下列命题:①所有锐角三角函数值都为正数;②解直角三角形只需已知除直角外的两个元素;③Rt △ABC 中,∠B=90°,则sin 2A+cos 2A=1;④Rt △ABC 中,∠A=90°,则C C C sin cos tan =⋅.其中真命题的有(▲)A. 1个B. 2个C. 3个D. 4个 6. 下列四个说法中,正确的是(▲)A.一元二次方程245x x ++=有实数根; B .一元二次方程245x x ++=C .一元二次方程245x x ++=有实数根;D .一元二次方程x 2+4x+5=a(a≥1)有实数根.7.若把抛物线122+-=x x y 向右平移2个单位,再向下平移3个单位,得到抛物线c bx x y ++=2,则(▲)A .b =2,c =-2B .b =-6,c =6C .b =-8,c =14D .b =-8,c =18 8.上午9时,一条船从A 处出发,以每小时40海里的速度向正东方向航行,9时30分到达B 处,从A 、B 两处分别测得小岛M 在北偏东45°和北偏东15°方向,则在B 处船与小岛M 的距离是(▲)A.20海里B.202海里C.153海里D.203海里9.已知直线y 1=kx +m 和抛物线y 2=ax2+bx +c 的图像如图所示,则下列说法中正确的个数是(▲)⑴ a >0,b <0,c =0,Δ=0; ⑵ a +b +c >0;⑶ 当x >1时,y 1和y 2都随x 的增大而增大; ⑷ 当x >0且x ≠2时,y 1·y 2>0.A .1个B .2个C .3个D .4个题910.已知1x 和2x 是032=-+x x 的两个根,则1942231+-x x 的值(▲)A .4 B.-4 C.0 D.1二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题纸相对应的位置上.11.方程022=-x x 的解是 ▲ .12.已知抛物线422+-=bx x y 的顶点在坐标轴x 轴上,则b 的值是 ▲ .13.若一元二次方程02)2(2=++-a x a x 的两个实数根分别是3、b ,则a+b= ▲ . 14.若二次函数9)1(22-++=m x m y 有最小值,且图象经过原点,则m = ▲ . 15.某手提电脑,原售价10000元/台,经连续两次降价后,现售价为4900元/台, 则平均每次降价的百分率为 ▲ .16.如图,在平地上种植树时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为0.5题16已知关于x 的一元二次方程222x bx c ++有最 ▲ 值,该最值为18.在Rt △ABC 中,∠C =900,∠A 、∠B 的对边分别是、,且满足0=--b ab a ,则tanA 等于 ▲ .第二部分(共76分)三、解答题:本大题共10小题,共76分.解答时应写出必要的计算过程、推演步骤或文字说明.把解答过程写在答题纸相对应的位置上.19. 计算:(本题满分51021(π1)2cos 454-⎛⎫--+ ⎪⎝⎭°20、解方程:(本题满分10分,每小题5分)(1) 31082=+x x (2)13)2(2-=--x x x .21.(本题满分6分)如图,在△ABC 中,AD 是BC 边上的高,tan ∠B=cos ∠DAC. (1)求证:AC=BD ; (2)若sin ∠C=1312,BC=12,求AD22.(本题满分8分)二次函数2=ax y 列问题:(1)写出方程02=++c bx ax (2)写出不等式c bx ax ++2>0(3)写出y 随x 的增大而减小的自变量(4)若方程k c bx ax =++2求k 的取值范围.23.(本题满分6计一横二竖的等宽的、小路的宽应是多少米?24.(本题满分6测得屏幕下端D 处的仰角为30端C 处的仰角为45º.若该楼高为房的顶端平齐.求广告屏幕上端与下端之间的距离( 3 ≈1.732,结果精确到0.1m ).25.(本题满分7分)已知关于x 的一元二次方程22(21)0x m x m +-+=有两个实数根1x 和2x .(1)求实数m 的取值范围;(2)当22120x x -=时,求m 的值.26.(本题满分8分)抛物线2y x x =--C 点 (1)求ABC S ∆;(2)抛物线y 上是否存在点M ,使S ∆说明理由.A B C D E27.(本题10分)抛物线a bx ax y 42-+=经过)0,1(-A ,)4,0(C 两点,与x 轴交于另一点B .(1)求抛物线的解析式;(2)已知点)1,(+m m D 在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标;学校 考场号_____________考试号_____________班级_____________姓名_____________成绩_____________------------------------------------------------------------装-----------订-----------线-------------------------------------------------------------二、填空题:本大题共8小题,每小题3分,共24分.11. 12. 13. 14. 15. 16. 17. ______ 18.第二部分(共76分)三、解答题:本大题共10小题,共76分.解答时应写出必要的计算过程、推演步骤或文字2013-2014学年第一学期期中考试试卷答案初三数学二、填空题:本大题共8小题,每小题3分,共24分.11.0,221==x x 12. 2或-2 13. 5 14. 3 15. 30% 16.52 17. 小 ,0 18.三、解答题:本大题共10小题,共76分.19.1021(π1)2cos 454-⎛⎫---+ ⎪⎝⎭°解:原式=41123+--………………(4分) =223+…………… …(5分)20.(1) 31082=+x x (2)13)2(2-=--x x x .解:0)14)(32(=-+x x ………(3分) 解:13222-=--x x x ……(1分)41,2321=-=x x …(5分) 01222=-+x x ……(2分)4322±-=x ……(3分) 231,23121--=+-=x x ……(5分) 21.(1)证明:∵在△ABC 中,AD 是BC 边上的高 ∴BC AD ⊥,︒=∠=∠90ADC ADB∴tanB=BD AD ,cos ∠DAC=ACAD… …(1分) ∵tan ∠B=cos ∠DAC.∴AC=BD … …(2分) (2)在直角△A DC 中∵sin ∠C=1312=ACAD ,设k AC k AD 13,12==,则k DC 5=… (3分) ∵AC=BD ∴k BD 13=∴1218==k BC … (4分)∴32=k … (5分)∴AC=8… (6分)22.(1)3,121-==x x (2分)(2)-3<x <1 (4分) (3)X >-1 (6分)考场号_____________考试号_____________班级_____________姓名_____________成绩_____________------------------------------------------------------------装-----------订-----------线-------------------------------------------------------------(4)k <4 (8分)23.解:设小路的宽为x 米,依题意可列方程:()()⎪⎭⎫⎝⎛-⨯⨯=--811153215232x x(3分)解方程得x=1,x=31(不合题意舍去) (5分) 答:小路的宽为1米 (6分)24.