基本初等函数经典复习题+问题详解
易错点03 基本初等函数(含答案解析)

故选:B.
【点睛】本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题.
【易错警示】
易错点1.函数定义域理解不透
2.已知函数 的定义域为[0,1],求函数 的定义域
【答案】 .
【解析】
【分析】由 求解可得.
【详解】错解:由于函数 的定义域为[0,1],即 ,
∴ 的定义域是[1,2]
易错点7.公式运用不熟练没有得到最终解
8.已知log189=a,18b=5,用a、b表示log3645.
【答5= .
易错点8.关于方程根考虑不全面
9.已知 有且只有一根在区间(0,1)内,求 的取值范围.
【答案】 <-2.
【解析】
【分析】对参数 的取值情况进行分类讨论,再结合 再分类,即可求得参数范围.
【点睛】本题考查函数的奇偶性与单调性,解题时要注意函数的定义域,否则易出错.
易错点6.不理解符合函数的单调性
7.函数 在 上是x的减函数,则实数a的取值范围是______.
【答案】
【解析】
【分析】首先保证真数位置 在 上恒成立,得到 的范围要求,再分 和 进行讨论,由复合函数的单调性,得到关于 的不等式,得到答案.
【答案】A={x|2<x< }.
【解析】
【分析】由奇偶性把不等式变为f(x-3)<-f(x2-3)=f(3-x2),然后由单调性求出不等关系,同时要注意函数的定义域.
【详解】错解:∵f(x)是奇函数,∴f(x-3)<-f(x2-3)=f(3-x2),
又f(x)在(-3,3)上是减函数,
∴x-3>3-x2,即x2+x-6>0解得x>2或x<-3
高中数学必修一基本初等函数知识点+练习题含答案解析(非常详细)

第一部分基本初等函数知识点整理第二章 基本初等函数一、指数函数 (一)指数1、 指数与指数幂的运算:复习初中整数指数幂的运算性质: a m *a n =a m+n(a m )n=a mn(a*b)n =a n b n2、根式的概念:一般地,若a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数。
此时,a 的n 次方根用符号 表示。
当n 为偶数时,正数的n 次方根有两个,这两个数互为相反数。
此时正数a 的正的n 次方根用符号 表示,负的n 的次方根用符号 表示。
正的n 次方根与负的n 次方根可以合并成 (a>0)。
注意:负数没有偶次方根;0的任何次方根都是0,记作00=n。
当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn 式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数。
3、 分数指数幂正数的分数指数幂的)1,,,0(*>∈>=n N n m a a an m nm ,)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义4、 有理数指数米的运算性质(1)r a ·s r ra a+=),,0(R s r a ∈>; (2)rss r a a =)( ),,0(R s r a ∈>;(3)s r r a a ab =)(),,0(R s r a ∈>.5、无理数指数幂一般的,无理数指数幂a a(a>0,a 是无理数)是一个确定的实数。
有理数指数幂的运算性质同样使用于无理数指数幂。
(二)、指数函数的性质及其特点1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.为什么?(1)在[a ,b]上,值域是)]b (f ),a (f [或)]a (f ),b (f [;(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; (4)当a>1时,若X 1<X 2 ,则有f(X 1)<f(X 2)。
基本初等函数经典复习题+答案

必修1根本初等函数复习题求函数的定义域时列不等式组的主要依据是:⑴偶次方根的被开方数不小于零;(2)对数式的真数必须大于零;⑶分式的分母不等于零;[4〕指数、对数式的底必须大于零且不等于1.4、函数单调区间与单调性的判定方法(八)定义法:①任取xι,X 2∈D,且XKX2;Q)作差千(xι)—fa);(3)变形〔通常是因式分解和配方];④定号[即判断差千(x∣)-f(x2)的正负〕;@下结论[指出函数f(x)在给定的区间D 上的单调性].(B)图象法(从图象上看升降)⑹复合函数的单调性:复合函数Hg"]的单调性与构成它的函数u=g(x),y 二人。
的单调性密切相关,其规律:"同增异减〃 1、以下函数中,在区间(0,÷oo)不是增函数的是()1、暴的运算性质 〔1〕a r ∙a s = a r+s (r,5 ∈ R); 〔3〕a r ∙b r = (ab)r (r ∈ R) 2对数的运算性质 如果 α>0,且 awl, M >0, ① Iog“(M ・N)= Iogq M +log” N ; ③ IOg“M" =〃Iog"M,(Y ∈R). 换底公式:log” b = l°g 。
■ 〔 a IogC α(1)log b n= —log rt ⅛ ; [2 〃7 〔2〕S)' =α" ; (r,StR)(4)a" =yja n, (a>0,m,n E N ∖n> 1) a' = N Q IOga N = x N>0,那么:② log 噂=log” M Tog” N ;④ IOgQl= O, bg" = lO,且 awl ; c>0,且 CW1; b>0〕 log” b =; ---- ∙log/y = a x a>1 0<a<1 y = Iog tj X a>1 II0<a<1定义域R 值域y>0 在R 上单调递增 非奇非偶函数 函数图象都过定点[0, 1〕 3、定义域: 定义域R 值域y>0 在R 上单调递减 非奇非偶函数 函数图象都过定点〔〕 定义域x>0 值域为R在R 上递增 非奇非偶函数 函数图象都过定点定义域x>0值域为R 在R 上递减 非奇非偶函数 函数图象都过定点[1, 能使函数式有意义的实数X 的集合称为函数的定义域。
