高中数学必修一 基本初等函数练习题及答案

合集下载

高中人教A版数学必修1单元测试:第二章 基本初等函数(二)及解析

高中人教A版数学必修1单元测试:第二章 基本初等函数(二)及解析

为幂函数,得 m2-m-
A
1=1,解得 m=2 或 m=-1.当 m=2 时,m2-2m-3=-3,y=x-3 在
(0,+∞)上为减函数;当 m=-1 时,m2-2m-3=0,y=x0=1(x≠0)
在(0,+∞)上为常数函数(舍去),所以 m=2,故选 A. 7.D 解析:当 x≤1 时,由 21-x≤2 知,x≥0,即 0≤x≤1;
18.(本小题满分 12 分)
1 2
已知函数 f(x)=-2x . (1)求 f(x)的定义域; (2)证明:f(x)在定义域内是减函数.
19.(本小题满分 12 分)
3
xx
已知-3≤log0.5x≤-2,求函数 f(x)=log22·log24的最大值和最小
值.
20.(本小题满分 12 分)
2-x,x∈(-∞,1], 设 f(x)= x x
16.设函数 f(x)是定义在 R 上的奇函数,若当 x∈(0,+∞)时,f(x)
=lg x,则满足 f(x)>0 的 x 的取值范围是________. 三、解答题(本大题共 6 个小题,共 70 分,解答时应写出必要的文
字说明、证明过程或演算步骤) 17.(本小题满分 10 分) 计算下列各题:
1 13. 2,4] 解析:由题意知,2≤log2x≤2,即 log2 2≤log2x≤log24, ∴ 2≤x≤4.
1 14.24 解析:∵log23<4, ∴f(log23)=f(log23+1)=f(log23+3)=f(log224), ∵log224>4,∴f(log224)=12log224=214. 15. 3 3 解析:由图象过点(-2,0),(0,2),知
1 当 x>1 时,由 1-log2x≤2 知 x≥2,即 x>1.

基本初等函数及其性质(高中数学)

基本初等函数及其性质(高中数学)