解:∵∠CBE =45º CE ⊥AE ∴CE =BE ………… ……………(1分) ∵CE =26.65-1.65=25 ∴BE =25∴AE =AB +BE =30 ……………………………… ………(3分) 在Rt △ADE 中,∵∠DAE =30º ∴DE =AE ×tan30 º =30×33=10 3 ………… ………(5分) ∴CD =CE -DE =25-10 3 ≈25-10×1.732=7.68≈7.7(m) …… ………(6分) 答:广告屏幕上端与下端之间的距离约为7.7m25.解:(1)由题意有22(21)40m m ∆=--≥, …(2分) 解得14m ≤. 即实数m 的取值范围是14m ≤. (3分) (2)由22120x x -=得1212()()0x x x x +-=. (4分)若120x x +=,即(21)0m --=,解得12m =.∵21>41,12m ∴=不合题意,舍去. (5分) 若120x x -=,即12x x = 0∴∆=,由(1)知14m =.故当22120x x -=时,14m =. (7分)26.(1)∵220x x --=∴12x = 21x =- (1分) ∴AB=3 (2分) ∵OC=2 ∴3ABC S ∆= (4分) (2) 2MAB ABC S S ∆∆==6 而AB=3∴h=4 即M 的纵坐标为-4或4 (5分) 当m=-4时 224x x --=- 而∆=1-4×2<0 即无解 ∴不存在M 点 (6分)当m=4时 224x x --= 13x = 22x =- ∴12(2,4)(3,4)M M - (8分)27.(1)∵抛物线a bx ax y 42-+=经过)0,1(-A ,)4,0(C 两点∴⎩⎨⎧=-=--4404a a b a (1分)解得⎩⎨⎧=-=31b a (2分)∴抛物线的解析式432++-=x x y (3分) (2)∵点)1,(+m m D 在抛物线上, ∴4312++-=+m m m ∴1-=m 或3=m∵点D 在第一象限, ∴点)4,3(D由(1)知,OB OC =,∴︒=∠45CBA 设点D 关于直线BC 对称的点为点E ∵)4,0(C ,∴CD 平行AB ,且3=CD ∴︒=∠=∠45DCB ECB ∴点E 在y 轴上,且3==CD CE∴1=OE ,∴)1,0(E (3)如图,作AB PF ⊥于点F ,DG ⊥由(1),有4==OB OC ∴︒=∠45OBC ∵︒=∠45DBP∴PBA CBD ∠=∠∵)4,0(C ,)4,3(D ∴CD 平行AB ,且3=CD∴︒=∠=∠45CBO DCG ,∴==CG DG ∵4==OB OC ,∴24=CB∴225=-=CG BC BG∴53tan tan ==∠=∠BG DG CBD PBF (8分) 设t PF 3=,则t BF 5=,∴45-=t OF∴)3,45(t t P +- (9分) ∵点P 为抛物线上一点∴4)45(3)45(32++-++--=t t t ∴0=t (舍去)或2522=t ∴)2566,52(-P (10分)28.(1)∵折叠后使点B 与点A 重合 ∴BCD ACD ∆≅∆ 设点C (0,m ) ∴m BC -=4∴m BC AC -==4 (1分) 直角△A OC 中,222OA OC AC += 即2222)4(+=-m m ,解得23=m (2分) ∴C (0,23) (3分) (2)折叠后点B 落在边OA 上的点为'B ∴BCD CD B ∆≅∆'∵y OC x OB ==,',则y BC C B -==4'(4分) 直角OC B '∆中,2'22'OB OC C B +=∴2222)4(+=-y y (5分) 即2812+-=x y (6分) ∵点'B 在边OA 上,有20≤≤x∴y 的取值范围是223≤≤y (7分) (3)折叠后点B 落在边OA 上的点为''B ,使D B ''平行OB则D CB OCB ''''∠=∠ ∵D CB CBD ''∠=∠ ∴C B ''平行AB∴''COB Rt ∆相似于BOA Rt ∆∴''2OB OC = (8分) 在''COB Rt ∆中,设)0('' n n OB =,则n OC 2= 由(2)的结论,得28122+-=n n∴解得548±-=n (9分) ∵0 n ∴548+-=n∴点C 的坐标(0,5816+-) (10分)。

江苏省苏州市工业园区2023-2024学年七年级下学期期末数学试卷(含详案)

江苏省苏州市工业园区2023-2024学年七年级下学期期末数学试卷(含详案)

2023-2024学年江苏省苏州市工业园区七年级(下)期末数学试卷一、选择题:本大题共8小题,每小题2分,共16分.在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项前的字母填在答题卡相应位置上.1.(2分)下列各式计算正确的是( )A.2a+3a=5a2B.a9÷a3=a3C.a2•a3=a6D.(a3)2=a62.(2分)据报道,华为与中芯国际正计划开发3nm级制程芯片.其中,3nm=0.000000003m,数据0.000000003用科学记数法可以表示为( )A.0.3×10﹣8B.3×10﹣9C.3×10﹣10D.30×10﹣103.(2分)苏州园林中的花窗图案丰富多样,美不胜收.下列花窗图案中可以由一个基本图案经过平移得到的是( )A.四钱纹样式B.拟日纹样式C.梅花纹样式D.海棠纹样式4.(2分)若多项式x2﹣2mx+16是一个完全平方式,则m的值为( )A.8B.±8C.4D.±46.(2分)如图,已知AB=CD.若添加一个条件后,可得△ABC≌△CDA,则在下列条件中,可以添加的是( )A.∠B=∠D B.AD∥BCC.AB∥CD D.AC平分∠BCD7.(2分)被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕每只各重多少斤?”设每只雀重x斤,每只燕重y斤,可列方程组为( )A.B.C.D.8.(2分)如图,在四边形ABCD中,∠B=∠C=90°,点E、F在边BC上,点P在四边形的内部,且AE⊥PE,AE=PE,∠CFD=∠PFE.若BE=CD=1,CF=2,AB=3,则四边形ABCD的面积为( )A.18B.16C.14D.12二、填空题:本大题共8小题,每小题2分.共16分.把答案直接填在答题卡相应位置上.9.(2分)命题“对顶角相等”的逆命题是 命题(填“真”或“假”).10.(2分)若2x=4y=8,则2x+2y= .11.(2分)已知2x+3y=5,用含x的代数式表示y,则y= .12.(2分)已知x+y=2,且x﹣y>0,则x的取值范围是 .13.(2分)若m+n=1,则m2+2n﹣n2= .14.(2分)已知一个多边形的内角和是外角和的4倍,则这个多边形的边数是 .15.(2分)如图,先将两个全等的直角三角形ABC、DEF重叠在一起,再将三角形DEF沿CA方向平移2cm,AB、EF相交于点G.若BC=8cm,GE=3cm,则阴影部分的面积为 cm2.16.(2分)如图,在四边形ABCD中,AD∥BC,AD=6cm,BD=10cm,BC>8cm.动点P以1cm/s的速度从点A出发沿边AD向点D匀速移动,动点Q以2cm/s的速度从点B出发沿边BC向点C匀速移动,动点M从点B出发沿对角线BD向点D匀速移动,三点同时出发.连接PM、QM,当动点M的速度为 cm/s时,存在某个时刻,使得以P、D、M为顶点的三角形与△QBM全等.三、解答题:本大题共11小题,共68分.请将解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.17.(4分)计算:.18.(4分)因式分解:2a 3﹣4a 2b +2ab 2.19.