《函数与基本初等函数》复习试卷及答案解析

2021年新高考数学总复习第二章《函数与基本初等函数》复习试卷及答案解析一、选择题1.下列函数中,既是偶函数又存在零点的是( )A .y =cos xB .y =sin xC .y =ln xD .y =x 2+1答案 A解析 y =cos x 是偶函数且有无数多个零点,y =sin x 为奇函数,y =ln x 既不是奇函数也不是偶函数,y =x 2+1是偶函数但没有零点.故选A.2.方程log 3x +2x =6的解所在区间是( )A .(1,2)B .(3,4)C .(2,3)D .(5,6)答案 C解析 令f (x )=log 3x +2x -6,则函数f (x )在(0,+∞)上单调递增,且函数在(0,+∞)上连续,因为f (2)<0,f (3)>0,故有f (2)·f (3)<0,所以函数f (x )=log 3x +2x -6的零点所在的区间为(2,3),即方程log 3x +2x =6的解所在区间是(2,3).故选C.3.(2020·模拟)函数f ()x =2x -1x零点的个数为( ) A .0 B .1 C .2 D .3答案 B解析 在同一平面直角坐标系下,作出函数y =2x 和y =1x 的图象,如图所示.函数f (x )=2x -1x 的零点个数等价于方程2x =1x 的根的个数,等价于函数y =2x 和y =1x的交点个数.由图可知,有一个交点,所以有一个零点.故选B.4.若函数f (x )=x 2+mx +1有两个不同零点,则实数m 的取值范围是( )A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)答案 C 解析 依题意,知Δ=m 2-4>0,∴m >2或m <-2.5.若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点有( )A .多于4个B .4个C .3个D .2个答案 B解析 因为偶函数f (x )满足f (x +2)=f (x ),故函数的周期为2.当x ∈[0,1]时,f (x )=x ,故当x ∈[-1,0]时,f (x )=-x .函数y =f (x )-log 3|x |的零点的个数等于函数y =f (x )的图象与函数y =log 3|x |的图象的交点个数.在同一个坐标系中画出函数y =f (x )的图象与函数y =log 3|x |的图象,如图所示.显然函数y =f (x )的图象与函数y =log 3|x |的图象有4个交点,故选B.6.函数f (x )=⎩⎪⎨⎪⎧ln x -x 2+2x ,x >0,2x +1,x ≤0的零点个数为( ) A .0 B .1 C .2 D .3答案 D解析 对于求函数f (x )=ln x -x 2+2x 的零点个数,可以转化为方程ln x =x 2-2x 的根的个数问题,分别画出y =ln x ,y =x 2-2x 的图象如图.由图象可得两个函数有两个交点.又方程2x +1=0的根为x =-12<0,个数是1. 故函数f (x )=⎩⎪⎨⎪⎧ln x -x 2+2x ,x >0,2x +1,x ≤0的零点个数为3. 故选D.。
基本初等函数含答案,附上学生版

基本初等函数1.若函数y =f (x )的定义域是[0, 2 018],则函数g (x )=f (x +1)x -1的定义域是________. 解析:要使函数f (x +1)有意义,则0≤x +1≤2 018,解得-1≤x ≤2 017,故函数f (x +1)的定义域为[-1,2 017],所以函数g (x )有意义的条件是⎩⎪⎨⎪⎧-1≤x ≤2 017x -1≠0,解得-1≤x <1或1<x ≤2 017.故函数g (x )的定义域为[-1,1)∪(1,2 017]. 2解析:∵ƒ(x )=log 2(x 2+a )且ƒ(3)=1,∴1=log 2(9+a ),∴9+a =2,∴a =-7. 答案:-73.若幂函数y =(m 2-3m +3)·x (m-2)(m +1)的图象不经过原点,则实数m 的值为________.解析:由⎩⎪⎨⎪⎧m 2-3m +3=1,(m -2)(m +1)≤0,解得m =1或2,经检验m =1或2都适合.答案:1或24.下列函数在其定义域上既是增函数又是奇函数的是________. A .f (x )=sin xB .f (x )=x 3+1C .f (x )=log 2(x 2+1+x )D .f (x )=1-2x1+2x解析:依题意,对于选项A ,注意到f (0)=f (π),因此函数f (x )=sin x 在其定义域上不是增函数;对于选项B ,注意到f (x )的定义域为R ,但f (0)=1≠0,因此函数f (x )=x 3+1不是奇函数;对于选项C ,注意到f (x )的定义域是R ,且f (-x )=log 2(x 2+1-x )=log 21x 2+1+x=-log 2(x 2+1+x )=-f (x ),因此f (x )是奇函数,且f (x )在R 上是增函数;对于选项D ,注意到f (x )=1-2x 1+2x =-1+21+2x 在R 上是减函数.故选C. 5.函数f (x )=|log 2 x |+x -2的零点个数为_______.解析:函数f (x )=|log 2 x |+x -2的零点个数,就是方程|log 2 x |+x -2=0的根的个数.令h (x )=|log 2 x |,g (x )=2-x ,画出两函数的图象,如图.由图象得h (x )与g (x )有2个交点,∴方程|log 2 x |+x -2=0的解的个数为2.6.