01 函数及其表示函数的概念【知识简介】函数与映射的概念【典例】1. 判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)函数是特殊的映射.( )(2)函数y =1与y =x 0是同一个函数.( )(3)与x 轴垂直的直线和一个函数的图象至多有一个交点.( ) (4)分段函数是两个或多个函数.( ) 【答案】 (1)√ (2)× (3)√ (4)×2.(教材改编)函数y =2x -3+1x -3的定义域为( )A.⎣⎡⎭⎫32,+∞B.(-∞,3)∪(3,+∞)C.⎣⎡⎭⎫32,3∪(3,+∞)D.(3,+∞)【解析】由题意知⎩⎪⎨⎪⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3.【答案】C3.(2017·东北三省四市二联)已知函数f (x )=⎩⎪⎨⎪⎧log 5x ,x >0,2x , x ≤0,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫125=( ) A .4 B.14C.-4D.-14【解析】∵f ⎝⎛⎭⎫125=log 5125=log 55-2=-2, ∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫125=f (-2)=2-2=14,故选B. 【答案】B 4.(2015·全国卷Ⅱ)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =________. 【解析】[∵f (x )=ax 3-2x 的图象过点(-1,4), ∴4=a ×(-1)3-2×(-1),解得a =-2. 【答案】-2 5.给出下列四个命题:①函数是其定义域到值域的映射; ②f (x )=x -3+2-x 是一个函数; ③函数y =2x (x ∈N)的图象是一条直线; ④f (x )=lg x 2与g (x )=2lg x 是同一个函数. 其中正确命题的序号是________. 【解析】由函数的定义知①正确.∵满足⎩⎪⎨⎪⎧x -3≥0,2-x ≥0的x 不存在,∴②不正确.∵y =2x (x ∈N)的图象是位于直线y =2x 上的一群孤立的点,∴③不正确. ∵f (x )与g (x )的定义域不同,∴④也不正确. 【答案】① 求函数的定义域 【知识简介】求函数定义域主要有两种类型,一种是具体函数求定义域,即结合分式、根式及对数式等考查自变量的取值;另一种是抽象函数定义域的求解,高考中常以选择题形式出现,难度较低. 【典例】 1(1)(2014·山东,3)f (x )=1(log 2x )2-1的定义域为( )A.⎝⎛⎭⎫0,12 B .(2,+∞) C.⎝⎛⎭⎫0,12∪(2,+∞) D.⎝⎛⎦⎤0,12∪[2,+∞) (2)(2013·大纲全国,4)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0) D.⎝⎛⎭⎫12,1【答案】 (1)C (2)B 【名师点睛】(1)求定义域时对于解析式先不要化简;(2)求出定义域后,一定要将其写成集合或区间的形式. 1.(2012·江西,2)下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln x xC .y =x e xD .y =sin x x1.D 函数y =13x 的定义域为{x |x ≠0,x ∈R },与函数y =sin xx 的定义域相同,故选D.2.若典型例题1(2)改为函数f (x 2-1)的定义域为[0,2],则函数g (x )=f (2x )的定义域为________.【答案】 ⎣⎡⎦⎤-12,32,求函数定义域的三种常考类型及求解策略(1)已知函数的解析式:构建使解析式有意义的不等式(组)求解. (2)抽象函数:①若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出. ②若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. (3)实际问题:既要使构建的函数解析式有意义,又要考虑实际问题的要求.求函数的解析式 【知识简介】高考中直接考查求函数解析式的题目很少,主要考查应用问题,备考时熟练掌握换元法、待定系数法求解析式,高考中常以选择题或填空题形式出现,难度不大.【典例】 2(1)(2014·浙江,6)已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A .c ≤3 B .3<c ≤6 C .6<c ≤9 D .c >9(2)(2015·浙江,7)存在函数f (x )满足:对任意x ∈R 都有( ) A .f (sin 2x )=sin x B .f (sin 2x )=x 2+x C .f (x 2+1)=|x +1| D .f (x 2+2x )=|x +1|(3)(2013·安徽,14)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.【解析】 (1)由f (-1)=f (-2)=f (-3)得,⎩⎪⎨⎪⎧-1+a -b +c =-8+4a -2b +c ,-1+a -b +c =-27+9a -3b +c ,解得⎩⎪⎨⎪⎧a =6,b =11,∴f (x )=x 3+6x 2+11x +c .由0<f (-1)≤3,得0<-1+6-11+c ≤3,即6<c ≤9,故选C.(3)∵-1≤x ≤0,∴0≤x +1≤1,∴f (x )=12f (x +1)=12(x +1)[1-(x +1)]=-12x (x +1).【答案】 (1)C (2)D (3)-12x (x +1),【名师点睛】题(2)中判断对应关系“f ”是否是函数关键在于对于∀x ∈R 在f 的作用下是否有唯一的y 与之对应.求函数解析式的常见方法(1)待定系数法:若已知函数的类型(如一次函数、二次函数),根据函数类型设出函数解析式,根据题设条件,列出方程组,解出待定系数即可.(2)换元法:已知f (h (x ))=g (x )求f (x )时,往往可设h (x )=t ,从中解出x ,代入g (x )进行换元,求出f (t )的解析式,再将t 替换为x 即可.(3)转化法:已知某区间上的解析式,求其他区间上的解析式,将待求变量转化到已知区间上,利用函数满足的等量关系间接获得其解析式.(4)解方程组法:已知关于f (x )与f ⎝⎛⎭⎫1x (或f (-x ))的表达式,可根据已知条件再构造出另一个方程构成方程组求出f (x ). 分段函数分段函数作为考查函数知识的最佳载体,一直是高考命题的热点,试题常以选择题、填空题形式出现,考查求值、解方程(零点)、解不等式、函数图象及函数性质等问题.解题过程中常渗透分类讨论的数学思想.【典例】3(1)(2015·课标Ⅱ,5)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ), x <1,2x -1, x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12(2)(2014·浙江,15)设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2, x ≥0.若f (f (a ))≤2,则实数a 的取值范围是________.【答案】 (1)C (2)(-∞,2] 【名师点睛】当分段函数的自变量范围不确定时,应分类讨论.(2015·山东临沂调研,5)已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( )A.12B.45 C .2 D .9 C ∵0<1,∴f (0)=20+1=2. ∵f (0)=2≥1,∴f (f (0))=22+2a =4a , ∴a =2.故选C.,分段函数两种题型的求解策略 (1)根据分段函数的解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解. (2)已知函数值(或函数值的范围)求自变量的值(或范围)应根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围.【针对训练】1.(2016·湖南三校联考,3)函数f (x )=-x 2+3x +4+lg(x -1)的定义域是( ) A .[-1,4] B .(-1,4] C .[1,4] D .(1,4] 1.D 由题意,得⎩⎪⎨⎪⎧-x 2+3x +4≥0,x -1>0,解得1<x ≤4. 2.(2016·福建厦门一模,4)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=( )A.15 B .3 C.23 D.1393.(2016·湖南衡阳联考,3)已知f ⎝⎛⎭⎫1+x x =x 2+1x 2+1x ,则f (x )=( ) A .(x +1)2 B .(x -1)2C .x 2-x +1D .x 2+x +13.C f ⎝⎛⎭⎫1+x x =x 2+1x 2+1x =⎝⎛⎭⎫x +1x 2-x +1x +1,令x +1x =t ,则f (t )=t 2-t +1,即f (x )=x 2-x +1.4.(2015·河北唐山统考,5)f (x )是R 上的奇函数,当x ≥0时,f (x )=x 3+ln(1+x ),则当x <0时,f (x )=( ) A .-x 3-ln(1-x ) B .x 3+ln(1-x ) C .x 3-ln(1-x ) D .-x 3+ln(1-x )4.C 当x <0时,-x >0,f (-x )=(-x )3+ln(1-x ).∵f (x )是R 上的奇函数,∴当x <0时,f (x )=-f (-x )=-[(-x )3+ln(1-x )],∴f (x )=x 3-ln(1-x ). 5.(2016·广东广州一模,8)已知函数f (x )的定义域为[3,6],则函数y =f (2x )log 12(2-x )的定义域为( )A.⎣⎡⎭⎫32,+∞B.⎣⎡⎭⎫32,2 C.⎝⎛⎭⎫32,+∞ D.⎣⎡⎭⎫12,2 5.B 要使函数y =f (2x )log 12(2-x )有意义,需满足⎩⎪⎨⎪⎧3≤2x ≤6,log 12(2-x )>0⇒⎩⎪⎨⎪⎧32≤x ≤3,0<2-x <1⇒32≤x <2.故选B.6.(2016·陕西西安一中一模,10)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,-2)D .(-2,1)7.(2015·湖北武汉质检,6)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x <0,x 2-2x ,x ≥0.若f (-a )+f (a )≤0,则a 的取值范围( )A .[-1,1]B .[-2,0]C .[0,2]D .[-2,2]7.D 依题意可得⎩⎪⎨⎪⎧a ≥0,a 2-2a +(-a )2+2(-a )≤0 或⎩⎪⎨⎪⎧a <0,(-a )2-2(-a )+a 2+2a ≤0, 解得a ∈[-2,2],故选D.8.(2015·安徽合肥二模,7)设集合A =⎣⎡⎭⎫0,12,B =⎣⎡⎦⎤12,1,函数f (x )=⎩⎪⎨⎪⎧x +12,x ∈A ,2(1-x ),x ∈B .若x 0∈A ,且 f (f (x 0))∈A ,则x 0的取值范围是( ) A.⎝⎛⎦⎤0,14 B.⎝⎛⎦⎤14,12 C.⎝⎛⎭⎫14,12 D.⎣⎡⎦⎤0,38思路点拨:解答本题关键是要分清x 0∈A 时,f (x 0)的取值范围,以决定如何求f (f (x 0))的值. 9.(2016·浙江慈溪、余姚联考,10)若函数f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________.9. 【解析】 用1x 替换2f (x )+f ⎝⎛⎭⎫1x =3x 中的x ,得到2f ⎝⎛⎭⎫1x +f (x )=3x ,两个方程联立消去f ⎝⎛⎭⎫1x ,得f (x )=2x -1x. 【答案】 2x -1x10.(2016·湖北武昌调考,14)新定义函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则不等式(x +1)sgn x >2的解集是________. 10. 【解析】 ①当x >0时, sgn x =1,不等式的解集为{x |x >1}; ②当x =0时,sgn x =0,不等式无解;③当x <0时,sgn x =-1,不等式的解集为{x |x <-3}, 所以不等式(x +1)sgn x >2的解集为{x |x <-3或x >1}. 【答案】 {x |x <-3或x >1}【点击高考】1.(2014·江西,2,易)函数f (x )=ln(x 2-x )的定义域为( ) A .(0,1) B .[0,1]C .(-∞,0)∪(1,+∞)D .(-∞,0]∪[1,+∞)1.C 要使函数有意义,需满足x 2-x >0,解得x <0或x >1,故选C.2.(2014·江西,3,易)已知函数f (x )=5|x |,g (x )=ax 2-x (a ∈R ).若f (g (1))=1,则a =( ) A .1 B .2 C .3 D .-1 2.A 由已知条件可知 f (g (1))=f (a -1)=5|a -1|=1, ∴|a -1|=0,得a =1.故选A.3.(2012·安徽,2,易)下列函数中,不满足...f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1 D .f (x )=-x4.(2015·山东,10,中)设函数f (x )=⎩⎪⎨⎪⎧3x -1, x <1,2x , x ≥1.则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎡⎦⎤23,1 B .[0,1] C.⎣⎡⎭⎫23,+∞ D .[1,+∞)4.C 令f (a )=t ,则由f (f (a ))=2f (a )得f (t )=2t .由f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1可知t ≥1.∴f (a )≥1⇒⎩⎪⎨⎪⎧a <1,3a -1≥1或⎩⎪⎨⎪⎧a ≥1,2a ≥1⇒23≤a <1或a ≥1⇒a ≥23.故选C. 5.(2015·湖北,6,中)已知符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.f (x )是R 上的增函数,g (x )=f (x )-f (ax )(a >1),则( )A .sgn[g (x )]=sgn xB .sgn[g (x )]=-sgn xC .sgn[g (x )]=sgn[f (x )]D .sgn[g (x )]=-sgn[f (x )]6.(2015·湖北,10,难)设x ∈R ,[x ]表示不超过x 的最大整数.若存在实数t ,使得[t ]=1,[t 2]=2,…,[t n ]=n 同时成立,则正整数n 的最大值是( ) A .3 B .4 C .5 D .6 6.B 由题可知: 当n =1时,1≤t <2.当n =2时,2≤t 2<3,即2≤t <3满足条件.当n =3时,3≤t 3<4,即33≤t <34满足条件. 当n =4时,4≤t 4<5,即44≤t <45满足条件. 当n =5时,5≤t 5<6,即55≤t <56, 而33>56.所以正整数n 的最大值为4.7.(2015·浙江,10,易)已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3, x ≥1,lg (x 2+1), x <1,则f (f (-3))=________,f (x )的最小值是________.8.(2015·山东,14,中)已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________.8.【解析】 当0<a <1时,由已知得⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧b =-2,a =12,∴a +b =-32.当a >1时,⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0,解得b =-1,∴1a =0,无解.综上a +b =-32. 【答案】 -3202 函数的单调性求函数的单调区间 【知识简介】对于高考中函数的单调性是重点考查内容.备考时要熟记基本初等函数的图象和性质.往往以选择题、填空题形式出现,难度中等,解答题部分一般与导数结合,考查难度较大. 【典例】 1(1)(2015·湖南,5)设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( ) A .