(5分)解不等式组,并求出它的所有整数解的和.20.(5分)求代数式(a +2)(a ﹣2)﹣(a +2)2+(a +2)(a +6)的值,其中a =﹣1.21.(6分)已知关于x 、y 的二元一次方程组.(1)若方程组的解满足x ﹣y =1,求m 的值;(2)若方程组的解满足x +y <0,求m 的取值范围.22.(6分)“学以致用,知行并进”指的是学习不仅仅是为了获取知识,更重要的是将所学知识应用到实际生活中,从而实现知行合一的境界.生活中经常会遇到一些不可直接测量的距离或角度,为了测量出这些距离和角度,项目学习小组进行了如下探究:项目主题自制数学工具,测量生活中的“线”与“角”项目任务项目一:测量锥形容器内部底面内径项目二:测量斜坡的倾斜角度所需材料刻度尺、两根小棒、螺丝钉等正方形板、指针、重锤、3D 打印机等测量方案示意图实施步骤1.用螺丝钉将两根小棒AD 、BC 在它们的中点O 处固定;2.再将两根小棒的A 、B 端分别置于杯1.利用正方形板、指针、重锤等材料,借助3D 打印技术,制作“3D 迷你测坡仪”;2.将“3D 迷你测坡仪”置于斜坡OB 上,特重子内部底面内径的两端;3.用刻度尺测量两根小棒的C 、D 端之间的距离.锤与指针稳定;3.读出指针MC 所对的∠CMD 的度数.测量数据CD =9cm∠CMD =17°项目结论锥形容器内部底面内径AB =9cm斜坡OB 的倾斜角度为17°(1)项目一中,利用了全等三角形的性质.通过证明△AOB ≌△DOC ,就可以得到AB =CD =9cm .判定△AOB ≌△DOC 的方法是 ;A .SAS B .ASA C .AAS D .SSS(2)项目二中,利用了物理中的重力原理与数学中的平行线的性质.如图是简化的测量方案示意图,其中,MC ∥OA ,MD ∥OB ,请你证明:∠CMD =∠O .23.(6分)把如图所示的由16个小正方形组成的图形,用三种不同的方法沿网格线分割成两个全等图形.24.(6分)观察下列等式:①32﹣12=1×8;②52﹣32=2×8;③72﹣52=3×8;…根据上述式子的规律,解答下列问题:(1)第4个等式为  ;(2)写出第n 个等式,并说明其正确性.25.(8分)如图,在△ABC 中,AD 是角平分线,点E 、F 分别在边AC 、BC 上,AD 、BE 相交于点G ,且∠AGB +∠BEF =180°.(1)求证:∠CAD =∠CEF ;(2)若∠BAC=60°,∠C=40°,求∠BFE的度数.26.(8分)2024长三角国际田径钻石赛(上海/苏州)于2024年4月27日19:00在苏州奥体中心体育场举行.本站赛事名将云集,来自全球的近200名顶尖运动员参与了16个项目的激烈角逐.本站赛事门票价格如下:门票类别VIP A区B区C区D区票价(元)88058038018080(1)若购买C区、D区门票共5张,总票价为700元,C区、D区门票各购买了几张?(2)若购买A区、B区门票共5张,总票价不超过2400元,最多购买了几张A区门票?(3)若购买VIP、A区、B区门票共10张,总票价为5500元,可能购买了几张VIP门票?27.(10分)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D.(1)若△ABC的面积S△ABC=20,AB+CD=14,求AB﹣CD的值;(2)点E在边BC上,AE与CD相交于点F,且∠CEF=∠CFE.请你利用无刻度直尺和圆规作出点E;(不写作法,保留作图痕迹)(3)在(2)的条件下,延长AC至点G,连接GE,使GE=BE.若S△ABE=5S△CGE,求证:4BE=5CE.2023-2024学年江苏省苏州市工业园区七年级(下)期末数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题2分,共16分.在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项前的字母填在答题卡相应位置上.1.(2分)下列各式计算正确的是( )A.2a+3a=5a2B.a9÷a3=a3C.a2•a3=a6D.(a3)2=a6【解答】解:∵2a+3a=5a,∴选项A不符合题意;∵a9÷a3=a6,∴选项B不符合题意;∵a2•a3=a5,∴选项C不符合题意;∵(a3)2=a6,∴选项D符合题意,故选:D.2.(2分)据报道,华为与中芯国际正计划开发3nm级制程芯片.其中,3nm=0.000000003m,数据0.000000003用科学记数法可以表示为( )A.0.3×10﹣8B.3×10﹣9C.3×10﹣10D.30×10﹣10【解答】解:0.000000003=3×10﹣9,故选:B.3.(2分)苏州园林中的花窗图案丰富多样,美不胜收.下列花窗图案中可以由一个基本图案经过平移得到的是( )A.四钱纹样式B.拟日纹样式C.梅花纹样式D.海棠纹样式【解答】解:A、本选项的图案可以看作由“基本图案”经过平移得到;B、本选项的图案可以看作由“基本图案”旋转平移得到;C、本选项的图案不可以看作由“基本图案”经过旋转得到;D、本选项的图案可以看作由“基本图案”经过轴对称得到;故选:A.4.(2分)若多项式x2﹣2mx+16是一个完全平方式,则m的值为( )A.8B.±8C.4D.±4【解答】解:∵多项式x2﹣2mx+16是一个完全平方式,∴﹣2m=±8,解得:m=±4,故选:D.6.(2分)如图,已知AB=CD.若添加一个条件后,可得△ABC≌△CDA,则在下列条件中,可以添加的是( )A.∠B=∠D B.AD∥BCC.AB∥CD D.AC平分∠BCD【解答】解:A、∵AB=CD,AC=AC,∠B=∠D,∴△ABC和△CDA不一定全等,故A不符合题意;B、∵AD∥BC,∴∠DAC=∠ACB,∵AB=CD,AC=AC,∴△ABC≌△CDA(SAS),故B符合题意;C、∵AB∥CD,∴∠BAC=∠ACD,∵AB=CD,AC=AC,∴△ABC和△CDA不一定全等,故C不符合题意;D、∵AC平分∠BCD,∴∠ACB=∠ACD,∵AB=CD,AC=AC,∴△ABC和△CDA不一定全等,故D不符合题意;故选:B.7.(2分)被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕每只各重多少斤?”设每只雀重x斤,每只燕重y斤,可列方程组为( )A.B.C.D.【解答】解:设每只雀有x两,每只燕有y两,由题意得,.故选:C.8.(2分)如图,在四边形ABCD中,∠B=∠C=90°,点E、F在边BC上,点P在四边形的内部,且AE⊥PE,AE=PE,∠CFD=∠PFE.若BE=CD=1,CF=2,AB=3,则四边形ABCD的面积为( )A.18B.16C.14D.12【解答】解:作PG⊥BC于点G,则∠EGP=∠PGF=90°,∵∠B=∠C=90°,∴∠B+∠C=180°,∠B=∠EGP,∠C=∠PGF,∴AB∥DC,∴四边形ABCD是梯形,∵AE⊥PE,∴∠AEP=90°,∴∠GEP+∠AEB=180°,∵∠BAE+∠ABE=180°,∴∠BAE=∠GEP,在△ABE和△EGP中,,∴△ABE≌△EGP(AAS),∴AB=EG=3,BE=GP,∵BE=CD=1,∴CD=GP,在△CFD和△GFP中,,∴△CFD≌△GFP(AAS),∴CF=GF=2,∴BC=BE+EG+GF+CF=1+3+2+2=8,∴S四边形ABCD=×(3+1)×8=16,故选:B.二、填空题:本大题共8小题,每小题2分.共16分.把答案直接填在答题卡相应位置上.9.(2分)命题“对顶角相等”的逆命题是 假 命题(填“真”或“假”).【解答】解:命题“对顶角相等”的逆命题是相等的角为对顶角,此逆命题为假命题.故答案为假.10.(2分)若2x=4y=8,则2x+2y= 64 .