已知a =log 372,b =⎝⎛⎭⎫1413,c =log 1315,则a ,b ,c 的大小关系为 .A .a >b >cB .b >a >cC .c >b >aD .c >a >b解析:∵ c =log 1315=log 35,a =log 372,又y =log3x 在(0,+∞)上是增函数, ∴ log35>log372>log33=1,∴ c >a >1.∵ y =14x 在(-∞,+∞)上是减函数,∴ 1413<140=1,即b <1.∴ c >a >b . 故选D.7.已知定义在R 上的偶函数f (x )满足对任意的0<x 1<x 2,f (x 2)-f (x 1)x 2-x 1>0均成立,若a =f (334),b=f (943-),c =f (-543),则a ,b ,c 的大小关系为( )A .b <a <cB .a <b <cC .c <b <aD .b <c <a解析:因为偶函数f (x )满足对任意的0<x 1<x 2,f (x 2)-f (x 1)x 2-x 1>0均成立,所以f (x )在(0,+∞)上是增函数.因为幂函数y =x 43在(0,+∞)上是增函数,指数函数y =3x 在(0,+∞)上是增函数,所以343<543,943-=383-<334<343,故c =f (-543)=f (543)>a =f (334)>b =f (943-),故b <a <c ,故选A.8.已知f (x )是R 上的奇函数,且f (x )=则f = .[解析] f=-f =-f =-f =-log 2=-log 22-1=1.9.若函数y =⎝⎛⎭⎫12|1-x |+m 的图象与x 轴有公共点,则实数m 的取值范围是________. 解析:∵|1-x |≥0,∴0<⎝⎛⎭⎫12|1-x |≤1,由题意得0<-m ≤1,即-1≤m <0. 答案:[-1,0)10.已知函数f (x )在定义域(0,+∞)上是单调函数,若对于任意x ∈(0,+∞),都有f =2,则f的值是 . 因为函数f (x )在定义域(0,+∞)上是单调函数,且f=2恒成立,所以f (x )-为一个大于0的常数,令这个常数为n (n>0),则有f (x )-=n ,且f (n )=2,所以f (n )=+n=2,解得n=1,所以f (x )=1+,11.设m ∈N ,若函数f (x )=2x -m 10-x +10存在整数零点,则符合条件的m 的个数为 .解析:由f (x )=0得m =2x +1010-x .又m ∈N ,因此有⎩⎪⎨⎪⎧10-x >0,2x +10≥0,解得-5≤x <10,x ∈Z ,∴x=-5,-4,-3,…,1,2,3,…,8,9,将它们分别代入m =2x +1010-x,一一验证得,符合条件的m 的取值为0,4,11,28,共4个.12.已知函数f (x )=⎩⎪⎨⎪⎧|x +2|,-3≤x <0,log a x ,x >0,其中a >0且a ≠1,若函数f (x )的图象上有且仅有一对点关于y 轴对称,则实数a 的取值范围是 . 解析:∵函数f (x )的图象上有且仅有一对点关于y 轴对称,∴f (x )=|x +2|(-3≤x <0)的图象关于y 轴对称的图象与f (x )=log a x (x >0)的图象有且只有一个交点.记f (x )=|x +2|(-3≤x <0)的图象关于y 轴对称的图象对应的函数为g (x ),则g (x )=|x -2|(0<x ≤3),作出函数f (x )与g (x )的大致图象.当0<a <1时,如图(1),显然g (x )的图象与f (x )(x >0)的图象有且只有一个交点,符合题意;当a >1时,如图(2),要使g (x )的图象与f (x )(x >0)的图象有且只有一个交点,则需log a 3>1,∴ 1<a <3.综上a ∈(0,1)∪(1,3).13.已知函数f (x )=⎩⎪⎨⎪⎧|log 3x |,0<x <3,13x 2-103x +8,x ≥3,若存在实数a 、b 、c 、d ,满足f (a )=f (b )=f (c )=f (d ),其中d >c >b >a >0,则abcd 的取值范围是 .解析:画出f (x )的图象,如图.由图象知0<a <1,1<b <3,则f (a )=|log 3a |=-log 3a ,f (b )=|log 3b |=log 3b ,∵f (a )=f (b ),∴-log 3a =log 3b ,∴ab =1.又由图象知,3<c <4,d >6,点(c ,f (c ))和点(d ,f (d ))均在二次函数y =13x 2-103x +8的图象上,故有c +d 2=5,∴d =10-c ,∴abcd =c (10-c )=-c 2+10c =-(c -5)2+25,∵3<c <4,∴21<-(c -5)2+25<24,即21<abcd <24.14.已知f (x )=2|x |+x 2+a 有唯一的零点,则实数a 的值为________.解析:设函数g (x )=2|x |+x 2,因为g (-x )=g (x ),所以函数g (x )为偶函数,当x ≥0时,g (x )=2x +x 2,为增函数;当x <0时,g (x )=⎝⎛⎭⎫12x +x 2,为减函数,所以g (x )≥g (0)=1.因为f (x )=2|x |+x 2+a 有唯一的零点,所以y =g (x )与y =-a 有唯一的交点,即a =-1. 答案:-115.已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm=________.解析:∵f (x )=|log 3x |,正实数m ,n 满足m <n ,且f (m )=f (n ),∴-log 3m =log 3n ,∴mn =1.∵f (x )在区间[m 2,n ]上的最大值为2,函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数,∴-log 3m 2=2或log 3n =2.