奇函数,且在(0,1)上是增函数 B .奇函数,且在(0,1)上是减函数 C .偶函数,且在(0,1)上是增函数 D .偶函数,且在(0,1)上是减函数(2)(2014·天津,4)函数f (x )=log 12(x 2-4)的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)(2)因为y =log 12t 在定义域上是减函数,所以求原函数的单调增区间,即求函数y =x 2-4的单调减区间,结合函数的定义域x 2-4>0,可知所求区间为(-∞,-2). 【答案】 (1)A (2)D(2015·河南洛阳二模,6)函数y =f (x )(x ∈R )的图象如图所示,则函数g (x )=f (log a x )(0<a <1)的单调减区间是( )A.⎣⎡⎦⎤0,12 B .[a ,1] C .(-∞,0)∪⎣⎡⎭⎫12,+∞ D .[a ,a +1] B 由图象可知,函数y =f (x )的单调递减区间为(-∞,0)和⎝⎛⎭⎫12,+∞,单调递增区间为⎣⎡⎦⎤0,12. ∵0<a <1,∴函数y =log a x 在定义域内单调递减.由题意可知,0≤log a x ≤12,解得a ≤x ≤1,即所求递减区间为[a ,1],故选B.,判断函数单调性(单调区间)的常用方法(1)定义法:先求定义域,再根据取值、作差、变形、定号的顺序得结论.(2)图象法:若函数是以图象形式给出的,或者函数的图象可作出,可由图象的升、降判断它的单调性或写出单调区间.(3)复合函数法:适用于形如y =f (φ(x ))的复合函数,具体规则如下表:函数 增减情况内函数t =φ(x ) 增 增 减 减 外函数y =f (t ) 增 减 增 减 y =f (φ(x ))增减减增y =f (φ(x ))的单调性可以利用口诀——“同增异减”来判断,即内外函数的单调性相同时,为增函数;单调性不同时为减函数.(4)导数法:先求导,再确定导数值的正负,由导数的正负得函数的单调性(区间). (5)性质法:利用函数单调性的有关结论,确定简单的初等函数的单调性. 函数的值域 【知识简介】确定函数的值域或最值一般先探求函数在定义域内的单调性,通常出现在选择题或填空题中,函数求值域问题涉及到的函数是基本初等函数,或由基本初等函数经过变换得到.在备考时熟练掌握几个常见函数模型的图象与性质,如y =ax +b cx +d (c ≠0)或y =x +ax (a ≠0).此外,在解答题中常与恒成立、有解问题综合考查,属于中高档题.【典例】 2(1)(2014·安徽,9)若函数f (x )=|x +1|+|2x +a |的最小值为3,则实数a 的值为( ) A .5或8 B .-1或5 C .-1或-4 D .-4或8(2)(2015·福建,14)若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log ax ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.【解析】 (1)①当-1≤-a2,即a ≤2时,f (x )=⎩⎪⎨⎪⎧-3x -a -1,x ≤-1,-x -a +1,-1<x <-a 2,3x +a +1,x ≥-a 2. 易知函数f (x )在x =-a 2处取最小值,即1-a2=3.所以a =-4.②当-1>-a2,即a >2时,f (x )=⎩⎪⎨⎪⎧-3x -a -1,x ≤-a2,x +a -1,-a 2<x <-1,3x +a +1,x ≥-1.易知函数f (x )在x =-a 2处取最小值,即a2-1=3,故a =8.综上可得a =-4或a =8.【答案】 (1)D (2)(1,2](2015·福建福州一模,6)如果函数f (x )对任意的实数x ,都有f (1+x )=f (-x ),且当x ≥12时,f (x )=log 2(3x -1),那么函数f (x )在[-2,0]上的最大值与最小值之和为( ) A .2 B .3 C .4 D .-1常见求函数值域的方法(1)配方法:对形如y =ax 2+bx +c (a ≠0)形式的函数,配方转化为顶点式,利用二次函数值域的求法求 解.(2)单调性法(图象法):若f (x )在[a ,b ]上单调递增,则f (x )min =f (a ),f (x )max =f (b );若f (x )在[a ,b ] 上单调递减,则f (x )min =f (b ),f (x )max =f (a ).(3)对于形如y =x +ax (a >0)的函数,利用基本不等式:a +b ≥2ab (a >0,b >0)求最值.(4)导数法. 单调性的应用 【知识简介】函数单调性的应用常以基本初等函数为载体,考查学生数形结合思想、转化与化归思想的应用,综合分析问题的能力.在高考中常以选择题、填空题出现,难度中等. 【典例】 3(1)(2015·天津,7)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b=f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( ) A .a <b <c B .a <c <b C .c <a <b D .c <b <a(2)(2013·安徽,4)“a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件(3)(2014·课标Ⅱ,15)已知偶函数f (x )在[0,+∞)上单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.【解析】 (1)∵f (x )为偶函数,∴f (-x )=f (x ),∴m =0, ∴f (x )=2|x |-1.图象如图,由函数的图象可知,函数f(x)在(-∞,0)上是减函数,在(0,+∞)上是增函数.∵a=f(log0.53)=f(log23),b=f(log25),c=f(0),又log25>log23>0,∴b>a>c,故选C.(3)由题知,f(2)=0且f(x-1)>0,故f(x-1)>f(2),而函数f(x)在[0,+∞)上单调递减且为偶函数,故满足|x -1|<2,解得-1<x<3.【答案】(1)C(2)C(3)(-1,3),比较函数值大小的思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.含“f”号不等式的解法首先根据函数的性质把不等式转化为f(g(x))>f(h(x))的形式,然后根据函数的单调性去掉“f”号,转化为具体的不等式(组),此时要注意g(x)与h(x)的取值应在外层函数的定义域内.利用函数的单调性求参数的取值范围已知函数在区间A上是增函数,求相关参数的取值范围,若函数是复合函数的形式,此类问题应理解为区间A是函数增区间的子集,根据复合函数“同增异减”的单调性结论来解决.若函数的导数可求,则可用函数的导数恒大于或等于0来解决.如f(x)在区间A上为增函数,求参数a的范围,则转化为:f′(x)≥0在A上恒成立且f ′(x )=0在A 的任意子区间不恒成立,若求得a ≥2,则需检验a =2时是否符合题意.【针对训练】1.(2016·河南郑州一模,2)下列函数中是偶函数并且在(0,+∞)内单调递增的是( ) A .y =-(x -1)2 B .y =cos x +1 C .y =lg|x |+2 D .y =2x2.(2015·河北保定三模,6)已知f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( )A .(-∞,-1] B.⎝⎛⎭⎫-1,12 C.⎣⎡⎭⎫-1,12 D.⎝⎛⎭⎫0,12 2.C 要使函数f (x )的值域为R ,只需⎩⎪⎨⎪⎧1-2a >0,ln 1≤1-2a +3a ,∴⎩⎪⎨⎪⎧a <12,a ≥-1,∴-1≤a <12,故选C.3.(2015·湖南株洲一模,7)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( ) A .-1 B .1 C .6 D .123.C 由已知得当-2≤x ≤1时,f (x )=x -2; 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6.4.(2016·黑龙江哈尔滨联考,8)已知函数f (x )的图象向右平移a (a >0)个单位后关于直线x =a +1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关 系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c4.D 由函数f (x )的图象向右平移a (a >0)个单位后关于直线x =a +1对称,知f (x )的图象关于直线x =1对称.由此可得f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减. ∵1<2<52<e ,∴f (2)>f ⎝⎛⎭⎫52>f (e), ∴b >a >c ,故选D.5.(2016·江西八校联考,10)定义在R 上的函数f (x )对任意x 1,x 2(x 1≠x 2)都有f (x 1)-f (x 2)x 1-x 2<0,且函数y=f (x -1)的图象关于点(1,0)中心对称,若s ,t 满足不等式f (s 2-2s )≤-f (2t -t 2).则当1≤s ≤4时,t -2ss +t 的取值范围是( )A.⎣⎡⎭⎫-3,-12B.⎣⎡⎦⎤-3,-12 C.⎣⎡⎭⎫-5,-12 D.⎣⎡⎦⎤-5,-12①不等式组⎩⎪⎨⎪⎧1≤s ≤4,s ≤t ,s +t ≤2的解只有⎩⎪⎨⎪⎧s =1,t =1,此时t -2s s +t=-12.②∵t -2s s +t =t +s -3s s +t=1-31+t s,不等式组⎩⎪⎨⎪⎧1≤s ≤4,s ≥t ,s +t ≥2表示的可行域如图中阴影部分所示,6.(2016·吉林长春质检,15)已知定义在R 上的偶函数f (x )在[0,+∞)上单调递增,且f (1)=0,则不等式f (x -2)≥0的解集是________.6.【解析】 由已知可得x -2≥1或x -2≤-1,解得x ≥3或x ≤1, ∴所求解集是(-∞,1]∪[3,+∞). 【答案】 (-∞,1]∪[3,+∞)【点击高考】1.(2014·北京,2,易)下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2 C .y =2-x D .y =log 0.5(x +1)1.A 对于A ,函数y =x +1在[-1,+∞)上为增函数,所以函数在(0,+∞)上为增函数,故符合;对于B ,函数y =(x -1)2在(-∞,1)上为减函数,在[1,+∞)上为增函数,故不符合;对于C ,函数y =2-x =⎝⎛⎭⎫12x在R 上为减函数,故不符合;对于D ,函数y =log 0.5(x +1)在(-1,+∞)上为减函数,故不符合.2.(2014·陕西,7,易)下列函数中,满足“f (x +y )=f (x )·f (y )”的单调递增函数是( ) A .f (x )=x 12 B .f (x )=x3 C .f (x )=⎝⎛⎭⎫12xD .f (x )=3x2.D ∵f (x +y )=f (x )f (y ), ∴f (x )为指数函数模型,排除A ,B.又∵f (x )为单调递增函数,∴排除C ,故选D.3.(2012·广东,4,易)下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2) B .y =-x +1 C .y =⎝⎛⎭⎫12x D .y =x +1x4.(2012·陕西,2,易)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3 C .y =1xD .y =x |x |4.D (逐项验证法)对于A ,注意到函数y =x +1不是奇函数;对于B ,注意到函数y =-x 3是在R 上的减函数;对于C ,注意到函数y =1x 在其定义域上不是增函数;对于D ,注意到-x ·|-x |+x |x |=0,即函数y =x |x |是奇函数,且当x ≥0时,y =x |x |=x 2是增函数,因此函数y =x |x |既是奇函数又是R 上的增函数,故选D.5.(2015·北京,14,中)设函数f (x )=⎩⎪⎨⎪⎧2x -a ,x <1,4(x -a )(x -2a ),x ≥1.(1)若a =1,则f (x )的最小值为________;(2)若f (x )恰有2个零点,则实数a 的取值范围是________. 5.【解析】 (1)若a =1,f (x )=⎩⎪⎨⎪⎧2x -1,x <1,4(x -1)(x -2),x ≥1.当x <1时,-1<2x -1<1.当x ≥1时,4(x -1)(x -2)=4(x 2-3x +2)=4⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫x -322-14≥-1,∴f (x )min =-1.6.(2012·上海,7,中)已知函数f (x )=e |x--a |(a 为常数).若f (x )在区间[1,+∞)上是增函数,则a 的取值范围是________.6.【解析】 方法一:∵f (x )=e |x -a |=⎩⎪⎨⎪⎧e x -a (x ≥a ),e -x +a (x <a ),∴f (x )在[a ,+∞)上为增函数, 则[1,+∞)⊆[a ,+∞),∴a ≤1.方法二:∵f (x )=e |x -a |=⎩⎪⎨⎪⎧e x -a (x ≥a ),e -x +a (x <a ),当x ≥a 时,f (x )=e x -a ,f ′(x )=e x -a .由题意知f ′(x )=e x -a ≥0在[1,+∞)上是恒成立的, ∴a ≤x min ,∴a ≤1.当x <a 时,f ′(x )=-e x -a <0恒成立,不符合题意. 综上所述,a ≤1. 【答案】 (-∞,1]7.(2016·浙江,16,15分,中)已知a ≥3,函数F (x )=min{2|x -1|,x 2-2ax +4a -2},其中min{p ,q }=⎩⎪⎨⎪⎧p ,p ≤q ,q ,p >q . (1)求使得等式F (x )=x 2-2ax +4a -2成立的x 的取值范围; (2)①求F (x )的最小值m (a );②求F (x )在区间[0,6]上的最大值M (a ).7.解:(1)由于a≥3,故当x≤1时,(x2-2ax+4a-2)-2|x-1|=x2+2(a-1)(2-x)>0,当x>1时,(x2-2ax+4a-2)-2|x-1|=(x-2)(x-2a).所以使得等式F(x)=x2-2ax+4a-2成立的x的取值范围为[2,2a].03 函数的奇偶性与周期性函数奇偶性的判断及应用【知识简介】函数的奇偶性常与函数单调性相结合,解决求值、求参数问题,也与函数的周期性、图象对称性在同一个题目中出现,常以选择题或填空题形式出现,难度不大,属于中低档题.【典例】1(1)(2015·安徽,2)下列函数中,既是偶函数又存在零点的是()A.y=cos x B.y=sin xC.y=ln x D.y=x2+1(2)(2014·湖南,3)已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)=()A.-3 B.-1C.1 D.3(3)(2015·课标Ⅰ,13)若函数f(x)=x ln(x+a+x2)为偶函数,则a=______.【答案】(1)A(2)C(3)1(2013·四川,14)已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么,不等式f(x+2)<5的解集是________.【答案】 (-7,3),判断函数奇偶性的方法 (1)定义法首先确定函数的定义域,若定义域关于原点对称,则确定f (x )与f (-x )的关系,进而得出函数的奇偶性;否则该函数既不是奇函数也不是偶函数. (2)图象法观察f (x )的图象,若关于原点对称,则f (x )为奇函数,若关于y 轴对称,则f (x )为偶函数.应用奇偶性可解决的问题及方法(1)求函数值:利用奇偶性转化到已知区间上求解.(2)求解析式:步骤:①求谁设谁;②转化到已知解析式的区间;③利用已知区间解析式求出f (-x );④利用奇偶性求出f (x ).(3)求解析式中参数的值:利用待定系数法求解,由f (x )±f (-x )=0得出关于参数的恒等式,进而求解. 函数的周期性 【知识简介】函数的周期性常与函数的奇偶性、图象的对称性结合,考查函数求值等问题,难度中等,一般以选择题、填空题的形式出现.【典例】 2(1)(2012·山东,8)定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2,当-1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+…+f (2 012)=( ) A .335 B .338 C .1 678 D .2 012(2)(2014·四川,12)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝⎛⎭⎫32=________. 