【解答】解:∵2x=4y=8,∴2x=(22)y=8,2x=22y=23,∴x=3,2y=3,∴2x+2y=23+3=26=64,故答案为:64.11.(2分)已知2x+3y=5,用含x的代数式表示y,则y= .【解答】解:2x+3y=5,解得:y=.故答案为:.12.(2分)已知x+y=2,且x﹣y>0,则x的取值范围是 x>1 .【解答】解:∵x+y=2,∴y=2﹣x;∵x﹣y>0,∴x﹣(2﹣x)>0,∴2x﹣2>0,∴2x>2,解得x>1.故答案为:x>1.13.(2分)若m+n=1,则m2+2n﹣n2= 1 .【解答】解:∵m+n=1,∴m2+2n﹣n2=(m+n)(m﹣n)+2n=m﹣n+2n=m+n=1,故答案为:1.14.(2分)已知一个多边形的内角和是外角和的4倍,则这个多边形的边数是 10 .【解答】解:设这个多边形的边数为n,则该多边形的内角和为(n﹣2)×180°,依题意得(n﹣2)×180°=360°×4,解得n=10,∴这个多边形的边数是10.故答案为:1015.(2分)如图,先将两个全等的直角三角形ABC、DEF重叠在一起,再将三角形DEF沿CA方向平移2cm,AB、EF相交于点G.若BC=8cm,GE=3cm,则阴影部分的面积为 13 cm2.【解答】解:由全等三角形的性质可知CF=2cm,EF=BC=8cm,∠DFE=∠C=90°,∴FG=EF﹣GE=8﹣3=5cm.由平移的性质可知CF=2cm,∴S阴影=S直角梯形BCFG=(FG+BC)×CF=×(5+8)×2=13(cm2).故答案为:13.16.(2分)如图,在四边形ABCD中,AD∥BC,AD=6cm,BD=10cm,BC>8cm.动点P以1cm/s的速度从点A出发沿边AD向点D匀速移动,动点Q以2cm/s的速度从点B出发沿边BC向点C匀速移动,动点M从点B出发沿对角线BD向点D匀速移动,三点同时出发.连接PM、QM,当动点M的速度为 0.5或2 cm/s时,存在某个时刻,使得以P、D、M为顶点的三角形与△QBM全等.【解答】解:由题知,设运动的时间为t s,动点M的速度为v cm/s,则PD=(6﹣t)cm,DM=(10﹣vt)cm,BM=vt cm,BQ=2t cm.因为AD∥BC,所以∠ADB=∠DBC.当△DPM≌△BMQ时,DP=BM,DM=BQ,所以6﹣t=vt,10﹣vt=2t,解得t=4,则6﹣4=4v,解得v=0.5.当△DPM≌△BQM时,DP=BQ,DM=BM,所以6﹣t=2t,10﹣vt=vt,解得t=2,所以10﹣2v=2v,解得v=2.5.综上所述,动点M的速度为0.5cm/s或2.5cm/s.故答案为:0.5或2.三、解答题:本大题共11小题,共68分.请将解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.17.(4分)计算:.【解答】解:原式=8﹣1+1=1﹣1+8=8.18.(4分)因式分解:2a3﹣4a2b+2ab2.【解答】解:原式=2a(a2﹣2ab+b2)=2a(a﹣b)2.19.(5分)解不等式组,并求出它的所有整数解的和.【解答】解:解不等式3x﹣2≤4得,x≤2,解不等式2﹣得,x>﹣2,所以原不等式组的解集为:﹣2<x≤2,所以此不等式组的所有整数解的和为:﹣1+0+1+2=2.20.(5分)求代数式(a+2)(a﹣2)﹣(a+2)2+(a+2)(a+6)的值,其中a=﹣1.【解答】解:(a+2)(a﹣2)﹣(a+2)2+(a+2)(a+6)=a2﹣4﹣a2﹣4a﹣4+a2+8a+12=a2+4a+4,当a=﹣1时,原式=(﹣1)2+4×(﹣1)+4=1﹣4+4=1.21.(6分)已知关于x、y的二元一次方程组.(1)若方程组的解满足x﹣y=1,求m的值;(2)若方程组的解满足x+y<0,求m的取值范围.【解答】解:(1)由题知,两式相加得,4x﹣4y=4+4m,所以x﹣y=1+m.因为x﹣y=1,所以1+m=1,解得m=0.(2)两式相减得,2x+2y=4﹣4m,所以x+y=2﹣2m.因为x+y<0,所以2﹣2m<0,解得m>1.22.(6分)“学以致用,知行并进”指的是学习不仅仅是为了获取知识,更重要的是将所学知识应用到实际生活中,从而实现知行合一的境界.生活中经常会遇到一些不可直接测量的距离或角度,为了测量出这些距离和角度,项目学习小组进行了如下探究:项目主题自制数学工具,测量生活中的“线”与“角”项目任务项目一:测量锥形容器内部底面内径项目二:测量斜坡的倾斜角度所需材料刻度尺、两根小棒、螺丝钉等正方形板、指针、重锤、3D 打印机等测量方案示意图实施步骤1.用螺丝钉将两根小棒AD 、BC 在它们的中点O 处固定;2.再将两根小棒的A 、B 端分别置于杯子内部底面内径的两端;3.用刻度尺测量两根小棒的C 、D 端之间的距离.1.利用正方形板、指针、重锤等材料,借助3D打印技术,制作“3D 迷你测坡仪”;2.将“3D 迷你测坡仪”置于斜坡OB 上,特重锤与指针稳定;3.读出指针MC 所对的∠CMD 的度数.测量数据CD =9cm ∠CMD =17°项目结论锥形容器内部底面内径AB =9cm 斜坡OB 的倾斜角度为17°(1)项目一中,利用了全等三角形的性质.通过证明△AOB ≌△DOC ,就可以得到AB =CD =9cm .判定△AOB ≌△DOC 的方法是 A ;A .SASB .ASAC .AASD .SSS(2)项目二中,利用了物理中的重力原理与数学中的平行线的性质.如图是简化的测量方案示意图,其中,MC ∥OA ,MD ∥OB ,请你证明:∠CMD =∠O .【解答】(1)解:∵O 为AD 与BC 的中点,∴OC =OB ,OD =OA ,在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),故选:A;(2)证明:∵MC∥OA,∴∠O=∠OBM,∵MD∥OB,∴∠CMD=∠OBM,∴∠CMD=∠O.23.(6分)把如图所示的由16个小正方形组成的图形,用三种不同的方法沿网格线分割成两个全等图形.【解答】解:分割线如图所示:24.(6分)观察下列等式:①32﹣12=1×8;②52﹣32=2×8;③72﹣52=3×8;…根据上述式子的规律,解答下列问题:(1)第4个等式为 92﹣72=4×8 ;(2)写出第n个等式,并说明其正确性.【解答】解:(1)∵①32﹣12=1×8;②52﹣32=2×8;③72﹣52=3×8;…,∴第④个等式为:92﹣72=4×8,故答案为:92﹣72=4×8;(2)猜想:第n个等式为:(2n+1)2﹣(2n﹣1)2=8n,等式左边=4n2+4n+1﹣4n2+4n﹣1=8n=右边,故猜想成立.25.(8分)如图,在△ABC中,AD是角平分线,点E、F分别在边AC、BC上,AD、BE相交于点G,且∠AGB+∠BEF=180°.(1)求证:∠CAD=∠CEF;(2)若∠BAC=60°,∠C=40°,求∠BFE的度数.【解答】(1)证明:∵∠AGB+∠BEF=180°,∠AGB+∠AGE=180°,∴∠AGE=∠BEF,∴EF∥AD,∴∠CAD=∠CEF;(2)解:∵∠BAC=60°,∠C=40°,∴∠ABC=180°﹣60°﹣40°=80°,∵AD是角平分线,∴∠BAD=∠BAC=30°,∴∠ADB=180°﹣80°﹣30°=70°,∵EF∥AD,∴∠BFE=∠ADB=70°.26.(8分)2024长三角国际田径钻石赛(上海/苏州)于2024年4月27日19:00在苏州奥体中心体育场举行.本站赛事名将云集,来自全球的近200名顶尖运动员参与了16个项目的激烈角逐.本站赛事门票价格如下:门票类别VIP A区B区C区D区票价(元)88058038018080(1)若购买C区、D区门票共5张,总票价为700元,C区、D区门票各购买了几张?