若-log 3m 2=2,得m =13,则n =3,此时log 3n =1,满足题意.那么n m =3÷13=9.同理:若log 3n =2,得n =9,则m =19,此时-log 3m 2=4,不满足题意.综上,可得nm=9.答案:916.函数f (x )的定义域为D ,若满足f (x )在D 内是单调函数,且存在[a ,b ]⊆D ,使得f (x )在[a ,b ]上的值域为,则称函数f (x )为“成功函数”.若函数f (x )=log m (m x +2t )(其中m>0且m ≠1)是“成功函数”,则实数t 的取值范围为 .[解析] 无论m>1还是0<m<1,f(x)=log m(m x+2t)都是R上的增函数,故应有则问题可转化为已知f(x)=,即log m(m x+2t)=,即m x+2t=在R上有两个不相等的实数根,求实数t的取值范围.令λ=(λ>0),则m x+2t=可化为2t=λ-λ2=-+,结合图像(图略)可得t∈.。
高一数学基本初等函数综合题型(基础)(解析版)

考点01 基本初等函数综合题型(基础)1.(2020•肥城市模拟)对数函数y=log a x(a>0且a≠1)与二次函数y=(a﹣1)x2﹣x在同一坐标系内的图象可能是()A.B.C.D.【解答】解:由对数函数y=log a x(a>0且a≠1)与二次函数y=(a﹣1)x2﹣x可知,①当0<a<1时,此时a﹣1<0,对数函数y=log a x为减函数,而二次函数y=(a﹣1)x2﹣x开口向下,且其对称轴为x=,故排除C与D;②当a>1时,此时a﹣1>0,对数函数y=log a x为增函数,而二次函数y=(a﹣1)x2﹣x开口向上,且其对称轴为x=,故B错误,而A符合题意.故选:A.【知识点】二次函数的性质与图象、对数函数的图象与性质2.(2020•肇庆三模)已知a=2log2,c=5log5,则()A.a<b<c B.c<a<b C.b<c<a D.b<a<c【解答】解:∵a=2log2,c=5log5,∴a=,,,∵,,,且310>215>56,∴,∴c>a>b,故选:D.【知识点】对数值大小的比较3.(2020•郑州三模)已知,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.c<a<b【解答】解:∵a6==,b6==,∴a6>b6,a,b>0.∴1>a>b,c=log23>1.∴b<a<c.故选:C.【知识点】对数值大小的比较4.(2020•延庆区一模)某企业生产A,B两种型号的产品,每年的产量分别为10万支和40万支,为了扩大再生产,决定对两种产品的生产线进行升级改造,预计改造后的A,B两种产品的年产量的增长率分别为50%和20%,那么至少经过多少年后,A产品的年产量会超过B产品的年产量(取lg2=0.3010)()A.6年B.7年C.8年D.9年【解答】解:设至少经过n年后,A产品的年产量会超过B产品的年产量,则10×(1+50%)n>40×(1+20%)n,化为:>4,取对数可得:n>==6.∴至少经过7年后,A产品的年产量会超过B产品的年产量.故选:B.【知识点】等比数列的通项公式、对数的运算性质5.(2020•山东模拟)已知集合A={y|y=2﹣x,x<0},B={x|y=x},则A∩B=()A.[1,+∞)B.(1,+∞)C.(0,+∞)D.[0,+∞)【解答】解:A={y|y=2﹣x,x<0}={y|y>1},∴A∩B=(1,+∞)故选:B.【知识点】交集及其运算、指数函数的定义、解析式、定义域和值域6.(2020•衡阳二模)设,,,则()A.c<b<a B.a<c<b C.c<a<b D.b<c<a【解答】解:因为﹣a=ln2,,﹣c=log32,又,,所以﹣b<﹣c<﹣a,即a<c<b,故选:B.【知识点】对数值大小的比较7.(2020•安徽模拟)已知a=log3,b=ln3,c=2﹣0.99,则a,b,c的大小关系为()A.b>c>a B.a>b>c C.c>a>b D.c>b>a【解答】解:因为a=log3∈(0,),b=ln3>1,c=2﹣0.99>2﹣1=,故b>c>a.故选:A.【知识点】对数值大小的比较8.(2020•滨州二模)设26,则a,b,c的大小关系是()A.a>b>c B.c>a>b C.b>c>a D.c>b>a【解答】解:∵0<0.30.1<0.30=1,∴0<a<1,∵b=log=log35,而log33<log35<log39,∴1<b<2,∵c=log526>log525=2,∴c>2,∴c>b>a,故选:D.【知识点】对数值大小的比较9.(2020春•沙坪坝区校级期中)已知a=1.20.3,b=log0.31.2,c=log1.23,则()A.a<b<c B.c<b<a C.b<c<a D.b<a<c【解答】解:∵0<1.20.3<1.21=1.2,∴1<a<1.2,∵log0.31.2<log0.31=0,∴b<0,∵log1.23>log1.21.44=2,∴c>2,∴b<a<c,故选:D.【知识点】对数值大小的比较10.(2020•武清区校级模拟)已知函数,设a=f(log30.1),b=f(3﹣0.2),c=f(31.1),则()A.a>b>c B.b>a>c C.c>a>b D.c>b>a【解答】解:根据题意,,其定义域为R,又由=﹣f(x),则函数f(x)是奇函数,当x>0时,易得为增函数,故f(x)在R上单调递增,又由log30.1<0,0<3﹣0.2<1,31.1>3,则有f(31.1)>f(3﹣0.2)>f(log30.1),即c>b>a,故选:D.【知识点】对数值大小的比较、函数奇偶性的性质与判断11.(2020•宁河区校级模拟)设a=log23,b=log46,c=5﹣0.1,则()A.a>b>c B.b>a>c C.c>a>b D.c>b>a【解答】解:因为a=log23∈(1,2),b=log46=∈(1,2),且a>b,c=5﹣0.1=∈(0,1),所以c<b<a.