【解析】 (1)由f (x +6)=f (x )可知,函数f (x )的周期为6,所以f (-3)=f (3)=-1,f (-2)=f (4)=0,f (-1)=f (5)=-1,f (0)=f (6)=0,f (1)=1,f (2)=2,所以在一个周期内有f (1)+f (2)+…+f (6)=1+2-1+0-1+0=1,所以f (1)+f (2)+…+f (2 012)=f (1)+f (2)+335×1=1+2+335=338.(2)由已知易得f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-122+2=1,又由函数的周期为2, 可得f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12=1. 【答案】 (1)B (2)1,函数周期性的判定与应用(1)判断函数的周期只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题.(2)根据函数的周期性,可以由函数局部的性质得到函数的整体性质,即周期性与奇偶性都具有将未知区间上的问题转化到已知区间的功能.在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期. 函数性质的综合应用 【知识简介】函数的奇偶性、周期性及单调性,在高考中常将它们综合在一起命题,奇偶性多与单调性结合,周期性多与抽象函数结合,并结合奇偶性求函数值,难度中等,一般以选择题、填空题的形式出现. 【典例】 3(1)(2014·大纲全国,12)奇函数f (x )的定义域为R .若f (x +2)为偶函数,且f (1)=1,则f (8) +f (9)=( )A .-2B .-1C .0D .1(2)(2012·课标全国,16)设函数f (x )=(x +1)2+sin x x 2+1的最大值为M ,最小值为m ,则M +m =________.(2)显然其定义域为全体实数,f (x )=(x +1)2+sin x x 2+1=1+2x +sin xx 2+1,设g (x )=2x +sin xx 2+1,∵g (-x )=-g (x ),∴g (x )为奇函数,由奇函数图象的对称性知g (x )max +g (x )min =0,∴M +m =[g (x )+1]max +[g (x )+1]min =2+g (x )max +g (x )min =2. 【答案】 (1)D (2)2,函数性质综合应用的注意点函数的周期性常通过奇偶性得到,奇偶性体现的是一种对称关系.而函数的单调性体现的是函数值随自变量变化而变化的规律.因此在解题时,往往需要借助函数的奇偶性和周期性来确定另一区间上的单调性,即实现区间的转换,再利用单调性解决相关问题.【针对训练】1.(2016·山东潍坊联考,4)设函数f (x )是定义在R 上的奇函数,则下列结论中一定正确的是( ) A .函数f (x 2)+x 2是奇函数 B .函数[f (x )]2+|x |不是偶函数 C .函数x 2f (x )是奇函数 D .函数f (x )+x 3不是奇函数2.(2016·甘肃兰州一模,12)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增,若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是( )A.⎣⎡⎭⎫12,+∞B.⎣⎡⎭⎫12,2 C.⎣⎡⎦⎤12,2 D .(0,2]2.C 因为f (log 12a )=f (-log 2a )=f (log 2a ),所以原不等式可化为f (log 2a )≤f (1).又f (x )在区间[0,+∞)上单调递增,所以|log 2a |≤1,解得12≤a ≤2,故选C.3.(2016·广东东莞一模,6)已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (log 123),c =f (21.8),则a ,b ,c 的大小关系是( )A .c <a <bB .c <b <aC .b <c <aD .a <b <c3.B ∵f (x )是定义在(-∞,+∞)上的偶函数, ∴b =f (log 123)=f (-log 23)=f (log 23),∵21.8>2>log 23=log 49>log 47, ∴log 47<log 49<21.8,∵f (x )在(-∞,0]上是增函数, ∴f (x )在[0,+∞)上是减函数, 则f (log 47)>f (log 49)>f (21.8), 即c <b <a .4.(2015·湖北名校联考,7)设f (x )是定义在R 上的偶函数,对任意x ∈R ,都有f (x -2)=f (x +2),且当x ∈[-2,0]时,f (x )=⎝⎛⎭⎫12x-1.若在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0(a >1)恰有3个不同的实数根,则a 的取值范围是( )A .(1,2)B .(2,+∞)C .(1,34)D .(34,2)∴在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0(a >1)恰有3个不同的实数根可转化为函数f (x )的图象与y =log a (x +2)的图象有且只有三个不同的交点,则⎩⎪⎨⎪⎧log a (2+2)<3,log a(6+2)>3, 解得34<a <2,故选D.5.(2016·河北石家庄模拟,15)若函数f (x )=2x +sin x 对任意的m ∈[-2,2],有f (mx -3)+f (x )<0恒成立,则x 的取值范围是________.【答案】 (-3,1)6.(2016·山东济南二模,13)已知定义在R 上的函数f (x ),对任意实数x 有f (x +4)=-f (x )+22,若函数f (x -1)的图象关于直线x =1对称,f (1)=2,则f (2 015)=________.6.【解析】 由函数y =f (x -1)的图象关于直线x =1对称可知,函数f (x )的图象关于y 轴对称,故f (x )为偶函数.由f (x +4)=-f (x )+22,得f (x +4+4)=-f (x +4)+22=f (x ), ∴f (x )是周期T =8的偶函数,∴f (2 015)=f (7+251×8)=f (7)=f (8-1)=f (-1)=f (1)=2. 【答案】 27.(2016·山西太原三模,16)已知定义在R 上的奇函数f (x )满足f ⎝⎛⎭⎫32-x =f (x ),f (-2)=-3,数列{a n }的前n 项和为S n ,且a 1=-1,S n =2a n +n (n ∈N *),则f (a 5)+f (a 6)=________. 7.【解析】 ∵奇函数f (x )满足f ⎝⎛⎭⎫32-x =f (x ), ∴f ⎝⎛⎭⎫32-x =-f (-x ), ∴f (x )=-f ⎝⎛⎭⎫x +32=f (x +3), ∴f (x )是以3为周期的周期函数, ∵S n =2a n +n ,① ∴S n +1=2a n +1+n +1,②②-①可得a n +1=2a n -1,即a n +1-1=2(a n -1),∴数列{a n -1}是首项为-2,公比为2的等比数列,即a n -1=-2·2n -1=-2n ,即a n =-2n +1,∴a 5=-31,a 6=-63,∴f (a 5)=f (-31)=f (2)=-f (-2)=3,f (a 6)=f (-63)=f (0)=0,∴f (a 5)+f (a 6)=3. 【答案】 38.(2016·河南郑州质检,15)设函数y =f (x )的定义域为D ,若对于任意x 1,x 2∈D ,当x 1+x 2=2a 时,恒有f (x 1)+f (x 2)=2b ,则称点(a ,b )为函数y =f (x )图象的对称中心.研究函数f (x )=x 3+sin πx +2图象的某一个对称中心,并利用对称中心的上述定义,可得到f (-1)+f ⎝⎛⎭⎫-1920+…+f ⎝⎛⎭⎫1920+f (1)=________. 【答案】 82【点击高考】1.(2016·山东,9,中)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12,则f (6)=( ) A .-2 B .-1 C .0 D .21.D 由题意得,当x >12时,f (x +1)=f ⎝⎛⎭⎫x +12+12=f ⎝⎛⎭⎫x +12-12=f (x ),所以当x >12时,f (x )的周期为1,所以f (6)=f (1).又f (1)=-f (-1)=-[(-1)3-1]=2,所以f (6)=2,故选D.2.(2016·课标Ⅱ,12,难)已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑mi =1 (x i +y i )=( ) A .0 B .m C .2m D .4m3.(2015·广东,3,易)下列函数中,既不是奇函数,也不是偶函数的是( ) A .y =1+x 2 B .y =x +1xC .y =2x +12x D .y =x +e x3.D A 中函数y =1+x 2为偶函数;B 中f (-x )=-x -1x =-f (x ),故为奇函数;C 中f (-x )=2-x +12-x =12x+2x =f (x ),故为偶函数;D 中f (-x )=-x +e -x ,为非奇非偶函数,故选D.4.(2014·课标Ⅰ,3,易)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数4.C 若f (x )为奇函数,则|f (x )|为偶函数;若g (x )为偶函数,则|g (x )|为偶函数,且两函数相乘奇偶性“同偶异奇”,对照选项可知C 正确.5.(2013·山东,3,易)已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)=( )A .-2B .0C .1D .25.A 因为函数f (x )为奇函数,所以f (-1)=-f (1)=-2.故选A.6.(2012·福建,7,中)设函数D (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则下列结论错误的是( )A .D (x )的值域为{0,1}B .D (x )是偶函数C .D (x )不是周期函数 D .D (x )不是单调函数7.(2016·天津,13,中)已知f(x)是定义在R上的偶函数,且在区间(-∞,0)上单调递增.若实数a满足f(2|a-1|)>f(-2),则a的取值范围是________.7.【解析】由f(x)是偶函数且f(x)在(-∞,0)上单调递增,得f(x)在(0,+∞)上单调递减.又f(2|a-1|)>f(-2),f(-2)=f(2),∴f(2|a-1|)>f(2),∴2|a-1|<2,即|a-1|<1 2,∴12<a<32.【答案】12<a<328.(2012·上海,9,易)已知y=f(x)+x2是奇函数,且f(1)=1.若g(x)=f(x)+2,则g(-1)=________.04 二次函数与幂函数二次函数 【知识简介】在高考中,二次函数图象常与其他函数结合考查,多以选择题形式出现,难度偏大,属于中高档题. 二次函数性质中单调性及最值在高考中出现频率较高,在解答题中常与导数相结合,考查函数的单调性、极值、零点与不等式问题,难度较大.【典例】 1(1)(2015·四川,9)如果函数f (x )=12(m -2)x 2+(n -8)x +1(m ≥0,n ≥0)在区间⎣⎡⎦⎤12,2上单调递减,那么mn 的最大值为( ) A .16 B .18 C .25 D.812(2)(2013·辽宁,12)已知函数f (x )=x 2-2(a +2)x +a 2,g (x )=-x 2+2(a -2)x -a 2+8.设H 1(x )=max{f (x ),g (x )},H 2(x )=min{f (x ),g (x )}(max{p ,q }表示p ,q 中的较大值,min{p ,q }表示p ,q 中的较小值).记H 1(x )的最小值为A ,H 2(x )的最大值为B ,则A -B =( ) A .a 2-2a -16 B .a 2+2a -16 C .-16 D .16③当m -2<0,即0≤m <2时,f (x )开口向下,对称轴x =-n -8m -2=8-n m -2≤12,整理得m +2n ≤18.∴mn =12×2mn ≤12×⎝⎛⎭⎫m +2n 22≤812,当且仅当m =2n ,m +2n =18,即n =92,m =9时,等号成立,而m =9与0≤m <2矛盾;故不合题意.综上可知,mn 的最大值为18,故选B.(2)令f(x)=g(x),即x2-2(a+2)x+a2=-x2+2(a-2)x-a2+8,即x2-2ax+a2-4=0,解得x=a+2或x=a-2.f(x)与g(x)的图象如图.由图象及H1(x)的定义知H1(x)的最小值是f(a+2),H2(x)的最大值为g(a-2),∴A-B=f(a+2)-g(a-2)=(a +2)2-2(a+2)2+a2+(a-2)2-2(a-2)2+a2-8=-16.【答案】(1)B(2)C,【名师点睛】(1)首先根据函数的单调性建立关于m,n的不等式,然后运用基本不等式求最值.注意需对二次项系数进行分类讨论.(2)比较两个函数的大小可以转化成两图象的上下位置关系,故可用图象法求解,在画图时要抓好轴与顶点.二次函数图象的主要考查方向(1)二次函数的图象的识别问题,主要有以下三个要点:一是看二次项系数的符号,它确定二次函数图象的开口方向;二是看对称轴和最值,它确定二次函数图象的具体位置;三是看函数图象上的一些特殊点,如函数图象与y轴的交点、与x轴的交点,函数图象的最高点与最低点等.从这三方面入手,能准确地判断出二次函数的图象.反之,也可以从图象中得到如上信息.(2)与其他图象的公共点问题,解决此类问题的关键是正确作出二次函数及题目所涉及的相应函数图象,要注意其相对位置关系.二次函数性质应用的求解策略(1)先定性:当二次项系数含参数时,要分类讨论:二次项参数大于0,等于0,小于0. (2)再定量:根据分类,画出符合条件的草图,结合图象列式计算. 幂函数 【知识简介】高考中考查幂函数的概念、图象及性质,利用幂函数性质求参数,很少单独考查,一般结合指数函数、对数函数考查基本初等函数的图象与性质,以选择题、填空题的形式呈现,难度不大.【典例】 2(1)(2014·浙江,7)在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图象可能是 ( )(2)(2014·上海,9)若f (x )=x 23-x -12,则满足f (x )<0的x 的取值范围是________.(2)令y 1=x 23,y 2=x -12,则f (x )<0即为y 1<y 2.函数y 1=x 23,y 2=x -12的图象如图所示,由图象知当0<x <1时,y 1<y 2,所以满足f (x )<0的x 的取值范围是(0,1). 【答案】 (1)D (2)(0,1)(2016·山东实验中学三模,5)幂函数f (x )=k ·x α的图象过点⎝⎛⎭⎫12,22,则k +α=( )A.12 B .1 C.32D .2幂函数的图象与性质问题的解题策略(1)关于图象辨识问题,关键是熟悉各类幂函数的图象特征,如过特殊点、凹凸性等.(2)关于比较幂值大小问题,结合幂值的特点利用指数幂的运算性质化成同指数幂,选择适当的幂函数,借助其单调性进行比较或应用.(3)在解决幂函数与其他函数的图象的交点个数、对应方程根的个数及近似解等问题时,常用数形结合的思想方法,即在同一坐标系下画出两函数的图象,数形结合求解.【针对训练】1.(2016·河南郑州一模,4)已知幂函数f (x )=(m 2-3m +3)·x m +1为偶函数,则m =( )A .1B .2C .1或2D .3 1.A ∵幂函数f (x )=(m 2-3m +3)x m+1为偶函数,∴m 2-3m +3=1,即m 2-3m +2=0,解得m =1或m =2.当m =1时,幂函数为f (x )=x 2为偶函数,满足条件.当m =2时,幂函数为f (x )=x 3为奇函数,不满足条件.故选A.2.(2016·浙江宁波二模,6)已知函数f (x )=(x -a )(x -b )(其中a >b )的图象如图所示,则函数g (x )=a x +b 的图象是( )2.A [考向1,2]由f (x )的图象知,0<a <1,b <-1.由0<a <1可排除C ,D ,又由g (0)=1+b <0可排除B.故。