(2)若购买A区、B区门票共5张,总票价不超过2400元,最多购买了几张A区门票?(3)若购买VIP、A区、B区门票共10张,总票价为5500元,可能购买了几张VIP门票?【解答】解:(1)设购买x张C区门票,则购买(5﹣x)张D区门票,根据题意得:180x+80(5﹣x)=700,解得:x=3,∴5﹣x=5﹣3=2.答:购买3张C区门票,2张D区门票;(2)设购买y张A区门票,则购买(5﹣y)张B区门票,根据题意得:580y+380(5﹣y)≤2400,解得:y≤,又∵y为正整数,∴y的最大值为2.答:最多购买了2张A区门票;(3)设购买m张VIP门票,n张A区门票,则购买(10﹣m﹣n)张B区门票,根据题意得:880m+580n+380(10﹣m﹣n)=5500,∴n=,又∵m,n,(10﹣m﹣n)均为正整数,∴.答:购买了1张VIP门票.27.(10分)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D.(1)若△ABC的面积S△ABC=20,AB+CD=14,求AB﹣CD的值;(2)点E在边BC上,AE与CD相交于点F,且∠CEF=∠CFE.请你利用无刻度直尺和圆规作出点E;(不写作法,保留作图痕迹)(3)在(2)的条件下,延长AC至点G,连接GE,使GE=BE.若S△ABE=5S△CGE,求证:4BE=5CE.【解答】(1)解:∵S△ABC=•AB•CD=20,∴AB•CD=40,∵AB+CD=14,∴AB﹣CD===6;(2)解:图形如图所示:(3)证明:如图,过点E作EH⊥AB于点H.∵AE平分∠CAB,∴∠CAE=∠HAE,在△AEC和△AEH中,,∴△AEC≌△AEH(AAS),∴EC=EH,AC=AH,在Rt△ECG和Rt△EHB中,,∴Rt△ECG≌Rt△EBH(HL),∵S△ABE=5S△CGE,∴S△ABE=5S△EHB,∴AB=5BH,∴AC=AH=4HB,∴AC:AB=4:5,∵====,∴4BE=5CE.。

江苏省苏州市工业园区2014届下学期初中九年级5月中考二模考试数学试卷 有答案

江苏省苏州市工业园区2014届下学期初中九年级5月中考二模考试数学试卷 有答案

江苏省苏州市工业园区2014届下学期初中九年级5月中考二模考试数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是 符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相对应的位置上. 1.在﹣3,﹣1,0,2这四个数中,最小的数是(▲)A .﹣3B .﹣1C .0D .2 2.下列运算正确的是(▲)A .326a a a =B .325()a a -=C .3=-D .2336(3)9ab a b =3. 数据5,7,5,8,6,13,5的中位数是A .5B .6C .7D .84. 下列说法中错误的是(▲)A .某种彩票的中奖率为1%,买100张彩票一定有1张中奖B .从装有10个红球的袋子中,摸出1个白球是不可能事件C .为了解一批日光灯的使用寿命,可采用抽样调查的方式D .掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是615. 如图所示的工件的主视图是(▲)A .B .C .D .6. 函数13-+=x x y 中自变量x 的取值范围是(▲) A .x ≥-3; B .x ≠1; C .x ≥-3且x ≠1; D .x ≠-3且x ≠1.7.已知点A(-1,y 1)、B(2,y 2)都在双曲线y = 3+2mx 上,且y 1>y 2,则m 的取值范围是(▲)A .m <0B .m >0C .m >- 3 2D .m <- 328.如图,在平面直角坐标中,等腰梯形ABCD 的下底在x 轴上,且B 点坐标为(4,0),D 点坐标为(0,3),则AC 长为(▲)A .4B .5C .6D .不能确定9. 如图,把一个斜边长为2且含有300角的直角三角板ABC 绕直角顶点C 顺时针旋转900到△A 1B 1C ,则在旋转过程中这个三角板扫过的图形的面积是(▲)A .πB .34π.1112π10. 如图1,四边形ABCD 是边长为23的正方形,长方形AEFG 的宽AE 72=,长EF =.将长方形AEFG 绕点A 顺时针旋转15°得到长方形AMNH (如图2),这时BD 与MN 相交于点O .则在图2中,D 、N 两点间的距离是(▲)A .5B .23C .32 D.7二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置上. 11.计算:32-= ▲ .12.分解因式3269a a a -+= ▲ . 13.用科学记数法表示5700000为 ▲ . 14.已知扇形的圆心角为60°,弧长等于3π,则该扇形的半径是 ▲ .15.一个样本为1,3,2,2, c b a ,,.已知这个样本的众数为3,平均数为2, 那么这个样本的方差为 ▲ .16.如图,在矩形ABCD 中,以点A 为圆心,AD 的长为半径画弧,交AB 于点E ,17.如图,已知动点A 在函数(x>o)的图象上,AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,延长CA 至点D ,使AD=AB ,延长BA 至点E ,使AE=AC.直线DE 分别交x 轴,y 轴于点P,Q.当QE :DP=4:9时,图中的阴影部分的面积等于 ▲ .18. 如图,射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC ∥QN ,AM=MB=2cm ,QM=4cm .动点P 从点Q 出发,沿射线QN 以每秒1cm 的速度向右移动,经过t 秒,以点P 为圆心,cm 为半径的圆与△ABC 的边相切(切点在边上),请写出t 可取的一切值 ▲ (单位:秒)三、解答题:(本大题共11小题,共76分.)19.(本题满分5分) 计算:)2152cos60++2π-⎛⎫--- ⎪⎝⎭20.(本题满分5分)解不等式组:215 3112xxx-<⎧⎪⎨-+≥⎪⎩21.(本题满分5分)先化简,再求值:222x1x12+xx2x+1x+x--⋅-,其中13-=x.22.(本题满分6分) 解分式方程:.23.(本题满分6分) 如图,在□ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证:四边形DEBF是菱形.24.(6分)某学校举行的“校园好声音”比赛中,甲、乙、丙三位评委对选手的综合表现,分别给出“待定”或“通过”的结论.(1)写出三位评委给出A选手的所有可能的结论:(2)对于选手A,只有甲、乙两位评委给出相同结论的概率是多少?25. (8分) 2013年1月1日新交通法规开始实施.为了解某社区居民遵守交通法规情况,小明随机选取部分居民就“行人闯红灯现象”进行问卷调查,调查分为“A:从不闯红灯;B:偶尔闯红灯;C:经常闯红灯;D:其他”四种情况,并根据调查结果绘制出部分条形统计图(如图1)和部分扇形统计图(如图2).请根据图中的信息,解答下列问题:(1)本次调查共选取________________名居民;(2)求扇形统计图中“C ”所对扇形的圆心角的度数,并将条形统计图补充完整; (3)如果该社区共有居民1600人,估计有多少人从不闯红灯?26.(本小题6分)如图,某文化广场灯柱AB 被钢缆CD 固定,已知CB =3米,且4sin 5DCB ∠=.(1)求钢缆CD 的长度;(2)若AD =2米,灯的顶端E 距离A 处1.6米,且∠EAB =120°,则灯的顶端E 距离地面多少米?27.(本题满分8分)已知:在△ABC 中,以AC 边为直径的⊙O 交BC 于点D ,在劣弧AD ⌒上取一点E 使∠EBC = ∠DEC ,延长BE 依次交AC 于G ,交⊙O 于H .