故选:A.【知识点】对数值大小的比较12.(2020•山西模拟)设a=log30.2,b=0.23,c=30.2,则()A.a<b<c B.a<c<b C.b<a<c D.c<a<b【解答】解:∵a=log30.2<0,0<b=0.23<1,c=30.2>1,∴c>b>a,【知识点】对数值大小的比较13.(2020•福田区校级模拟)已知幂函数g(x)=(2a﹣1)x a+1的图象过函数f(x)=m x﹣b﹣(m>0,且m≠1)的图象所经过的定点,则b的值等于()A.±B.±C.2D.±2【解答】解:函数g(x)=(2a﹣1)x a+1是幂函数,∴2a﹣1=1,解得a=1,∴g(x)=x2;令x﹣b=0,解得x=b,∴函数f(x)=m x﹣b﹣的图象经过定点(b,),∴b2=,解得b=±.故选:B.【知识点】幂函数的图象14.(2020•石家庄一模)若,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.c<b<a D.b<c<a【解答】解:由可得a=,c=log46=log2,则可知,b>c>1>a,故选:B.【知识点】对数值大小的比较15.(2020春•龙华区校级月考)设,,,则()A.a<b<c B.c<a<b C.b<c<a D.a<c<b【解答】解:∵,∴a<0,∵,∴b>2,∵,∴0<c<1,∴a<c<b,【知识点】对数值大小的比较16.(2020春•漳州月考)若a=log67,b=log54,c=log4,则()A.a<b<c B.b<a<c C.c<b<a D.c<a<b【解答】解:∵a=log67>log66=1,∴a>1,∵log51<log54<log55,∴0<b<1,∵,∴c<0,∴c<b<a,故选:C.【知识点】对数值大小的比较17.(2020•广州模拟)已知函数y=f(x)的图象与y=2x的图象关于直线y=x对称,则f(4)=.【解答】解:由题意可知,函数y=f(x)与函数y=2x互为反函数,∴f(x)=log2x,∴f(4)=log24=2,故答案为:2.【知识点】反函数18.(2020春•龙凤区校级月考)已知实数α,β满足αeα=e3,β(lnβ﹣1)=e4,其中e为自然对数的底数,则αβ=【解答】解:实数α,β满足αeα=e3,β(lnβ﹣1)=e4,所以α+lnα=3,lnβ+ln(lnβ﹣1)=4,即α+lnα﹣3=0,lnβ﹣1+ln(lnβ﹣1)﹣3=0,所以α和lnβ﹣1是方程x+lnx﹣3=0的根,由于方程x+lnx﹣3=0的根唯一.所以α=lnβ﹣1,3﹣lnα=lnβ﹣1,整理得lnα+lnβ=4,所以αβ=e4.故答案为:e4.【知识点】对数的运算性质19.(2020•攀枝花模拟)已知a>0,b>0,若log3a=log4b=,则=.【解答】解:∵log3a=log4b=,∴=2,则=,故答案为:.【知识点】对数的运算性质20.(2020•上海)已知f(x)=,其反函数为f﹣1(x),若f﹣1(x)﹣a=f(x+a)有实数根,则a的取值范围为.【解答】解:因为y=f﹣1(x)﹣a与y=f(x+a)互为反函数,若y=f﹣1(x)﹣a与y=f(x+a)有实数根,则y=f(x+a)与y=x有交点,所以,即a=x2﹣x+1=(x﹣)2+≥,故答案为:[,+∞).【知识点】反函数21.(2020•黄浦区一模)已知函数y=f(x)与y=g(x)的图象关于直线y=x对称,若f(x)=x+log2(2x+2),则满足f(x)>log23>g(x)的x的取值范围是.【解答】解:∵函数y=f(x)与y=g(x)的图象关于直线y=x对称,f(x)=x+log2(2x+2),设y=x+,则y﹣x=,∴2y﹣x=2x+2,∴2y=22x+2x+1,∴2x==﹣1,x=.互换x,y,得g(x)=,∵f(x)>log23>g(x),∴x+log2(2x+2)>log23>,解得0<x<log215.∴满足f(x)>log23>g(x)的x的取值范围是(0,log215).故答案为:(0,log215).【知识点】反函数22.(2020•静安区一模)设a>0,a≠1,M>0,N>0,我们可以证明对数的运算性质如下:我们将⊗式称为证明的“关键步骤“.则证明(其中M>0,r∈R)的“关键步骤”为.【解答】解:设log a M r=b,∴a b=M r,∴r log a M=b,∴log a M=,∴a=a=(a)r=(a)r=a b=M r,∴关键步骤为:a=(a)r=M r.【知识点】对数的运算性质23.(2020•芜湖期末)计算:(log2125+log425+log85)(log52+log254+log1258)【解答】解:(log2125+log425+log85)(log52+log254+log1258)=()()=(13log85)(9log1252)=117×=117×=13.【知识点】对数的运算性质24.(2020春•金安区校级月考)已知a∈R,函数f(x)=log2(+a).(1)当a=﹣5时,解关于x的不等式f(x)>0;(2)设a>0,若对任意t∈[,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差都不超过1,求实数a的取值范围.【解答】解:(1)a=﹣5时,f(x)=log2(﹣5),令f(x)>0,即﹣5>1,0<x<,故不等式的解集是(0,);(2)函数f(x)在区间[t,t+1]上单调递减,由题意得f(t)﹣f(t+1)≤1,即log2(+a)﹣log2(+a)≤1,即+a≤2(+a),即a≥﹣=,设1﹣t=r,则0≤r≤,==,当r=0时,=0,当0<r≤时,=,∵y=r+在(0,)上递减,∴r+≥+4=,∴=≤=,∴实数a的取值范围是a≥.