新高中数学函数的概念与基本初等函数多选题100及解析

新高中数学函数的概念与基本初等函数多选题100及解析

新高中数学函数的概念与基本初等函数多选题100及解析一、函数的概念与基本初等函数多选题1.设[]x 表示不超过x 的最大整数,如:[]1.21=,[]1.22-=-,[]y x =又称为取整函数,在现实生活中有着广泛的应用,诸如停车收费,出租车收费等均按“取整函数”进行计费,以下关于“取整函数”的描述,正确的是( ) A .x R ∀∈,[][]22x x =B .,x y R ∀∈,若[][]x y =,则1x y ->-C .x R ∀∈,[][]122x x x ⎡⎤++=⎢⎥⎣⎦D .不等式[][]2230x x --≥的解集为{|0x x <或}2x ≥ 【答案】BCD 【分析】通过反例可得A 错误,根据取整函数的定义可证明BC 成立,求出不等式2230t t --≥的解后可得不等式[][]2230x x --≥的解集,从而可判断D 正确与否. 【详解】对于A , 1.5x =-,则[][][]()233,2224x x =-=⨯--==-,故[][]22x x ≠,故A 不成立.对于B ,[][]x y m ==,则1,1m x m m y m ≤<+≤<+, 故1m y m --<-≤-,所以1x y ->-,故B 成立. 对于C ,设x m r =+,其中[),0,1m Z r ∈∈, 则[]11222x x m r ⎡⎤⎡⎤++=++⎢⎥⎢⎥⎣⎦⎣⎦,[][]222x m r =+, 若102r ≤<,则102r ⎡⎤+=⎢⎥⎣⎦,[]20r =,故[][]122x x x ⎡⎤++=⎢⎥⎣⎦;若112r <<,则112r ⎡⎤+=⎢⎥⎣⎦,[]21r =,故[][]122x x x ⎡⎤++=⎢⎥⎣⎦,故C 成立.对于D ,由不等式[][]2230x x --≥可得[]1x ≤-或[]32x ≥, 故0x <或2x ≥,故D 正确. 故选:BCD 【点睛】本题考查在新定义背景下恒等式的证明与不等式的解法,注意把等式的证明归结为整数部分和小数部分的关系,本题属于较难题.2.高斯是德国著名数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一.高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称.有这样一个函数就是以他名字命名的:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]()f x x =称为高斯函数,又称为取整函数.如:(2.3)2f =,( 3.3)4f -=-.则下列正确的是( ) A .函数()f x 是R 上单调递增函数B .对于任意实数a b ,,都有()()()f a f b f a b +≤+ C .函数()()g x f x ax =-(0x ≠)有3个零点,则实数a 的取值范围是34434532⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭,, D .对于任意实数x ,y ,则()()f x f y =是1x y -<成立的充分不必要条件 【答案】BCD 【分析】取反例可分析A 选项,设出a ,b 的小数部分,根据其取值范围可分析B 选项,数形结合可分析C 选项,取特殊值可分析D 选项. 【详解】解:对于A 选项,()()1 1.21f f ==,故A 错误;对于B 选项,令[]a a r =+,[](,b b q r =+q 分别为a ,b 的小数部分), 可知[]01r a a =-<,[]01q b b =-<,[]0r q +≥, 则()[][][][][][][]()()f a b a b r q a b r q a b f a f b ⎡⎤+=+++=++++=+⎣⎦,故B 错误;对于C 选项,可知当1k x k ≤<+,k Z ∈时,则()[]f x x k ==, 可得()f x 的图象,如图所示:函数()()()0g x f x ax x =-≠有3个零点,∴函数()f x 的图象和直线y ax =有3个交点,且()0,0为()f x 和直线y ax =必过的点,由图可知,实数a 的取值范围是][3443,,4532⎛⎫⋃⎪⎝⎭,故C 正确;对于D 选项,当()()f x f y =时,即r ,q 分别为x ,y 的小数部分,可得01r ≤<,01q ≤<,[][]101x y x r y q r q -=+--=-<-=;当1x y -<时,取0.9x =-,0.09y =,可得[]1x =-,[]0y =,此时不满足()()f x f y =,故()()f x f y =是1x y -<成立的充分不必要条件,故D 正确; 故选:BCD . 【点睛】本题考查函数新定义问题,解答的关键是理解题意,转化为分段函数问题,利用数形结合思想;3.下列命题正确的是( )A .已知幂函数21()(1)m f x m x --=+在(0,)+∞上单调递减则0m =或2m =-B .函数2()(24)3f x x m x m =-++的有两个零点,一个大于0,一个小于0的一个充分不必要条件是1m <-.C .已知函数31()sin ln 1x f x x x x +⎛⎫=++⎪-⎝⎭,若(21)0f a ->,则a 的取值范围为1,2⎛⎫+∞ ⎪⎝⎭D .已知函数()f x 满足()()2f x f x -+=,1()x g x x+=,且()f x 与()g x 的图像的交点为()()()112288,,,,x y x y x y 则128128x x x y y y ++⋯++++⋯+的值为8【答案】BD 【分析】根据幂函数的性质,可判定A 不正确;根据二次函数的性质和充分条件、必要条件的判定,可得判定B 是正确;根据函数的定义域,可判定C 不正确;根据函数的对称性,可判定D 正确,即可求解. 【详解】对于A 中,幂函数21()(1)m f x m x --=+,可得11m +=±,解得0m =或2m =-, 当0m =时,函数1()f x x -=在(0,)+∞上单调递减;当2m =-时,函数()f x x =在(0,)+∞上单调递增,所以A 不正确;对于B 中,若函数2()(24)3f x x m x m =-++的有两个零点,且一个大于0,一个小于0,则满足(0)30f m =<,解得0m <,所以1m <-是函数2()(24)3f x x m x m =-++的有两个零点,且一个大于0,一个小于0的充分不必要条件,所以B 是正确; 对于C 中,由函数31()sin ln()1x f x x x x +=++-,则满足101xx+>-,解得11x -<<, 即函数()f x 的定义域为(1,1)-,所以不等式(21)0f a ->中至少满足1211a -<-<, 即至少满足01a <<,所以C 不正确;对于D 中,函数()f x 满足()()2f x f x -+=,可得函数()y f x =的图象关于(0,1)点对称, 又由11()x x g x x x-+--==-,可得()()2g x g x -+=,所以函数()y g x =的图象关于(0,1)点对称,则1281280428x x x y y y ++⋯++++⋯+⨯+==,所以D 正确.故选:BD. 【点睛】本题主要考查了以函数的基本性质为背景的命题的真假判定,其中解答中熟记函数的基本性质,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.4.已知直线2y x =-+分别与函数x y e =和ln y x =的图象交于点()()1122,,,A x y B x y ,则下列结论正确的是( ) A .122x x +=B .122x x e e e +>C .1221ln ln 0x x x x +<D .122x x >【答案】ABC 【分析】根据互为反函数的性质可得()()1122,,,A x y B x y 的中点坐标为()1,1,从而可判断A ;利用基本不等式可判断B 、D ;利用零点存在性定理以及对数的运算性质可判断C. 【详解】函数xy e =与ln y x =互为反函数, 则xy e =与ln y x =的图象关于y x =对称,将2y x =-+与y x =联立,则1,1x y ==,由直线2y x =-+分别与函数x y e =和ln y x =的图象交于点()()1122,,,A x y B x y , 作出函数图像:则()()1122,,,A x y B x y 的中点坐标为()1,1, 对于A ,由1212x x +=,解得122x x +=,故A 正确; 对于B ,12121222222x x x x x x e e e e e e e +≥=+⋅==, 因为12x x ≠,即等号不成立,所以122x x e e e +>,故B 正确;对于C ,将2y x =-+与xy e =联立可得2x x e -+=,即20x e x +-=,设()2xf x e x =+-,且函数为单调递增函数,()010210f =+-=-<,112211320222f e e ⎛⎫=+-=-> ⎪⎝⎭,故函数的零点在10,2⎛⎫ ⎪⎝⎭上,即1102x <<,由122x x +=,则212x <<, 122112211ln ln ln lnx x x x x x x x +=- ()1222122ln ln ln 0x x x x x x x <-=-<,故C 正确;对于D ,由12122x x x x +≥,解得121x x ≤, 由于12x x ≠,则121x x <,故D 错误; 故选:ABC 【点睛】本题考查了互为反函数的性质、基本不等式的应用、零点存在性定理以及对数的运算性质,考查了数形结合的思想,属于难题.5.已知函数()()23,03,0x x x f x f x x ⎧--<⎪=⎨-≥⎪⎩,以下结论正确的是( )A .()f x 在区间[]4,6上是增函数 B .()()220204f f -+=C .若函数()y f x b =-在(),6-∞上有6个零点()1,2,3,4,5,6i x i =,则619ii x==∑D .若方程()1f x kx =+恰有3个实根,则{}11,13k ⎛⎫∈-- ⎪⎝⎭【答案】BCD 【分析】根据()f x 在[2-,0]上的单调性判断A ,根据(2020)(2)f f =-判断B ,根据图象的对称性判断C ,根据直线1y kx =+与()y f x =的图象有3个交点判断D . 【详解】解:由题意可知当3x -时,()f x 是以3为周期的函数, 故()f x 在[4,6]上的单调性与()f x 在[2-,0]上的单调性相同, 而当0x <时,239()()24f x x =-++,()f x ∴在[2-,0]上不单调,故A 错误;又(2020)(2)2f f =-=,故(2)(2020)4f f -+=,故B 正确; 作出()y f x =的函数图象如图所示:由于()y f x b =-在(,6)-∞上有6个零点,故直线y b =与()y f x =在(,6)-∞上有6个交点,不妨设1i i x x +<,1i =,2,3,4,5, 由图象可知1x ,2x 关于直线32x =-对称,3x ,4x 关于直线32x =对称,5x ,6x 关于直线92x =对称, ∴613392229222i i x ==-⨯+⨯+⨯=∑,故C 正确;若直线1y kx =+经过点(3,0),则13k =-,若直线1y kx =+与23(0)y x x x =--<相切,则消元可得:2(3)10x k x +++=, 令0∆=可得2(3)40k +-=,解得1k =-或5k =-, 当1k =-时,1x =-,当5k =-时,1x =(舍),故1k =-.若直线1y kx =+与()y f x =在(0,3)上的图象相切,由对称性可得1k =.因为方程()1f x kx =+恰有3个实根,故直线1y kx =+与()y f x =的图象有3个交点, 113k ∴-<<-或1k =,故D 正确.故选:BCD . 【点睛】本题考查了函数零点与函数图象的关系,考查函数周期性、对称性的应用,属于中档题.6.太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种互相转化,相对统一的和谐美. 定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”.则下列有关说法中,正确的是( )A .对于圆O :221x y +=的所有非常数函数的太极函数中,一定不能为偶函数B .函数()sin 1f x x =+是圆O :()2211x y +-=的一个太极函数C .存在圆O ,使得()11x x e f x e -=+是圆O 的一个太极函数D .直线()()12110m x m y +-+-=所对应的函数一定是圆O :()()()222210x y R R -+-=>的太极函数【答案】BCD 【分析】利用“太极函数”的定义逐个判断函数是否满足新定义即可. 【详解】对于A ,如下图所示,若太极函数为偶函数,且ACEPCOPODDFBS SSS===,所以该函数平分圆O 的周长和面积,故A 错误;对于B ,()sin 1f x x =+也关于圆心(0,1) 对称,平分圆O 的周长和面积,所以函数()sin 1f x x =+是圆()22:11O x y +-=的一个太极函数;故B 正确;对于C ,()()+12121+1+1+1x x x x x e e f x e e e --===-,. ()()11111+11++1xxx x xxe e ef x f x e e e ------====-,该函数为奇函数,图象关于原点对称. 所以存在圆O :221x y +=使得()11x x e f x e -=+是圆O 的一个太极函数,如下图所示,故C 正确;对于D ,对于直线()()12110m x m y +-+-=的方程,变形为()()210m x y x y -+--=,令2010x y x y -=⎧⎨--=⎩,得21x y =⎧⎨=⎩,直线()()12110m x m y +-+-=经过圆O 的圆心,可以平分圆O 周长和面积,故D 正确. 故选:BCD.【点睛】本题考查函数对称性的判定与应用,将新定义理解为函数的对称性为解题的关键,考查推理能力,属于较难题.7.已知函数4()nn f x x x=+(n 为正整数),则下列判断正确的是( ) A .函数()f x 始终为奇函数B .当n 为偶数时,函数()f x 的最小值为4C .当n 为奇数时,函数()f x 的极小值为4D .当1n =时,函数()y f x =的图象关于直线2y x =对称 【答案】BC 【分析】由已知得()()4()nnf x x x -=-+-,分n 为偶数和n 为奇数得出函数()f x 的奇偶性,可判断A 和;当n 为偶数时,>0n x ,运用基本不等式可判断B ;当n 为奇数时,令n t x =,则>0,>0;0,0x t x t <<,构造函数4()g t t t=+,利用其单调性可判断C ;当1n =时,取函数4()f x x x=+上点()15P ,,求出点P 关于直线2y x =对称的对称点,代入可判断D.【详解】因为函数4()nnf x x x =+(n 为正整数),所以()()4()n n f x x x -=-+-, 当n 为偶数时,()()44()()nn nnf x x x f x x x -=-+=+=-,函数()f x 是偶函数; 当n 为奇数时,()4()nnf x x f x x-=-+=--,函数()f x 是奇函数,故A 不正确;当n 为偶数时,>0n x ,所以4()4n n f x x x =+≥=,当且仅当4n n x x =时, 即2>0n x =取等号,所以函数()f x 的最小值为4,故B 正确;当n 为奇数时,令n t x =,则>0,>0;0,0x t x t <<,函数()f x 化为4()g t t t=+, 而4()g t t t=+在()()22-∞-+∞,,,上单调递增,在()()2002-,,,上单调递递减, 所以4()g t t t =+在2t =时,取得极小值4(2)242g =+=,故C 正确; 当1n =时,函数4()f x x x=+上点()15P ,,设点P 关于直线2y x =对称的对称点为()000P x y ,,则000051121+5+222y x x y -⎧=-⎪-⎪⎨⎪⨯=⎪⎩,解得00175195x y ⎧=⎪⎪⎨⎪=⎪⎩,即0171955P ⎛⎫ ⎪⎝⎭,,而将0171955P ⎛⎫ ⎪⎝⎭,代入4()f x x x=+不满足, 所以函数()y f x =的图象不关于直线2y x =对称,故D 不正确, 故选:BC . 【点睛】本题考查综合考查函数的奇偶性,单调性,对称性,以及函数的最值,属于较难题.8.若()f x 满足对任意的实数a ,b 都有()()()f a b f a f b +=且()12f =,则下列判断正确的有( ) A .()f x 是奇函数B .()f x 在定义域上单调递增C .当()0,x ∈+∞时,函数()1f x >D .()()()()()()()()()()()()2462016201820202020135201520172019f f f f f f f f f f f f +++⋅⋅⋅++= 【答案】BCD 【分析】利用新定义结合函数的性质进行判断.计算出(1)f 判断A ;先利用(1)21f =>证明所有有理数p ,有()1f p >,然后用任意无理数q 都可以看作是一个有理数列的极限,由极限的性质得()1f q >,这样可判断C ,由此再根据单调性定义判断B ,根据定义计算(2)(21)f n f n -(n N ∈),然后求得D 中的和,从而判断D .【详解】令0,1a b ==,则(1)(10)(1)(0)f f f f =+=,即22(0)f =,∴(0)1f =,()f x 不可能是奇函数,A 错;对于任意x ∈R ,()0f x ≠,若存在0x R ∈,使得0()0f x =,则0000(0)(())()()0f f x x f x f x =+-=-=,与(0)1f =矛盾,故对于任意x ∈R ,()0f x ≠,∴对于任意x ∈R ,2()022222x x x x x f x f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+==> ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, ∵(1)21f =>,∴对任意正整数n ,11111111121nn n f n n f f f f f n n n n n n n ⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫ ⎪+++===> ⎪ ⎪ ⎪ ⎪⎢⎥ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ⎪ ⎪⎝⎭个个,∴11f n ⎛⎫> ⎪⎝⎭, 同理()(111)(1)(1)(1)21n f n f f f f =+++==>,对任意正有理数p ,显然有m p n=(,m n是互质的正整数),则1()1mm f p f f n n ⎡⎤⎛⎫⎛⎫==> ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,对任意正无理数q ,可得看作是某个有理数列123,,,p p p 的极限,而()1i f p >,i N ∈,∴()f q 与()i f p 的极限,∴()1f q >, 综上对所有正实数x ,有()1f x >,C 正确,设12x x <,则210x x ->,∴21()1f x x ->,则21211211()(())()()()f x f x x x f x f x x f x =+-=⋅->,∴()f x 是增函数,B 正确;由已知(2)(211)(21)(1)2(21)f n f n f n f f n =-+=-=-,∴(2)2(21)f n f n =-,∴()()()()()()()()()()()()10102246201620182020222210102020135201520172019f f f f f f f f f f f f +++⋅⋅⋅++=+++=⨯=个,D 正确. 故选:BCD . 【点睛】本题考查新定义函数,考查学生分析问题,解决问题的能力,逻辑思维能力,运算求解能力,对学生要求较高,本题属于难题.9.狄利克雷是德国著名数学家,是最早倡导严格化方法的数学家之一,狄利克雷函数()1,0,x Q f x x Q∈⎧=⎨∉⎩(Q 是有理数集)的出现表示数学家对数学的理解开始了深刻的变化,从研究“算”到研究更抽象的“概念、性质、结构”.关于()f x 的性质,下列说法正确的是( )A .函数()f x 是偶函数B .函数()f x 是周期函数C .对任意的1x R ∈,2x ∈Q ,都有()()121f x x f x +=D .对任意的1x R ∈,2x ∈Q ,都有()()121f x x f x ⋅= 【答案】ABC【分析】利用函数奇偶性的定义可判断A 选项的正误;验证()()1f x f x +=,可判断B 选项的正误;分1x Q ∈、1x Q ∉两种情况讨论,结合函数()f x 的定义可判断C 选项的正误;取20x =,1x Q ∉可判断D 选项的正误.【详解】对于A 选项,任取x Q ∈,则x Q -∈,()()1f x f x ==-; 任取x Q ∉,则x Q -∉,()()0f x f x ==-.所以,对任意的x ∈R ,()()f x f x -=,即函数()f x 为偶函数,A 选项正确; 对于B 选项,任取x Q ∈,则1x Q +∈,则()()11f x f x +==; 任取x Q ∉,则1x Q +∉,则()()10f x f x +==.所以,对任意的x ∈R ,()()1f x f x +=,即函数()f x 为周期函数,B 选项正确; 对于C 选项,对任意1x Q ∈,2x ∈Q ,则12x Q x +∈,()()1211f x x f x +==; 对任意的1x Q ∉,2x ∈Q ,则12x x Q +∉,()()1210f x x f x +==. 综上,对任意的1x R ∈,2x ∈Q ,都有()()121f x x f x +=,C 选项正确; 对于D 选项,取20x =,若1x Q ∉,则()()()12101f x x f f x ⋅==≠,D 选项错误. 故选:ABC. 【点睛】关键点点睛:本题解题的关键在于根据已知函数的定义依次讨论各选项,分自变量为无理数和有理数两种情况讨论,对于D 选项,可取1x Q ∉,20x =验证.10.已知函数()()()52log 1,122,1x x f x x x ⎧-<⎪=⎨--+≥⎪⎩,则方程12f x a x ⎛⎫+-= ⎪⎝⎭的实根个数可能为( ) A .8 B .7C .6D .5【答案】ABC 【分析】以()1f x =的特殊情形为突破口,解出1x =或3或45或4-,将12x x+-看作整体,利用换元的思想进一步讨论即可. 【详解】 由基本不等式可得120x x +-≥或124x x+-≤-,作出函数()()()52log 1,122,1x x f x x x ⎧-<⎪=⎨--+≥⎪⎩的图像,如下:①当2a >时,1224x x +-≤-或1021x x<+-<, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为4; ②当2a =时,1224x x +-=-或1021x x <+-<或122x x+-=, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为6; ③当12a <<时,12424x x -<+-<-或1021x x <+-<或1122x x<+-< 或1223x x<+-<, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为8; ④当1a =时,124x x +-=-或1021x x <+-<或121x x +-=或123x x+-=,故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为7; ⑤当01a <<时,1420x x -<+-<或1324x x<+-<, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为2; ⑥当0a =时,120x x +-=或1324x x<+-<, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为3; ⑦当0a <时,123x x+->, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为2;故选:ABC 【点睛】本题考查了求零点的个数,考查了数形结合的思想以及分类讨论的思想,属于难题.11.