(1)求证:AC ⊥BH(2)若∠ABC = 45°,⊙O 的直径等于10,BD =8,求CE 的长.28.(本题满分10分) 如图1,在△ABC 中,∠C =90°,A C =3,BC =4,CD 是斜边AB 上的高,点E 在斜边AB 上,过点E 作直线与△ABC 的直角边相交于点F ,设AE =x ,△AEF 的面积为y .图1 备用图(1)求线段AD的长;(2)若EF⊥AB,当点E在斜边AB上移动时,①求y与x的函数关系式(写出自变量x的取值范围);②当x取何值时,y有最大值?并求出最大值.(3)若点F在直角边AC上(点F与A、C不重合),点E在斜边AB上移动,试问,是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.29. (本题满分11分)如图1,已知直线y=kx与抛物线y=交于点A(3,6).(1)求直线y=kx的解析式和线段OA的长度;(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?初三数学答案一、A,C,B,A,B, C,D,B,D ,A二、11.; 12. 2)3(-a a ;13. 6107.5⨯;14. 1; 15.78;16. 150° 17.313; 18. t=2或3≤t ≤7或t=8. 三、19. 9;20. x ≤-13;21.2333,3+x ;22.,21=x 是原方程的解。

2017-2018学年苏州市市区学校七年级(下)期末数学试卷(附参考解析)

2017-2018学年苏州市市区学校七年级(下)期末数学试卷(附参考解析)

2017-2018学年江苏省苏州市市区学校七年级(下)期末数学试卷 、选择题(每题 2分,共16分)1. ( 2分)若三角形的两条边的长度是4cm 和10cm,则第三条边的长度可能是( ) A . 4 cm B. 5 cm C. 9 cmD. 14 cm 2. ( 2分)下列计算正确的是() A. a+2a 2=3a 3 B, a 8+a 2= a 4 C, a 3?a 2= a 6 D. ( a 3)2= a 6 3. ( 2分)下列等式由左边至右边的变形中,属于因式分解的是() A. x 2+5x-1=x (x+5) - 12B. x - 4+3x= ( x+2) ( x- 2) +3xC. x2-9= (x+3) (x-3)D. ( x+2) (x — 2) = x 2- 44. (2分)已知" t 是二元一次方程2x+my=1的一个解,则 m 的值为() I 产TA. 3 B, - 5 C, - 3 D. 5 5. (2分)如图,在^ ABC 和4DEF 中,AB=DE, /B = /DEF,补充下哪一条件后,能应用“ SAS' 判定△ABC^^DEF ( )AB//CD, /B=50° , / C=40° ,则/ E 等于( 7.(2分)下列命题:①同旁内角互补;②若同=|b|,则a=b;③同角的余角相等;④三角形的一个外角等于两个内角的和.其中是真命题的个数是( ) A.4个 B.3个 C.2个 D.1个n8. (2分)在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号.如记£ k= 1+2+3+…k=l + (n-1) +n, 工(x+k ) = ( x+3) + (x+4) +,,, + (x+n );已知 工 [(x+k ) (x - k+1) ] =2x2+2 x+m, k-3 k=2B. BE=CFC. / A=/ DD. / ACB=Z DFE A. 70°B. 80°C. 90° D, 100° A. AC= DF6. ( 2分)如图,直线则m的值是()A. - 40B.- 8C. 24D.8二、填空题:(每题2题,共16分)9.(3分)一种花瓣的花粉颗粒直径约为0.0000065米,将数据0.0000065用科学记数法表示为 .10.(3 分)若x n=4, y n=9,则(xy)n=.11.(3分)若关于x的多项式x2+ax+9是完全平方式,则a =.12.(3分)内角和等于外角和2倍的多边形是边形.13.(3 分)若a+b=7, ab = 12,贝U a2 - 3ab+b2=.14.(3分)如图,在^ ABC中,/A=50。

2013—2014学年度七年级第二学期期末调研考试数学试题(含答案)

2013—2014学年度七年级第二学期期末调研考试数学试题(含答案)

2013—2014学年度七年级第二学期期末调研考试数 学 试 卷(人教版)注意:本试卷共8页,满分为120分,考试时间为120分钟.一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.点到直线的距离是指……………………………………………………………( ) A .从直线外一点到这条直线的垂线 B .从直线外一点到这条直线的垂线段 C .从直线外一点到这条直线的垂线的长 D .从直线外一点到这条直线的垂线段的长2.如图,将直线l 1沿着AB 的方向平移得到直线l 2,若∠1=50°, 则∠2的度数是…………………………………………( ) A .40° B .50° C .90° D .130°3.下列语句中正确的是…………………………………………………………( ) A .-9的平方根是-3 B .9的平方根是3 C .9的算术平方根是±3 D .9的算术平方根是34.下列关于数的说法正确的是……………………………………………………( ) A .有理数都是有限小数 B .无限小数都是无理数 C .无理数都是无限小数 D .有限小数是无理数5.点(-5,1)所在的象限是……………………………………………………( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.将点A (2,1)向左平移2个单位长度得到点A ′,则点A ′的坐标是………( ) A .(0,1) B .(2,-1) C .(4,1) D .(2,3)7.下列调查中,适宜采用全面调查方式的是……………………………………( ) A .对我国首架大陆民用飞机各零部件质量的检查A Bl 1l 212 (2题图)B .调查我市冷饮市场雪糕质量情况C .调查我国网民对某事件的看法D .对我市中学生心理健康现状的调查8.二元一次方程3x +2y =11………………………………………………………( ) A .任何一对有理数都是它的解 B .只有一个解 C .只有两个解 D .有无数个解9.方程组⎩⎨⎧=+=+32y x y x ■,的解为⎩⎨⎧==■y x 2,则被遮盖的两个数分别为…………( )A .1,2B .5,1C .2,3D .2,410.如图是甲、乙两户居民家庭全年支出费用的扇形统计图,根据统计图,下面对食品支出费用判断正确的是…………………………………………………………( )A .甲户比乙户多B .乙户比甲户多C .甲、乙两户一样多D .无法确定哪一户多11.如图,点O 在直线AB 上,OC 为射线,∠1比∠2的3倍少10°,设∠1,∠2的度数分别为x ,y ,那么下列求出这两个角的度数的方程是………………………( )A .⎩⎨⎧-==+10180y x y xB .⎩⎨⎧-==+103180y x y xC .⎩⎨⎧+==+10180y x y x D .⎩⎨⎧-==1031803y x y12.5名学生身高两两不同,把他们按从高到低排列,设前三名的平均身高为a 米,后两名的平均身高为b 米.又前两名的平均身高为c 米,后三名的平均身高为d 米,则………………………………………………………………………………( ) A .2b c +>2b a + B .2b a +>2b c + C .2b c +=2ba +D .