【知识点】对数函数的图象与性质25.(2020•咸阳期末)已知函数f(x)=log a x(a>0,a≠1)的图象过点.(Ⅰ)求a的值;(Ⅱ)计算的值.【解答】解:(I)∵函数f(x)=log a x(a>0,a≠1)的图象过点,∴,∴,∴;(II)由(I)知,a=,∴=.【知识点】对数函数的单调性与特殊点26.(2020•河西区期末)已知函数f(x)=log a(x+1),g(x)=2log a(2x+m),(m∈R),其中x∈[0,15],a>0且a≠1.(1)若1是关于方程f(x)﹣g(x)=0的一个解,求m的值.(2)当0<a<1时,不等式f(x)≥g(x)恒成立,求m的取值范围.【解答】解:由题意:1是关于方程f(x)﹣g(x)=0的一个解,可得:log a2=2log a(2+m),解得或∵2+m>0∴不符合题意.所以m的值为.(2)f(x)≥g(x)恒成立,等价于恒成立.即:,x∈[0,15]恒成立.令,则当u=1时,的最大值为1.所以:m≥1即可恒成立.故m的取值范围是[1,+∞).【知识点】对数函数的图象与性质27.(2020•新洲区期末)计算下列各式的值:(1);(2).【解答】解:(1)原式=(﹣)2+10﹣10()+1=;(2)原式=log34﹣log+log38+5=log+9=log39+9=2+9=11.【知识点】对数的运算性质、有理数指数幂及根式28.(2020•崂山区校级期末)己知25,B=log2(4B+2A),求A,B的值.【解答】解:A=1+3﹣3×+log53•=4﹣12+2=﹣6.B=,∴2B=(2B)2﹣12,化为:(2B﹣4)(2B+3)=0,∴2B﹣4=0,解得B=2.【知识点】对数的运算性质29.(2020•海淀区校级期末)已知函数f(x)=lg(2+x)+lg(2﹣x).(1)求函数f(x)的定义域并判断函数f(x)的奇偶性;(2)记函数g(x)=10f(x)+3x,求函数g(x)的值域;(3)若不等式f(x)>m有解,求实数m的取值范围.【解答】解:(1)∵函数f(x)=lg(2+x)+lg(2﹣x),∴,解得﹣2<x<2.∴函数f(x)的定义域为(﹣2,2).∵f(﹣x)=lg(2﹣x)+lg(2+x)=f(x),∴f(x)是偶函数.(2)∵﹣2<x<2,∴f(x)=lg(2+x)+lg(2﹣x)=lg(4﹣x2).∵g(x)=10f(x)+3x,∴函数g(x)=﹣x2+3x+4=﹣(x﹣)2+,(﹣2<x<2),∴g(x)max=g()=,g(x)min→g(﹣2)=﹣6,∴函数g(x)的值域是(﹣6,].(3)∵不等式f(x)>m有解,∴m<f(x)max,令t=4﹣x2,由于﹣2<x<2,∴0<t≤4∴f(x)的最大值为lg4.∴实数m的取值范围为{m|m<lg4}.【知识点】对数函数的图象与性质30.(2020•聊城期末)(1)计算:;(2)已知集合A={x|y=lg(x﹣3)+},B={x|x2﹣9x+20≤0},C={x|a+1≤x<2a﹣1}.若C⊆(A ∪B),求实数a的取值范围.【解答】解:(1)原式=﹣++=﹣+6+=.(2)由,解得3<x≤.∴集合A={x|y=lg(x﹣3)+}=(3,],B={x|x2﹣9x+20≤0}=[4,5],∴A∪B=(3,5],C={x|a+1≤x<2a﹣1}.若C⊆(A∪B),则C⊆(A∪B).C=∅时,a+1≥2a﹣1,解得a≤2.C≠∅时,可得:,解得2<a≤3.综上可得:实数a的取值范围是(﹣∞,3].【知识点】集合的包含关系判断及应用、对数的运算性质。
基本初等函数定义域、值域、4大性质、零点问题等考法梳理

基本初等函数题型梳理(一)单调性与值域问题 (1)一次函数型例题1 若函数()2f x a x b =-+在[)0,+∞上为增函数,则实数a b 、的范围是【解析】2,()22,ax ab x bf x a x b ax ab x b-+≥⎧=-+=⎨-++⎩< ∵函数()2f x a x b =-+在[)0,+∞上为增函数,∴00a b ≤且>(2)二次函数型例题2 函数()23f x x x m x =-+-在R 上单调递增,求实数m 的取值范围【解析】22(2)3,()23(2)3,x m x x mf x x x m x x m x x m⎧+--≥⎪=-+-=⎨-++-⎪⎩<∵函数()23f x x x m x =-+-在R 上单调递增∴222222mm m m m -⎧-≤⎪⎪⇒-≤≤⎨+⎪≥⎪⎩ 变式1 函数()y f x =在[2,)+∞上单调递增,且()(4)f x f x =-恒成立,则关于x 的不等式2(3)(22)f x f x +>+的解集为________ 【解析】()(4)f x f x =-恒成立,∴函数关于2x =对称,函数()y f x =在[2,)+∞上单调递增,∴函数在(],2-∞单调递减, 关于x 的不等式2(3)(22)f x f x +>+,∴232222x x +->+-,解得212x x +>,即22110x x x ⎧<+⎨+≥⎩或()22110x x x ⎧<-+⎨+<⎩,解得112x -<<,解集为1(,1)2-(3)分式函数型例题3 函数1()2ax f x x +=+在(2)--∞,上为增函数,求实数a 的取值范围【解析】1(2)1212()222ax a x a af x a x x x +++--===++++在(2)--∞,上为增函数 易知120a -<,得12a > 变式2 设函数)(1)(R x xxx f ∈+-=,区间M=[a ,b ](a <b ),集合N ={M x x f y y ∈=),(},则使M =N 成立的实数对(a ,b )有几个?【解析】函数f (x )= (0)11(0)1x x x x xx x x ⎧-≥⎪⎪+-=⎨+⎪-<⎪-⎩,图象如图所示 由图象可知,y =f (x )在R上是连续单调递减函数。
高中数学基本初等函数知识点总结及习题解析!