已知函数123,12()1,222x x f x x f x ⎧--≤≤⎪=⎨⎛⎫> ⎪⎪⎝⎭⎩,则下列说法正确的是( )A .若函数()=-y f x kx 有4个零点,则实数k 的取值范围为11,246⎛⎫⎪⎝⎭B .关于x 的方程*1()0()2n f x n N -=∈有24n +个不同的解 C .对于实数[1,)x ∈+∞,不等式2()30xf x -≤恒成立D .当1[2,2](*)n n x n N -∈∈时,函数()f x 的图象与x 轴围成的图形的面积为1 【答案】AC 【分析】根据函数的表达式,作出函数的图像,对于A ,C 利用数形结合进行判断,对于B ,D 利用特值法进行判断. 【详解】 当312x ≤≤时,()22f x x =-;当 322x <≤时,()42f x x =-;当23x <≤,则3122<≤x , 1()1222⎛⎫==- ⎪⎝⎭x x f x f ;当34x <≤,则3222<≤x, 1()2222⎛⎫==- ⎪⎝⎭x x f x f ;当46x <≤,则232<≤x, 11()2242⎛⎫==- ⎪⎝⎭x x f x f ; 当68x <≤,则342<≤x,1()1224⎛⎫==- ⎪⎝⎭x x f x f ; 依次类推,作出函数()f x 的图像:对于A ,函数()=-y f x kx 有4个零点,即()y f x =与y kx =有4个交点,如图,直线y kx =的斜率应该在直线m , n 之间,又16m k =,124=n k ,11,246⎛⎫∴∈⎪⎝⎭k ,故A 正确; 对于B ,当1n =时,1()2f x =有3个交点,与246+=n 不符合,故B 错误; 对于C ,对于实数[1,)x ∈+∞,不等式2()30xf x -≤恒成立,即3()2≤f x x恒成立,由图知函数()f x 的每一个上顶点都在曲线32y x =上,故3()2≤f x x恒成立,故C 正确; 对于D , 取1n =,[1,2]x ∈,此时函数()f x 的图像与x 轴围成的图形的面积为111122⨯⨯=,故D 错误; 故选:AC 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.12.已知()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,2()2f x x x =-+,下列说法正确的是( )A .(0,)x ∈+∞时,函数解析式为2()2f x x x =-B .函数在定义域R 上为增函数C .不等式(32)3f x -<的解集为(,1)-∞D .不等式2()10f x x x -+->恒成立 【答案】BC 【分析】对于A ,利用奇函数定义求(0,)x ∈+∞时,函数解析式为2()2f x x x =+;对于B ,研究当(,0)x ∈-∞时,()f x 的单调性,结合奇函数图像关于原点对称,知()f x 在R 上的单调性;对于C ,求出(1)3f =,不等式(32)3f x -<,转化为(32)(1)f x f -<,利用单调性解不等式;对于D ,分类讨论(0,)x ∈+∞与(,0)x ∈-∞两种情况是否恒成立. 【详解】对于A ,设(0,)x ∈+∞,(,0)x -∈-∞,则2()2f x x x -=--,又()f x 是奇函数,所以2()()2f x f x x x =--=+,即(0,)x ∈+∞时,函数解析式为2()2f x x x =+,故A 错;对于B ,2()2f x x x =-+,对称轴为1x =,所以当(,0)x ∈-∞时,()f x 单调递增,由奇函数图像关于原点对称,所以()f x 在R 上为增函数,故B 对;对于C ,由奇函数在R 上为增函数,则(0,)x ∈+∞时,2()23f x x x =+=,解得11x =,23x =-(舍去),即(1)3f =,所以不等式(32)3f x -<,转化为(32)(1)f x f -<, 又()f x 在R 上为增函数,得321x -<,解得1x <, 所以不等式的解集为(,1)-∞,故C 对; 对于D ,当(,0)x ∈-∞时,2()2f x x x =-+2222()121231(21)(1)0f x x x x x x x x x x x -+-=-+-+-=-+-=-+-<,当(0,)x ∈+∞时,2()2f x x x =+222()12131f x x x x x x x x -+-=+-+-=-不恒大于0,故D 错;故选:BC 【点睛】方法点睛:考查了解抽象不等式,要设法把隐性划归为显性的不等式求解,方法是: (1)把不等式转化为[][]()()f g x f h x >的模型;(2)判断函数()f x 的单调性,再根据函数的单调性将不等式的函数符号“f ”脱掉,得到具体的不等式(组)来求解,但要注意奇偶函数的区别. 考查了利用奇偶性求函数解析式,求函数解析式常用的方法: (1)已知函数类型,用待定系数法求解析式; (2)已知函数奇偶性,用奇偶性定义求解析式;(3)已知()f x 求[()]f g x ,或已知[()]f g x 求()f x ,用代入法、换元法或配凑法; (4)若()f x 与1()f x或()f x -满足某个等式,可构造另一个等式,通过解方程组求解;13.对于定义在R 上的函数()f x ,若存在正实数a ,b ,使得()()f x a f x b +≤+对一切x ∈R 均成立,则称()f x 是“控制增长函数”.在以下四个函数中是“控制增长函数”的有( )A .()xf x e =B .()f x =C .()()2sin f x x=D .()sin f x x x =⋅【答案】BCD 【分析】假设各函数是“控制增长函数”,根据定义推断()()f x a f x b +≤+对一切x ∈R 恒成立的条件,并判断,a b 的存在性,即可得出结论. 【详解】对于A. ()()f x a f x b +≤+可化为22()()11x a x a x x b ++++≤+++,22ax a a b ≤--+0a >,不等式在x ∈R 上不恒成立,所以2()1f x x x =++不是“控制增长函数”;对于B. ()()f x a f x b +≤+可化为,b ≤,即2||||2x a x b +≤++恒成立.又||||x a x a +≤+,故只需保证2||||2x a x b +≤++.20,2a b b b->≥ ,当220a b -≤时,b ≤恒成立,()f x ∴=“控制增长函数”;对于C.()21()sin 1,()()2f x x f x a f x -≤=≤∴+-≤,2b ∴≥时,a 为任意正数,()()f x a f x b +≤+恒成立, ()2()sin f x x ∴=是“控制增长函数”;对于D. ()()f x a f x b +≤+化为,()sin()sin x a x a x x b ++≤+,令2a π= ,则(2)sin sin ,2sin x x x x b x b ππ+≤+≤,当2b π≥时,不等式()sin()sin x a x a x x b ++≤+恒成立,()sin f x x x ∴=⋅是“控制增长函数”.故选:BCD 【点睛】本题考查了新定义的理解,函数存在成立和恒成立问题的研究.我们可先假设结论成立,再不断寻求结论成立的充分条件,找得到就是“控制增长函数”.如果找出了反例,就不是“控制增长函数”.14.已知函数()()()22224x x f x x x m m ee --+=-+-+(e 为自然对数的底数)有唯一零点,则m 的值可以为( )A .1B .1-C .2D .2-【答案】BC 【分析】由已知,换元令2t x =-,可得()()f t f t -=,从而f t 为偶函数,()f x 图象关于2x =对称,结合函数图象的对称性分析可得结论. 【详解】∵22222222()4()()(2)4()()x x x x f x x x m m e e x m m e e --+--+=-+-+=--+-+, 令2t x =-,则22()4()()ttf t t m m e e -=-+-+,定义域为R ,22()()4()()()t t f t t m m e e f t --=--+-+=,故函数()f t 为偶函数,所以函数()f x 的图象关于2x =对称, 要使得函数()f x 有唯一零点,则(2)0f =, 即2482()0m m -+-=,解得1m =-或2 ①当1m =-时,2()42()t t f t t e e -=-++ 由基本不等式有2t t e e -+≥,当且仅当0t =时取得2()4t t e e -∴+≥故2()42()0ttf t t e e -=-++≥,当且仅当0t =取等号 故此时()f x 有唯一零点2x =②当2m =时,2()42()t t f t t e e -=-++,同理满足题意. 故选:BC . 【点睛】方法点睛:①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴.②()y f x =的图象关于直线x a =对称 ()()f a x f a x ⇔-=+()()2f x f a x ⇔-=+15.已知53a =,85b =,则( ) A .a b < B .112a b+> C .11a b a b+<+ D .b a a a b b +<+【答案】ABD 【分析】根据条件求得,a b 表达式,根据对数性质结合放缩法得A 正确,根据不等式性质得B 正确,通过作差法判断C 错,结合指数函数单调性与放缩法可得D 正确. 【详解】解:∵53a =,85b =, ∴35log a =,58log b =,因为3344435533535log 3log 54<⇒<⇒<=, 又由3344438835858log 5log 84>⇒>⇒>=,所以a b <,选项A 正确; 35lo 01g a <=<,580log 1b <=<,则11a >,11b >,所以112a b +>,选项B 正确;因为a b <,01a b <<<,则0b a ->,11ab>,此时111()()10b a a b a b b a a b ab ab -⎛⎫⎛⎫+-+=-+=--> ⎪ ⎪⎝⎭⎝⎭, 所以11a b a b+>+,故选项C 不正确; 由1324a <<和314b <<知()x f x a =与()x g x b =均递减, 再由a ,b 的大小关系知b b a b a b a a b b a b a a b b <<⇒<⇒+<+,故选项D 正确. 故选:ABD 【点睛】本题考查了数值大小比较,关键运用了指对数运算性质,作差法和放缩法.16.定义域和值域均为[],a a -的函数()y f x =和()y g x =的图象如图所示,其中0a c b >>>,下列四个结论中正确有( )A .方程()0f g x =⎡⎤⎣⎦有且仅有三个解B .方程()0g f x =⎡⎤⎣⎦有且仅有三个解C .方程()0f f x =⎡⎤⎣⎦有且仅有八个解D .方程()0g g x =⎡⎤⎣⎦有且仅有一个解【答案】ABD 【分析】通过利用()t f x =和()t g x =,结合函数()y f x =和()y g x =的图象,分析每个选项中外层函数的零点,再分析内层函数的图象,即可得出结论. 【详解】由图象可知,对于方程()y f x =,当a y c -≤<-或c y a <≤,方程()y f x =只有一解;当y c =±时,方程()y f x =只有两解;当c y c -<<时,方程()y f x =有三解; 对于方程()y g x =,当a y a -≤≤时,方程()y g x =只有唯一解. 对于A 选项,令()t x g =,则方程()0f t =有三个根1t b =-,20t =,3t b =,方程()g x b =-、()0g x =、()g x b =均只有一解, 所以,方程()0f g x =⎡⎤⎣⎦有且仅有三个解,A 选项正确; 对于B 选项,令()t f x =,方程()0g t =只有一解1t b =,方程()f x b =只有三解,所以,方程()0g f x =⎡⎤⎣⎦有且仅有三个解,B 选项正确; 对于C 选项,设()t f x =,方程()0f t =有三个根1t b =-,20t =,3t b =,方程()f x b =-有三解,方程()0f x =有三解,方程()f x b =有三解, 所以,方程()0f f x =⎡⎤⎣⎦有且仅有九个解,C 选项错误;对于D 选项,令()t x g =,方程()0g t =只有一解1t b =,方程()g x b =只有一解, 所以,方程()0g g x =⎡⎤⎣⎦有且仅有一个解,D 选项正确. 故选:ABD. 【点睛】思路点睛:对于复合函数()y f g x ⎡⎤=⎣⎦的零点个数问题,求解思路如下: (1)确定内层函数()u g x =和外层函数()y f u =; (2)确定外层函数()y f u =的零点()1,2,3,,i u u i n ==;(3)确定直线()1,2,3,,i u u i n ==与内层函数()u g x =图象的交点个数分别为1a 、2a 、3a 、、n a ,则函数()y f g x ⎡⎤=⎣⎦的零点个数为123n a a a a ++++.17.已知函数()2,021,0x x ax x f x x -⎧+≤=⎨->⎩,则( )A .()f x 的值域为()1,-+∞B .当0a ≤时,()()21f x f x >+C .当0a >时,存在非零实数0x ,满足()()000f x f x -+=D .函数()()g x f x a =+可能有三个零点 【答案】BC 【分析】A .考虑2a =时的情况,求解出各段函数值域再进行判断;B .先根据条件分析()f x 的单调性,再根据21x +与x 的大小关系进行判断;C .作出222,,y x ax y x ax y x ax =+=-+=-+的函数图象,根据图象的对称性进行分析判断;D .根据条件先分析出()0,1a ∈,再根据有三个零点确定出a 满足的不等式,由此判断出a 是否有解,并判断结论是否正确.【详解】A .当0x >时,21011xy -=->-=-,当0x ≤时,22224a a y x ax x ⎛⎫=+=+- ⎪⎝⎭,取2a =,此时()2111y x =+-≥-,所以此时的值域为[)1,-+∞,故A 错误;B .当0a ≤时,22224a a y x ax x ⎛⎫=+=+- ⎪⎝⎭的对称轴为02a x =-≥,所以()f x 在(],0-∞上单调递减,又因为()f x 在()0,∞+上单调递减,且200021a -+⨯=-,所以()f x 在R 上单调递减,又因为22131024x x x ⎛⎫+-=-+> ⎪⎝⎭,所以21x x +>,所以()()21f x f x >+,故B 正确;C .作出函数22,,21x y x ax y x ax y -=+=-+=-的图象如下图所示:由图象可知:22,y x ax y x ax =+=-+关于原点对称,且2y x ax =-+与21x y -=-相交于()00,x y ,因为点()00,x y 在函数2y x ax =-+的图象上,所以点()00,x y --在函数2y x ax =+的图象上,所以()()()00000f x f x y y +-=+-=,所以当0a >时,存在0x 使得()()000f x f x -+=,故C 正确;D .由题意知:()f x a =-有三个根,所以()f x 不是单调函数,所以0a >, 又因为()211,0xy -=-∈-,所以()1,0a -∈-,所以()0,1a ∈,且22,4a y x ax ⎡⎫=+∈-+∞⎪⎢⎣⎭,若方程有三个根,则有24a a ->-,所以4a >或0a <,这与()0,1a ∈矛盾,所以函数()()g x f x a =+不可能有三个零点,故D 错误, 故选:BC. 【点睛】思路点睛:函数与方程的综合问题,采用数形结合思想能高效解答问题,通过数与形的相互转化能使问题转化为更简单的问题,常见的图象应用的命题角度有: (1)确定方程根的个数; (2)求参数范围; (3)求不等式解集; (4)研究函数性质.18.已知函数22(2)log (1),1()2,1x x x f x x +⎧+>-⎪=⎨≤-⎪⎩,若关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<,则下列结论正确的是( )A .12m <≤B .11sin cos 0x x ->C .3441x x +>- D.2212log mx x ++10【答案】ACD 【分析】画出()f x 的图象,结合图象求得1234,,,,m x x x x 的取值范围,利用特殊值确定B 选项错误,利用基本不等式确定CD 选项正确. 【详解】画出()f x 的图象如下图所示,由于关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<, 由图可知12m <≤,故A 选项正确. 由图可知12,x x 关于直线2x =-对称,故12122,42x x x x +=-+=-, 由()()22221x x +=≤-解得3x =-或1x =-,所以1232,21x x -≤<--<≤-,3324π-<-<-,当134x π=-时,1212sin cos ,sin cos 02x x x x ==--=,所以B 选项错误. 令()()2221x m x +=≤-,()22log 2log 1x m m m +==,()22log 21m x +=,()222log 1m x +=,12,x x 是此方程的解,所以()211log 22m x =+,或()221log 22m x =+,故()()22221211211log 422m x x x x x ++=+--++()()2121122881022x x =+++≥=+,当且仅当()()211211522,222x x x +==-+时等号成立,故D 选项正确. 由图象可知()()2324log 1log 1x x +=-+,()()2324log 1log 10x x +++=,()()34111x x +⋅+=,4433111,111x x x x +==-++, 由()()2log 111x x +=>-,解得1x =或12x =-,由()()2log 121x x +=>-,解得3x =或34x =-, 所以3431,1342x x -≤<-<≤, ()3433331144145111x x x x x x +=+-+=-+++ 51≥=-①. 令()()21134,1,1421x x x x +===-++或12x =-,所以①的等号不成立,即3441x x +>-,故C 选项正确. 故选:ACD【点睛】求解有关方程的根、函数的零点问题,可考虑结合图象来求解.求解不等式、最值有关的问题,可考虑利用基本不等式来求解.19.已知函数2ln(1),0()21,0x x f x x ax x +≥⎧=⎨-+<⎩,其中实数 a ∈R ,则下列关于 x 的方程f 2 (x ) − (1+ a )⋅ f (x ) + a = 0的实数根的情况,说法正确的有( ) A .a 取任意实数时,方程最多有5个根 B 1515a --+<<时,方程有2个根 C .当 15a --=时,方程有3个根 D .当 a ≤ −4时,方程有4个根 【答案】CD 【分析】先化简方程为()1f x =或()f x a =,再对a 进行分类讨论,结合图象来确定()1f x =或()f x a =分别有几个根,根据结果逐一判断选项正误即可.【详解】解:关于x 的方程f 2 (x ) − (1+ a )⋅ f (x ) + a = 0,即[][]()1()0f x f x a --=,故()1f x =或()f x a =.函数2ln(1),0()21,0x x f x x ax x +≥⎧=⎨-+<⎩中,()0,()ln 1x f x x ≥=+单调递增,()2220,(2)11x a x f x a x x a -+=-<=+-,对称轴为x a =,判别式()()411a a ∆=+-.(1)当0a ≥时,函数()f x 图象如下:由图象可知,方程()1f x =有1个根,1a >时方程()f x a =有2个根,01a ≤≤时,方程()f x a =有1个根,故1a >时已知方程有3个根,01a ≤<时,已知方程有2个根,1a =时已知方程有1个根;(2)1a =-时,函数()f x 图象如下:10a -<<时,函数()f x 图象如下:由两个图象可知,10a -≤<时,方程()1f x =有2个根,方程()f x a =没有根,故已知方程有2个根;(3)1a <-时,函数()f x 图象如下:方程()1f x =有两个根.下面讨论最小值21a -与a 的关系,由21a a -<解得15a --<, 故当152a --<时,21a a -<,直线y a =如图①,方程()f x a =有2个根,故已知方程有4个根; 当152a -=时,21a a -=,直线y a =如图②,方程有()f x a =有1 个根,故已知方程有3个根; 当1512a -<<-时,21a a ->,直线y a =如图③,方程()f x a =没有根,故已知方程有2个根.综上可知,a 取任意实数时,方程最多有4个根,选项A 错误;1512a --<<时方程有2个根,1a =时已知方程有1个根,1a >时方程有3个根,故选项B 错误;当15a --=3个根,C 正确;当 1542a --≤-<时,方程有4个根,故D 正确. 故选:CD. 【点睛】 关键点点睛:本题的解题关键在于分类讨论确定二次函数的图象,以及其最低点处21a -与a 的关系,以确定方程()f x a =的根的情况,才能突破难点.20.已知当0x >时,2()24f x x x =-+;0x ≤时(2)y f x =+,以下结论正确的是( )A .()f x 在区间[]6,4--上是增函数;B .()()220212f f -+-=;C .函数()y f x =周期函数,且最小正周期为2;D .若方程()1f x kx =+恰有3个实根,则142k <<-4k =; 【答案】BD 【分析】利用函数的性质,依次对选项加以判断,ABC 考查函数的周期性及函数的单调性,重点理解函数周期性的应用,是解题的关键,D 选项考查方程的根的个数,需要转化为两个函数的交点个数,在同一图像中分别研究两个函数,临界条件是直线与函数()f x 相切,结合图像将问题简单化. 【详解】对于A ,0x ≤时(2)y f x =+,即()f x 在区间[]6,4--上的单调性与()f x 在区间[]0,2上单调性一致, 所以()f x 在[]6,5--上是增函数,在[]5,4--上是减函数,故A 错误; 对于B ,当0x ≤时,()2()f x f x +=,()()22=22242=0f f -=-⨯+⨯,()()()()20211=1+2=1=2+42f f f f -=---=,故B 正确;对于C ,当0x ≤时,()2()f x f x +=, 当0x >时,()f x 不是周期函数,故C 错误; 对于D ,由0x >时,2()24f x x x =-+;0x ≤时(2)y f x =+,可求得当20x -<<时,2()24f x x x =--;直线1y kx =+恒过点(0,1),方程()1f x kx =+恰有3个实根, 即函数()f x 和函数1y kx =+的图像有三个交点,当0k >时,直线1y kx =+与函数()f x (0x >)相切于点00(,)x y ,则020001244124k k x kx x x⎧>⎪⎪=-+⎨⎪+=-+⎪⎩,解得04=2k x ⎧=-⎪⎨⎪⎩,要函数()f x 和函数1y kx =+的图像有三个交点, 则k的取值范围为:142k <<- 当0k <时,当0x >时,直线1y kx =+与函数()f x 有两个交点,设直线1y kx =+与函数()f x (0x ≤)相切于点00(,)x y '',则020*******k x kx x x =-'-⎧⎨'+=-'-'⎩,解得02242=2k x ⎧=-⎪⎨'-⎪⎩综上,方程()1f x kx =+有3个实根, 则14222k <<-或224k =-,故D 正确.故选:BD. 【点睛】本题考查函数的性质,单调性,及函数零点个数的判断,主要考查学生的逻辑推理能力,数形结合能力,属于较难题.。