以上都不对ABC1 2O (11题图)二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.在同一平面内,已知直线a 、b 、c ,且a ∥b ,b ⊥c ,那么直线a 和c 的位置关系是___________. 14.下列说法中①两点之间,直线最短;②经过直线外一点,能作一条直线与这条直线平行; ③和已知直线垂直的直线有且只有一条;④在平面内过一点有且只有一条直线垂直于已知直线. 正确的是:_______________.(只需填写序号)15.11在两个连续整数a 和b 之间,a <11<b ,那么b a 的立方根是____________. 16.在实数3.14,-36.0,-66,0.13241324…,39 ,-π,32中,无理数的个数是______. 17.一只蚂蚁由(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是_________.18.某空调生产厂家想了解一批空调的质量,把仓库中的空调编上号,然后抽取了编号为5的倍数的空调进行检验.你认为这种调查方式_____________.(填“合适”或“不合适”)19.如图,围棋盘放置在某个平面直角坐标系内,如果白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8),那么黑棋的坐标应该是_________________.20.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,则买5束鲜花和5个礼盒的总价为________元.(19题图)(20题图)三、解答题(共72分.解答应写出文字说明、证明过程或演算步骤) 21.解下列方程组或不等式(组):(1,2小题各4分,3小题6分, 共14分)(1)⎩⎨⎧-=+=+;62,32y x y x(2)⎩⎨⎧=-=+;2463,247y x y x(3)解不等式组,并把它的解集表示在数轴上:3(1)7251.3x x xx --⎧⎪⎨--<⎪⎩≤, ① ②22.(本题8分)如图,CD 平分∠ACB ,DE ∥BC ,∠AED =80°,求∠EDC 的度数.23.(本题6分)小刘是快餐店的送货员,如果快餐店的位置记为(0,0),现有位置分别是A (100,0),B (150,-50),C (50, 100)三位顾客需要送快餐,小刘带着三位顾客需要的快餐从快餐店出发,依次送货上门服务,然后回到快餐店.请你设计一条合适的送货路线并计算总路程有多长.(画出坐标系后用“箭头”标出)ADB CE24.(本题10分)已知:如图,AD ⊥BC 于D ,EG ⊥BC 于G ,AE =AF .求证:AD 平分∠BAC .25.应用题(本题10分)某校为了解七年级学生体育测试情况,以七年级(1)班学生的体育测试成绩为样本,按A ,B ,C ,D 四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下)(1)请把条形统计图补充完整;(2)样本中D 级的学生人数占全班学生人数的百分比是__________; (3)扇形统计图中A 级所在的扇形的圆心角度数是__________;(4)若该校七年级有500名学生,请你用此样本估计体育测试中A 级和B 级的学生人数约为多少人.(24题图)FE ACBGD3 2 1C BD A 46% 20%24%如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?(1)如图,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON 的度数.(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数.(3)如果(1)中∠BOC=β(β为锐角),其他条件不变,求∠MON的度数.(4)从(1)(2)(3)的结果能看出什么规律?(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿(1)~(4),设计一道以线段为背景的计算题,写出其中的规律来?AMBONC2-1-0 1参考答案题号 1 2 3 4 5 6 7 8 9 10 1112 答案DBDCBAADBDB A12∵a >d ,∴2a +2b <2c +2d , ∴a +b <c +d ,∴<, 即>,故选B .二、填空题 13.a ⊥c ; 14.②,④; 15.4; 16.3; 17.(3,2);18.合适 点拨:因为这样使得该抽样调查具有随机性、代表性. 19.(-3,-7); 20.440. 三、解答题: 21.(1)解:由①得:y =-2x +3……③ ③代入② x +2(-2x +3)=-6 x =4………………………………………………………………………………2分把x =4代入③得 y =-5 ∴原方程组解为 ⎩⎨⎧-==54y x ………………4分(2)解:①×3+②×2得: 27x =54x =2把x =2代入①得:4y =-12y =-3………………………………………………………………………2分 ∴原方程组解为 ⎩⎨⎧-==32y x ……………………………………………4分(3)解:解不等式①,得2x -≥; 解不等式②,得12x <-.在同一条数轴上表示不等式①②的解集,如图所示:…………………………2分……………………………………4分所以,原不等式组的解集是122x -<-≤.……………………………………6分 22.解:∵ DE ∥BC ,∠AED =80°,∴ ∠ACB =∠AED =80°. ………………………………………4分 ∵ CD 平分∠ACB , ∴ ∠BCD =21∠ACB =40°,……………………………………6分 ∴ ∠EDC =∠BCD =40°.…………………………………………8分 23.解:合适的路线有四条,如图所示是其中的一条, 即向北走100 m ,再向东走50 m 到C ;接着向南走 100 m ,再向东走50 m 到A ;接着向东走50 m ,再向 南走50 m 到B ;接着向西走150 m ,再向北走50 m 回到O .尽可能少走重复路段.如图所示,所走的路线 长最短,共为600 m. …………………………………6分 24.证明:∵AD ⊥BC 于D ,EG ⊥BC 于G∴AD ∥EG ,………………………3分 ∴∠2=∠3, ∠1=∠E , ………………5分 ∵AE =AF ∴∠E = ∠3,∴∠1 = ∠2,……………………………8分 ∴AD 平分∠BAC .………………………10分 25.解:(1)条形图补充如图所示.………………3分(2)10%……………………………………5分 (3)72°……………………………………7分 (4)500×(46%+20%)=330(人).………………10分26.解:(1)设工厂从A 地购买了x 吨原料,制成运往B 地的产品y 吨.则依题意,得:⎩⎨⎧=+=+.97200)120110(2.1,15000)1020(5.1x y x y …………………………………6分DB七年级(下)数学期末试卷 第11页(共8页) 解这个方程组,得:⎩⎨⎧==.300,400y x ∴工厂从A 地购买了400吨原料,制成运往B 地的产品300吨. ……………………………………………………………9分(2)依题意,得:300×8000-400×1000-15000-97200=1887800∴批产品的销售款比原料费与运输费的和多1887800元. ……………………12分27.解:(1)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12×120°-12×30°=45°; ……………………………………………………………2分(2)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12(α+30°)-12×30°=12α; ……………………………………………………………4分(3)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12(90°+β)-12β=45°;……6分 (4)∠MON 的大小等于∠AOB 的一半,而与∠BOC 的大小无关;……………9分(5)如图,设线段AB =a ,延长AB 到C ,使BC =b ,点M ,N 分别为AC ,BC 的中点,求MN 的长.规律是:MN 的长度总等于AB 的长度的一半,而与BC 的长度无关.…………12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013-2014学年江苏省苏州市工业园区七年级(下)期末数学试