高中数学基本初等函数知识点总结及习题解析!一、基本初等函数1、幂函数一般地,函数 y = x^a (a 为常数,a∈Q) 叫做幂函数 .幂函数y = x^a (a∈Q) 的性质:① 所有幂函数在(0,+∞)上都有定义,并且图象都经过点(1,1).② 若 a > 0 , 幂函数图象都经过点(0 , 0)和(1 ,1)在第一象限内递增;若 a < 0 , 幂函数图象只经过点(1,1),在第一象限内递减 .③ 幂函数的图象最多只能同时出现在两个象限,且不经过第四象限;如果幂函数图象与坐标轴相交,则交点一定是坐标原点 .④ 画幂函数图象时,先画第一象限的部分,在根据函数的奇偶性完成整个图象 .⑤ 常见幂函数的图象常见幂函数的图象2、指数函数一般地,函数 y = a^x ( a > 0 且a ≠ 1 ) 叫做指数函数,自变量x 叫指数,a 叫底数 .指数函数的定义域是 R .指数运算法则:指数运算法则指数函数 y = a^x ( a > 0 且a ≠ 1 ) 的图象:指数函数图象(分两种情况)指数函数的主要性质:① 指数函数 y = a^x ( a > 0 且a ≠ 1 ) 定义域为 R ,值域(0,+∞);② 函数 y = a^x ( a > 1 ) 在 R 上递增,函数 y = a^x ( 0 < x <1 ) 在 R 上递减;③ 指数函数的图象经过点(0 , 1).3、反函数一般地,对于函数 y = f(x),设它的定义域为 D,值域为 A,如果对于 A 中任意一个值 y,在 D 中总有唯一确定的 x 值与它对应,且满足 y = f(x) ,这样得到的 x 关于 y 的函数叫做 y = f(x) 的反函数,记作 x = f-1(y) ,习惯上自变量常用x 来表示,而函数用 y 来表示,所以把它改写为 y = f-1(x) (x∈A) .(1) 反函数的判定:① 反函数存在的条件是原函数为一一对应函数;② 定义域上的单调函数必有反函数;③ 周期函数不存在反函数;④ 定义域为非单元素的偶函数不存在反函数 .(2) 反函数的性质:① 函数 y = f(x) 与函数 y = f-1(x) 互为反函数;原函数 y = f(x) 和反函数 y = f-1(x) 的图象关于直线 y = x 对称;② 若点(a , b)在原函数 y = f(x) 上,则点(b , a)必在其反函数 y = f-1(x) 上;③ 原函数 y = f(x) 的定义域是它反函数 y = f-1(x) 的值域;原函数 y = f(x) 的值域是它反函数 y = f-1(x) 的定义域,④ 原函数与反函数具有对应相同的单调性;⑤ 奇函数的反函数还是奇函数 .(3) 求反函数的步骤:① 用 y 表示 x ,即先求出 x = f-1(y) ;② x , y 互换,即写出 y = f-1(x);③ 确定反函数的定义域 .注:若函数 f(ax + b) 存在反函数,则其反函数为 y = 1/a [ f-1(x) - b ] , 而不是 y = f-1(ax + b) ,函数 y = f-1(ax + b) 是 y = 1/a [ f(x) - b ] 的反函数 .4、对数函数一般地,对数函数对数函数就是指数函数指数函数的反函数 .对数函数的性质:① 对数函数y = logax 的图象都在y 轴的右侧,定义域(0,+∞),值域 R ;② 对数函数 y = logax 的图象都经过点(1 , 0);③ 对数函数 y = logax (a > 1):当 x > 1 时,y > 0 ; 当 0 < x < 1 时,y < 0 ;对数函数 y = logax (0 < a < 1):当 x > 1 时,y < 0 ; 当 0 < x < 1 时,y > 0 .④ 对数函数 y = logax (a > 1)在(0,+∞)上是增函数,对数函数 y = logax (0 < a < 1)在(0,+∞)上是减函数 .二、习题检测【习题1】用定义证明:函数 f(x) = x + 1/x 在x∈[1 , +∞) 上是增函数 .【解析】【习题2】已知函数 f(x) = -x^2 + 2ax + 1 - a 在区间 [0 , 1] 有最大值 2,求实数 a 的值 .【解析】解:函数 f(x) = -x^2 + 2ax + 1 - a 的对称轴为 x = a ,① 当 a < 0 时,[0 , 1] 是函数 f(x) 的递减区间,f(x) max = f(0) = 1 -a = 2 , 解得a = -1 ;② 当 a > 1 时,[0 , 1] 是函数 f(x) 的递增区间,f(x) max = f(1) = a = 2 , 解得 a = 2 ;③ 当0 ≤ a ≤ 1 时,综上所述,a = -1 或 2 .【习题3】已知2^x ≤ 256 , log2x ≥ 1/2 , 求函数的最大值和最小值 .【解析】【习题4】已知 a > 0 且a ≠ 1 , 求使方程有解时的 k 的取值范围 .【解析】∴ 0 < k < 1 或 k < -1 .【习题5】某商品进货单价为 40 元,若销售价为 50 元,可卖出50 个,如果销售单价每涨 1 元,销售量就减少 1 个,为了获得最大利润,则此商品的最佳售价应为多少元 .【解析】解:设最佳售价为(50 + x ) 元,最大利润为 y 元,y = (50 + x)(50 - x) - (50 -x)×40= -x^2 + 40x + 500当 x = 20 时,y 取得最大值,∴ 应定价为 70 元 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
())
1,,,0(.4*>∈>=n N n m a a a n m n m
x
N N a a x =⇔=log 必修1基本初等函数 复习题
1、幂的运算性质
(1)s r s r a a a +=⋅),(R s r ∈; (2)rs s r a a =)(;),(R s r ∈ (3)()r r r ab b a =⋅)(R r ∈ 2、对数的运算性质
如果0>a ,且1≠a ,0>M ,0>N ,那么: ○
1()N M N M a a a log log log +=⋅; ○2 N M N
M a a a log log log -=; ○
3()R n M n M a n a ∈=,log log . ④1log ,01log ==a a a
换底公式:a
b
b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ) (1)b m
n
b a n a m
log log =
;(2)a b b a log 1log =.