高中数学第三章基本初等函数(Ⅰ)第26课时指数函数的性质及其应用练习新人教B版必修1

高中数学第三章基本初等函数(Ⅰ)第26课时指数函数的性质及其应用练习新人教B版必修1

第26课时 指数函数的性质及其应用 课时目标1.理解指数函数的单调性.2.能利用指数函数的单调性比较指数式的大小.3.会解决与指数函数有关的综合问题.识记强化1.指数函数的单调性(1)当0<a <1时指数函数y =a x 为减函数.(2)当a >1时指数函数y =a x 为增函数.2.比较指数式的大小,首先要把两指数式化为同底指数幂的形式,然后根据底数的值,结合指数函数的单调性,判断出指数式的大小.课时作业(时间:45分钟,满分:90分)一、选择题(本大题共6小题,每小题5分,共30分)1.若函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则a 满足( )A .|a |<1B .1<|a |<2C .1<|a |< 2D .1<a < 2答案:C解析:由指数函数的单调性知0<a 2-1<1,解得1<a 2<2.1<|a |< 2.2.函数y =⎝ ⎛⎭⎪⎫121-x 的单调增区间为( ) A .(-∞,+∞) B.(0,+∞)C .(1,+∞)D .(0,1)答案:A解析:设t =1-x ,则y =⎝ ⎛⎭⎪⎫12t ,则函数t =1-x 的递减区间为(-∞,+∞),即为y =⎝ ⎛⎭⎪⎫121-x 的递增区间. 3.设y 1=40.9,y 2=80.48,y 3=(12)-1.5,则( ) A .y 3>y 1>y 2 B .y 2>y 1>y 3C .y 1>y 3>y 2D .y 1>y 2>y 3答案:C解析:y 1=40.9=21.8,y 2=80.48=21.44,y 3=(12)-1.5=21.5.因为函数y =2x 在R 上为增函数,所以y 1>y 3>y 2.4.函数y =a x -1a (a >0,a ≠1)的图象可能是( )答案:D 解析:A ,B 选项中,a >1,于是0<1-1a<1,所以图象与y 轴的交点的纵坐标应在(0,1)之间,显然A ,B 的图象均不正确;C ,D 选项中,0<a <1,于是1-1a<0,故D 选项正确.5.若函数f (x )=2-|x |-c 的图象与x 轴有交点,则实数c 的取值范围为( )A .[-1,0)B .[0,1]C .(0,1]D .[1,+∞)答案:C解析:因为函数f (x )=2-|x |-c 的图象与x 轴有交点,所以2-|x |-c =0有解,即2-|x |=c 有解.因为-|x |≤0,所以0<2-|x |≤1,所以0<c ≤1. 故选C.6.已知方程|2x -1|=a 有两个不等实根,则实数a 的取值范围是( )A .(-∞,0)B .(1,2)C .(0,+∞) D.(0,1)答案:D解析:函数y =|2x-1|=⎩⎪⎨⎪⎧ 2x -1,x≥0-2x +1,x <0,其图象如图所示.由直线y =a 与y =|2x -1|的图象相交且有两个交点,可得0<a <1.故选D.二、填空题(本大题共3个小题,每小题5分,共15分)7.已知指数函数f (x )的图象经过点(-32,39),则f (3.14)与f (π)的大小关系为________.答案:f (3.14)<f (π)解析:∵f (x )是指数函数,∴可设f (x )=a x (a >0,a ≠1),由已知,得f (-32)=39,a =39=3,即a =3,∴f (x )=3x.∵3.14<π,∴f (3.14)<f (π). 8.若函数f (x )=⎩⎪⎨⎪⎧ 2x ,x <0-2-x ,x >0,则函数f (x )的值域是________.答案:(-1,0)∪(0,1)解析:由x <0,得0<2x <1;由x >0,得-1<-2-x<0.所以函数f (x )的值域为(-1,0)∪(0,1).9.已知实数a ,b 满足等式(12)a =(13)b ,给出下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系式为________.答案:③④解析:画出函数y =(12)x 和y =(13)x 的图象(图略),借助图象进行分析.由于实数a ,b 满足等式(12)a =(13)b ,若a ,b 均为正数,则a >b >0;若a ,b 均为负数,则a <b <0;若a =b =0,则(12)a =(13)b =1,故③④不可能成立. 三、解答题(本大题共4小题,共45分)10.(12分)求函数y =⎝ ⎛⎭⎪⎫45|x -1|的单调区间.解:设u =|x -1|,如图所示,可知u =|x -1|在(-∞,1]内单调递减,在[1,+∞)内单调递增.又因为45<1,所以y =⎝ ⎛⎭⎪⎫45|x -1|的递减区间为[1,+∞),递增区间为(-∞,1].11.(13分)已知函数f (x )=a (a >0且a ≠1).(1)若函数f (x )的图象经过点P (3,4),求a 的值;(2)判断并证明函数f (x )的奇偶性;(3)比较f (-2)与f (-2.1)的大小,并说明理由.解:(1)∵函数f (x )的图象经过点P (3,4),∴f (3)=a 2=4,∴a =2.(2)函数f (x )为偶函数.∵函数f (x )的定义域为R ,且f (-x )=a =a =f (x ),∴函数f (x )为偶函数.(3)∵y =x 2-1在(-∞,0)上单调递减,∴当a >1时,f (x )在(-∞,0)上单调递减,∴f (-2)<f (-2.1);当0<a <1时,f (x )在(-∞,0)上单调递增,∴f (-2)>f (-2.1).能力提升12.(5分)已知实数a 、b 满足等式⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b ,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系有( )A .1个B .2个C .3个D .4个答案:B解析:由y =⎝ ⎛⎭⎪⎫12x 与y =⎝ ⎛⎭⎪⎫13x 的图象可知, 当a =b =0时,⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b =1;当a <b <0时,可以使⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b ; 当a >b >0时,也可以使⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b . 当①②⑤都可以,不可能成立的关系式是③④两个.13.(15分)已知函数f (x )=4x +a 2x为偶函数. (1)求a 的值;(2)判断函数f (x )的单调性,并求其最小值.解:(1)由偶函数的定义,可得4-x +a 2-x =4x +a 2x ,∴1+a·4x 2x =4x +a 2x, 即(a -1)·(4x -1)=0.∵上式对于x ∈R 恒成立,∴a -1=0,即a =1.(2)由(1),得f (x )=4x +12x =2x +12x. 取任意两个实数x 1,x 2,且x 1<x 2,则f (x 1)-f (x 2),∵x 1<x 2,∴2<2.又2·2>0,∴有以下两种情况: ①当x 1<x 2<0时,0<2<2<1,∴2·2-1<0, ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),∴f (x )在(-∞,0)上是减函数;②当x 2>x 1>0时,2>2>1,∴2·2-1>0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴f (x )在(0,+∞)上是增函数.从而f (x )在(-∞,0)上是减函数,在(0,+∞)上是增函数. 故当x =0时,f (x )min =f (0)=2.。

高中数学基本初等函数练习题

高中数学基本初等函数练习题

(一)指数运算例1 计算:526743642++--- 例2 求值:238、12100-、31()4-、3416()81- 例3 用分数指数幂表示下列各式(其中各字母均为正数)(1)34a a ⋅;(2)a a a ;(2)3324()a b +;(二)指数函数的性质例1 下列函数是指数函数的是( )A .2y x =B .2x y =C .12x y += D .132x y +=⨯ 例2 函数22(0,1)x y a a a -=->≠ 且的图象恒过定点________________例3 比较下列各组数的大小(1)0.245()6-与145()6- (2)1()ππ-与1 (3)2(0.8)-与125()4- 例4 设a 是实数,2()()21x f x a x R =-∈+ (1)证明:不论a 为何实数,()f x 均为增函数;(2)试确定a 的值,使得()f x 为奇函数 例5 已知0a >,且1a ≠,11()12x f x a =--,则()f x 是( ) A .奇函数 B .偶函数 C .非奇非偶函数 D .函数的奇偶性与a 有关 例6 若函数221x x y aa =+-(01)a a >≠且在[1,1]x ∈-上的最大值为14,求a 的值.三、实战演练 1、化简:3322111143342(0,0)()a b ab a b a b a b ->>=_______________2、已知12102a -=,31032b =,则32410=a b +_______________ 3、函数2(33)x y a a a =-+是指数函数,则a 的值为4、函数()x b f x a -=的图像如图,其中a 、b 为常数,则下列结论正确的是( )A .B .C .D .5、比较大小:①0.70.8a =,0.90.8b =,0.81.2c =;②01, 2.50.4-,0.22-, 1.62.5; 7、已知定义域为R 的函数12()2x x b f x a+-+=+是奇函数 (1)求a 、b 的值;(2)若对任意的,不等式恒成立,求k 的取值范围0,1<>b a 0,1>>b a 0,10><<b a 0,10<<<b a R t ∈0)2()2(22<-+-k t f t t f四、强化训练1、设a =b =c =,,a b c 的大小关系是_______________ 2、设137x =,则( ) A .21x -<<- B .32x -<<- C .10x -<< D .01x <<3、求函数的定义域和值域,并讨论函数的单调性、奇偶性4、已知定义在R 上的函数()22x xa f x =+,a 为常数 (1)如果()()f x f x =-,求a 的值;(2)当()f x 满足(1)时,用单调性定义讨论()f x 的单调性二、题型解析(一)对数计算例1 已知732log [log (log )]0x =,那么12x -=______________例2 计算:(1);(2);(3);(4)(二)对数运算例1 计算下列各式的值(1)1324lg 2493-(2(3) ; 例2 已知 , ,用,表示例3 若3484log 4log 8log log 16m ⋅⋅=,则m =______________例4 设3436x y ==,求21x y +的值四、强化训练1、已知2(3)4log 3233x f x =+,则的值等于例1 在(2)log (6)a x a -=-中,实数a 的取值范围是( )A .6a >或2a <B .26a <<C .23a <<或36a <<D .34a << 例2函数y = )A .[1,)+∞B .2(,)3+∞C .2[,1]3D .2(,1]3例3 若4log 15a<(01)a a >≠且,求实数a 的取值范围 2121x x y -=+9log27((2log20.4log 10.21log 35-2log 3a =3log 7b =a b 42log 568(2)(4)(8)(2)f f f f ++++例4 比较下列各组数中两个值的大小:(1),;(2),;(3),例5 求函数22log (56)y x x =-+的定义域、值域、单调区间例6 函数在上的最大值比最小值大,求的值;三、实战演练1、求下列函数的定义域(1)2(1)log (23)x y x x -=-++;(2)y =(01)a a >≠且2、已知log (31)a a -恒为正数,求a 的取值范围3、比较下列各题中两个数值的大小: ; ; ;4、设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为12,则a = 5、若log (2)a y ax =-在[0,1]上是减函数,则a 的取值范围是 ( )A .(0,1)B .(0,2)C .(1,2)D .(2,)+∞四、强化训练1、已知函数()f x 满足:4x ≥,则1()()2x f x =;当4x <时()(1)f x f x =+,则2(2log 3)f += A .124 B .112 C .18 D .382、设01a a >≠且,函数2lg(23)()x x f x a -+=有最大值,则不等式2log (57)0a x x -+>的解集为 .3、已知01a a >≠且,21(log )()1a a f x x a x=-- (1)求()f x ;(2)判断()f x 的奇偶性与单调性;(3)对于()f x ,当(1,1)x ∈-时,有2(1)(1)0f m f m -+-<,求m 的集合M4、若x 满足21422(log )14log 30x x -+≤,求2()log 2x f x =最大值和最小值2log 3.42log 8.50.3log 1.80.3log 2.7log 5.1a log 5.2a (0,1)a a >≠log a y x =[2,4]1a 22log 3log 3.5和0.30.2log 4log 0.7和0.70.7log 1.6log 1.8和23log 3log 2和。