一、选择题(本大题共10小题,每小题2分,共20分,每小题只有一个选项是正确的,把正确选项前的字母填入下表中)
1.(2分)下列各式计算正确的是()
A.x4+x4=2x8B.(x2y)3=x6y C.(x2)3=x5D.﹣x3•(﹣x)5=x8
2.(2分)下列各式中,不能用平方差公式计算的是()
A.(4x﹣3y)(﹣3y﹣4x)B.(2x2﹣y2)(2x2+y2) C.(a+b﹣c)(﹣c﹣b+a)D.(﹣x+y)(x﹣y)
3.(2分)将数据0.00000005464用科学记数法表示为()
A.5.464×10﹣7 B.5.464×10﹣8 C.5.464×10﹣9 D.5.464×10﹣10
4.(2分)三角形的高线是()
A.直线B.线段C.射线D.三种情况都有
5.(2分)一个多边形的内角和为1080°,则它的边数为()
A.9 B.8 C.7 D.6
6.(2分)用下列各组数据作为长度的三条线段能组成三角形的是()A.3,3,8 B.5,6,11 C.3,4,5 D.2,7,4
7.(2分)若关于x的方程2x﹣4=3m和x+2=m有相同的解,则m的值是()A.10 B.﹣10 C.8 D.﹣8
8.(2分)如图,已知直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α等于()
A.2l°B.30°C.58°D.48°
9.(2分)填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m
的值是()
A.38 B.52 C.66 D.74
10.(2分)如图,△ABC的外角平分线CP和内角平分线BP相交于点P,若∠BPC=35°,则∠A=()
A.70°B.80°C.55°D.65°
二、填空题(本大题共10小题,每小题2分,共20分)请把最后结果填在题中横线上.
11.(2分)分解因式:a2﹣4=.
12.(2分)不等式14﹣3x>2的解集为.
13.(2分)单项式﹣x3y2的次数是.
14.(2分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=°.
15.(2分)命题“对顶角相等”的逆命题是.
16.(2分)已知:xy=9,x﹣y=﹣3,则x2+3xy+y2=.
17.(2分)若4a2+ka+9是一个完全平方式,则k等于.
18.(2分)如图,△ABC的中线AD、BE相交于点F,若△ABF的面积为1,则四边形FDCE的面积是.
19.(2分)如图1是长方形纸带,∠DEF=21°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中的∠CFE的度数是.
20.(2分)如图,△ABC的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,该图中与△ABC全等的不同格点三角形共有个(△ABC除外).
三、解答题(本大题共11小题,共60分,解答应写出必要的计算过程、推演步骤或文字说明)
21.(5分).
22.(5分)解不等式组:.
23.(5分)已知:如图,BC∥EF,AD=BE,BC=EF,试说明△ABC≌△DEF.
24.(5分)如图,已知,AB∥CD,∠1=∠2,BE与CF平行吗?为什么?
25.(5分)化简求值:已知x、y满足:x2+y2﹣4x+6y+13=0,求代数式(3x+y)2
﹣3(3x﹣y)(x+y)﹣(x﹣3y)(x+3y)的值.
26.(5分)小颖和她的爸爸一起玩投篮球游戏.两人商定规则为:小颖投中1个得3分,爸爸投中1个得1分,结果两人一共投中了20个,一计算,发现两人的得分刚好相等,你知道他们两人各投中几个吗?
27.(5分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上.将△ABC向下平移4个单位、再向右平移3个单位得到△A1B1C1.
(1)在网格中画出△A1B1C1;
(2)计算线段AC在变换到A1C2的过程中扫过区域的面积.(重叠部分不重复计算)
28.(6分)如图,在△ABC中,∠B=30°,∠C=50°,AE是∠BAC的平分线,AD 是高.
(1)求∠BAE的度数;
(2)求∠EAD的度数.
29.(6分)如图,AC=BC,∠CAB=∠CBA=45°,D为AB边上一个动点,CE=CD,∠CDE=∠CED=45°.
(1)求证:△ACD≌△BCE;
(2)求证:∠ABE是定值.
30.(6分)某镇水库的可用水量为12000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只能够维持居民15年的用水量.
(1)问:年降水量为多少万m3?每人年平均用水量多少m3?
(2)政府号召节约用水,希望将水库的使用年限提高到25年.则该镇居民人均每年需节约多少m3水才能实现目标?
(3)某企业投入1000万元设备,每天能淡化5000m3海水,淡化率为70%.每淡化1m3海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/m3的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本(结果精确到个位)?
31.(7分)如图,在四边形ABCD中,AD=BC=8,AB=CD,BD=12,点E从点D 出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度,沿C→B→C做匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.
(1)试证明:AD∥BC;
(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时移动时间和G点的移动距离.
2013-2014学年江苏省苏州市工业园区七年级(下)期末
数学试卷
参考答案
一、选择题(本大题共10小题,每小题2分,共20分,每小题只有一个选项是正确的,把正确选项前的字母填入下表中)
1.D;2.D;3.B;4.B;5.B;6.C;7.D;8.D;9.D;10.A;
二、填空题(本大题共10小题,每小题2分,共20分)请把最后结果填在题中横线上.
11.(a+2)(a﹣2);12.x<4;13.5;14.120;15.相等的角为对顶角;16.54;17.±12;18.1;19.117°;20.15;
三、解答题(本大题共11小题,共60分,解答应写出必要的计算过程、推演步骤或文字说明)
21.;22.;23.;24.;25.;26.;27.;28.;29.;30.;31.;。

相关文档
最新文档