求函数的定义域时列不等式组的主要依据是:
(1)偶次方根的被开方数不小于零; (2)对数式的真数必须大于零; (3)分式的分母不等于零;(4)指数、对数式的底必须大于零且不等于1. 4、函数单调区间与单调性的判定方法
(A) 定义法:○1 任取x 1,x 2∈D ,且x 1<x 2;○2 作差f(x 1)-f(x 2); ○3 变形(通常是因式分解和配方);○
4 定号(即判断差f(x 1)-f(x 2)的正负); ○
5 下结论(指出函数f(x)在给定的区间D 上的单调性). (B)图象法(从图象上看升降)
(C)复合函数的单调性:复合函数f [g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”
1、 下列函数中,在区间()0,+∞不是增函数的是( )
A.x
y 2= B. x y lg = C. 3
x y = D. 1
y x
=
2、函数y =log 2x +3(x≥1)的值域是( )
A.[)+∞,2
B.(3,+∞)
C.[)+∞,3
D.(-∞,+∞)
3
、若{|2},{|x M y y P y y ====,则M∩P( ) A.{|1}y y > B. {|1}y y ≥ C. {|0}y y > D. {|0}y y ≥ 4、对数式2log (5)a b a -=-中,实数a 的取值围是( ) A.a>5,或a<2 B.2<a<5 C.2<a<3,或3<a<5 D.3<a<4 5、 已知x a x f -=)( )10(≠>a a 且,且)3()2(->
-f f ,则a 的取值围是( )
A. 0>a
B. 1>a
C. 1<a
D. 10<<a 6、函数|log |)(2
1x x f =的单调递增区间是 ( )
A 、]2
1,0( B 、]1,0( C 、(0,+∞) D 、),1[+∞
7、图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =,l g d y o x =的图
象,,,,a b c d 的关系是( )A 、0<a<b<1<d<c B 、0<b<a<1<c<d C 、0<d<c<1<a<b D 、0<c<d<1<a<b 8、已知幂函数f(x)过点(2,
2
2
),则f(4)的值为 ( )
A 、2
1 B 、 1 C 、
2 D 、8 9、6.0log 5.0=a ,5.0log 2=b ,5log
3
=c ,则( )
1.
a 0a ,1)2(2
1
2≠>⎪⎭
⎫
⎝⎛>--且其中x x a a A.a <b <c B.b <a <c C.a <c <b D.c <a <b 10、已知)2(log ax y a -=在[0,1]上是x 的减函数,则a 的取值围是
A.(0,1)
B.(1,2)
C.(0,2)
D.[2,+∞] 11、函数)1(log 2
1-=x y 的定义域为 .
12. 设函数
()()()()
4242x
x f x x f x ⎧≥⎪=⎨<+⎪⎩,则
()2log 3f =
13、计算机的成本不断降低,如果每隔5年计算机的价格降低3
1,现在
价格为8100元的计算机,15年后的价格可降为 14、函数2)23x (lg )x (f +-=恒过定点
15、求下列各式中的x 的值1)1x (ln )1(<-
16.点(2,1)与(1,2)在函数()2ax b
f x +=的图象上,求()f x 的解析式。
17.设函数4
21
()log 1x x f x x x -⎧<=⎨>⎩, 求满足()f x =41的x 的值.
18.已知()2x f x =,()g x 是一次函数,并且点(2,2)在函数[()]f g x 的图象上,点(2,5)在函数[()]g f x 的图象上,求()g x 的解析式.
19、 已知函数x
x
x f -+=11lg )(,(1)求)(x f 的定义域; (2)使0)(>x f 的
x 的取值围.
20、已知定义域为R 的函数
12()22
x x b f x +-+=+是奇函数。
(Ⅰ)求b 的值;(Ⅱ)判断函数()f x 的单调性;
必修1基本初等函数参考答案:
一、 选择题 D C C C D D D A B B 11.{x|21≤<x } 12. 48 13. 2400元 14 (1,2)
15、(1)解:ln(x-1)<lne ∴x-1<e 即x<e+1 ∵x-1>0 即 x>1,∴1<x<e+1
1
212,101212,11)2(2122
1
2<∴-<-<<>∴->->∴>∴⎪⎭
⎫
⎝⎛>----x x x a x x x a a a a a
x
x x x 时当时当解:
16.解:∵(2,1)在函数()2ax b f x +=的图象上,∴1=2
2a +b ,
又∵
(1,2)在
()2ax b f x +=的图象上,∴2=2
a+b ,
可得a=-1,b=2, ∴
()2
2
x f x -+=。
17、解:当x ∈(﹣∞,1)时,由2﹣x
=4
1,得x=2,但
2∉(﹣∞,1),舍去。
当x ∈(1,+∞)时,由log 4x=4
1,得x=
2,
2∈(1,+∞)。
综上所述,x=2
18. 解: g(x)是一次函数 ∴可设g(x)=kx+b (k ≠0),∴f []()g x =2
kx b
+,g []()f x =k2x
+b ,∴依题意得
22
2
225
k b
k b +⎧=⎪⎨+=⎪⎩ 即212
453
k b k k b b +==⎧⎧∴⎨
⎨+==-⎩⎩ ∴()23g x x =-.19. (1)(-1,1), (2)(0,1)。
20、Ⅰ)因为()f x 是奇函数,所以(0)f =0,
即1
11201()2222x
x b b f x +--=⇒=∴=++(Ⅱ)由(Ⅰ)知11211
()22221
x x x
f x +-=
=-+++,
设
12x x <则
21
121
2
121122()()2121(21)(21)
x x x x x x f x f x --=-=++++,因为函数y=2x
在R 上
是增函数且1
2
x x < ∴2
1
22x x ->0,又1
2
(21)(21)
x x ++>0 ∴1
2
()()f x f x ->0即
1
2
()()f x f x >,∴()f x 在(,)-∞+∞上为减函数。