函数概念与基本初等函数晚练专题练习(五)带答案新人教版高中数学名师一点通

函数概念与基本初等函数晚练专题练习(五)带答案新人教版高中数学名师一点通
(A)奇函数(B)偶函数(C)既是奇函数又是偶函数(D)既不是奇函数又不是偶函
7.若 在 上是奇函数,且 ,则----------------------------------------------------------()
(A) (B) (C) (D)
8.对于定义域是 的任意奇函数 都有------------------------------------------------------------------------()
高中数学专题复习
《函数的概念与基本初等函数》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷、选择题
1. 设集合 对任意实数x恒成立},则下列关系中成立的是()()
解析:
二次函数的性质.
专题:
计算题.
分析:
由解析式先求出对称轴,再使对称轴在区间的左侧列出不等式,求出a的范围
解答:
解:f(x)=x2﹣4x+5的对称轴为x=2
∵f(x)在区间[a,+∞)上单调递增
∴a≥2
故答案为:a≥2
点评:
本题考查了二次函数的单调性,即由图象的开口方向和对称轴,判断函数的单调性.
评卷人
得分
二、填空题
11.已知函数f(x)=x2﹣4x+5在区间[a,+∞)上单调递增,则a的取值范围是a≥2.(5分)
12.函数 的定义域为____________________
13.若f(x)为R上的奇函数,且在(0,+∞)内是增函数,又f(-3)=0,则 的解集为

高中数学必修1基本初等函数常考题型几类不同增长的函数模型

高中数学必修1基本初等函数常考题型几类不同增长的函数模型

几类不同增长的函数模型【知识梳理】指数函数、对数函数和幂函数的增长差异一般地,在区间(0,+∞)上,尽管函数y=x a(a>1),y=log a x(a>1)和y=n x(n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x的增大,y=x a(a>1)的增长速度越来越快,会超过并远远大于y=n x(n>0)的增长x(a>1)的增长速度则会越来越慢.速度,而y=loga因此,总会存在一个x0,使得当x>x0时,就有logx<n x<x a (a>1,n>0).a【常考题型】题型一、函数模型的增长差异【例1】四个变量y1,y2,y3,y4随变量x变化的数据如下表:[解析] 从表格观察函数值y1,y2,y3,y4的增加值,哪个变量的增加值最大,则该变量关于x呈指数函数变化.以爆炸式增长的变量呈指数函数变化.从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,变量y1,y2,y3,y4都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略),可知变量y2关于x呈指数函数变化.故填y2.[答案] y2【类题通法】常见的函数模型及增长特点(1)线性函数模型线性函数模型y=kx+b(k>0)的增长特点是直线上升,其增长速度不变.(2)指数函数模型指数函数模型y=x a(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越快,即增长速度急剧,形象地称为“指数爆炸”.(3)对数函数模型对数函数模型y =log a x(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓.(4)幂函数模型幂函数y =nx (n>0)的增长速度介于指数增长和对数增长之间. 【对点训练】今有一组实验数据如下:t 1.99 3.0 4.0 5.1 6.12 v1.54.047.51218.01( ) A .v =2log t B .v =12log tC .v =t 2-12D .v =2t -2解析:选C 从表格中看到此函数为单调增函数,排除B ,增长速度越来越快,排除A 和D ,选C.题型二、指数函数、对数函数与幂函数模型的比较【例2】 函数f(x)=2x和g(x)=x 3的图象如图所示.设两函数的图象交于点A(x 1,y 1),B(x 2,y 2),且x 1<x 2.(1)请指出图中曲线C 1,C 2分别对应的函数;(2)结合函数图象,判断f(6),g(6),f(2 011),g(2 011)的大小. [解] (1)C 1对应的函数为g(x)=x 3,C 2对应的函数为f(x)=2x.(2)∵f(1)>g(1),f(2)<g(2),f(9)<g(9),f(10)>g(10),∴1<x 1<2,9<x 2<10,∴x 1<6<x 2,2 011>x 2.从图象上可以看出,当x 1<x<x 2时,f(x)<g(x), ∴f(6)<g(6).当x>x 2时,f(x)>g(x),∴f(2 011)>g(2 011).又g(2 011)>g(6),∴f(2 011)>g(2 011)>g(6)>f(6). 【类题通法】[由图象判断指数函数、对数函数和幂函数的方法根据图象判断增长型的指数函数、对数函数和幂函数时,通常是观察函数图象上升得快慢,即随着自变量的增大,图象最“陡”的函数是指数函数;图象趋于平缓的函数是对数函数.【对点训练】函数f(x)=lg x ,g(x)=0.3x -1的图象如图所示. (1)试根据函数的增长差异指出曲线C 1,C 2分别对应的函数;(2)比较两函数的增长差异(以两图象交点为分界点,对f(x),g(x)的大小进行比较).解:(1)C 1对应的函数为g(x)=0.3x -1,C 2对应的函数为f(x)=lg x.(2)当x<x 1时,g(x)>f(x);当x 1<x<x 2时,f(x)>g(x);当x>x 2时,g(x)>f(x);当x =x 1或x =x 2时,f(x)=g(x).题型三、函数模型的选取【例3】 某汽车制造商在2013年初公告:公司计划2013年生产目标定为43万辆.已知该公司近三年的汽车生产量如下表所示:年份 2010 2011 2012 产量8(万)18(万)30(万)如果我们分别将模型:二次函数模型f(x)=ax 2+bx +c(a≠0),指数函数模型g(x)=a·b x+c(a≠0,b>0,b≠1),哪个模型能更好地反映该公司年销量y 与年份x 的关系?[解] 建立年销量y 与年份x 的函数,可知函数必过点(1,8),(2,18),(3,30). (1)构造二次函数模型f(x)=ax 2+bx +c(a≠0), 将点坐标代入, 可得⎩⎪⎨⎪⎧a +b +c =8,4a +2b +c =18,9a +3b +c =30,解得a =1,b =7,c =0,则f(x)=x 2+7x ,故f(4)=44,与计划误差为1.(2)构造指数函数模型g(x)=a·b x+c(a≠0,b>0,b≠1),将点坐标代入,可得⎩⎪⎨⎪⎧ab +c =8,ab 2+c =18,ab 3+c =30,解得a =1253,b =65,c =-42,则g(x)=1253·65x⎛⎫ ⎪⎝⎭-42,故g(4)=1253·465⎛⎫⎪⎝⎭-42=44.4,与计划误差为1.4.由(1)(2)可得,f(x)=x 2+7x 模型能更好地反映该公司年销量y 与年份x 的关系. 【类题通法】不同函数模型的选取标准不同的函数模型能刻画现实世界中不同的变化规律: (1)线性函数增长模型适合于描述增长速度不变的变化规律; (2)指数函数增长模型适合于描述增长速度急剧的变化规律; (3)对数函数增长模型适合于描述增长速度平缓的变化规律; (4)幂函数增长模型适合于描述增长速度一般的变化规律.因此,需抓住题中蕴含的数学信息,恰当、准确地建立相应变化规律的函数模型来解决实际问题.【对点训练】某学校为了实现100万元的生源利润目标,准备制定一个激励招生人员的奖励方案:在生源利润达到5万元时,按生源利润进行奖励,且奖金y 随生源利润x 的增加而增加,但奖金总数不超过3万元,同时奖金不超过利润的20%.现有三个奖励模型:y =0.2x ,y =5log x ,y =1.02x,其中哪个模型符合该校的要求?解:借助工具作出函数y =3,y =0.2x ,y =5log x ,y =1.02x的图象(图略).观察图象可知,在区间[5,100]上,y =0.2x ,y =1.02x的图象都有一部分在直线y =3的上方,只有y =5log x的图象始终在y =3和y =0.2x 的下方,这说明只有按模型y =5log x 进行奖励才符合学校的要求.【练习反馈】1.下列函数中,随着x 的增大,增长速度最快的是( ) A .y =50 B .y =1 000x C .y =2x -1D .y =11 000ln x 解析:选C 指数函数模型增长速度最快,故选C. 2.三个变量y 1,y 2,y 3,随着变量x 的变化情况如下表:则关于xA.y1,y2,y3B.y2,y1,y3C.y3,y2,y1D.y1,y3,y2解析:选C 通过指数函数、对数函数、幂函数等不同函数模型的增长规律比较可知,对数函数的增长速度越来越慢,变量y3随x的变化符合此规律;指数函数的增长速度成倍增长,y2随x的变化符合此规律;幂函数的增长速度介于指数函数与对数函数之间,y1随x的变化符合此规律,故选C.3.若a>1,n>0,那么当x足够大时,x a,n x,log a x的大小关系是________.解析:∵a>1,n>0,∴函数y1=x a,y2=n x,y3=log a x都是增函数.由指数函数、对数函数、幂函数的变化规律可知,当x足够大时,x a>n x>log a x.答案:x a>n x>log a x4.函数y=x2与函数y=x ln x在区间(1,+∞)上增长较快的一个是________.解析:当x变大时,x比ln x增长要快,∴x2要比x ln x增长的要快.答案:y=x25.某地发生地震,各地纷纷捐款捐物,甲、乙、丙三个公司分别派代表到慈善总会捐款给灾区.甲公司的代表说:“在10天内,我们公司每天捐款5万元给灾区.”乙公司的代表说:“在10天内,我们公司第1天捐款1万元,以后每天比前一天多捐款1万元.”丙公司的代表说:“在10天内,我们公司第1天捐款0.1万元,以后每天捐款都比前一天翻一番.”你觉得哪个公司最慷慨?解:三个公司在10天内捐款情况如下表所示:。

(完整版)高中数学第一章基本初等函数的导数公式及导数的运算法则(一)练习

(完整版)高中数学第一章基本初等函数的导数公式及导数的运算法则(一)练习

几个常用函数的导数 基本初等函数的导数公式及导数的运算法规(一)[A基础达标 ]1.给出以下结论:① (sin x ) ′= cos x ;②若 f ( x ) =12,则 f ′(3) =- 2 ;x27③ (e x ) ′= e x ;1④ (log 4x ) ′= x ln 4 .此中正确的有 ( )A .1 个B .2 个C .3 个D .4 个1′= ( x - 2-分析:选 D. 因为 (sinx ) ′= cosx ,因此①正确; f ′(x ) = x 2) ′=- 2x32xx,因此③正确;因为(log 41,则 f ′(3) =- 27,因此②正确;因为(e ) ′= e x ) ′= x ln 4 ,因此④正确.α1 12.若幂函数 f ( x ) = mx 的图象经过点 A 4, 2 ,则它在点 A 处的切线方程是 ()A . 2x - y = 0B . 2x + y = 0C . 4x - 4y + 1=0D . 4x + 4y + 1=0分析:选 C. 因为函数f ( x ) =α为幂函数,因此= 1. 又幂函数f ( ) =x α的图象经过mxmx111111点A ,因此f ( x ) = , ′()= , ′f ( x ) 的图象在, α= ,因此2 x =1,因此4 2 2x 2 f x f 411点 A 处的切线方程为 y - 2= x -4,即 4x - 4y + 1= 0.π 13.过曲线 y =cos x 上一点 P 3,且与曲线在点 P 处的切线垂直的直线方程为 ()2 2π3A . 2x - 3y - 3 + 2 = 03π -1=0B. 3x + 2y -32π3C . 2x + 3y - 3 + 2 = 0D. 3x+ 2y-3π3+1=0分析:选 A. 因为y = cosx,因此y′=- sinx,曲线在点Pπ,1处的切线斜率是′|32y xπ=- sin π3P 且与曲线在点P 处的切线垂直的直线的斜率为2==-2,因此过点,所333以所求的直线方程为y -1=2x-π,即 2x- 3 -2π+3= 0.233y324.设曲线y =n+ 1(∈N*) 在点 (1 ,1) 处的切线与x轴的交点的横坐标为x n,则x1· 2· · n x n x x的值为 ()11A. nB.n+1nC.n+1D. 1n分析:选 B. 由题意得x n=n+1,1 23- 1n=1,应选 B.则 x1· x2· · x n=× × × ×n×n+12 34n n+1x cos xP 处的切线的倾斜角,则α 的取5.已知点P在曲线y= 2sin上,α为曲线在点22值范围是 ()3ππ 3πA.4,πB. -4,4π3ππ3πC.4,4D.0,4∪ 4,π分析:选 D. 因为y= 2sin x x x,因此 y′=cos x,设 P( x ,y) .由题意,知2cos 2= sin切线的斜率存在,则曲线在点P处的切线的斜率k=tanα=cos x ,因此-1≤tanα≤1.π3π因为 0≤α<π,因此α∈ 0,4∪4,π ,应选 D.16.已知函数f ( x) =x,且f′ ( a) -f ( a) =- 2,则a= ________.11分析: f ( x)=x,因此 f ′(x)=-x2,1 1f′ ( a) -f ( a) =-a2-a=- 2.即 2a2-a- 1= 0,解得 a = 1 或 a =- 12.1 答案:1或-27.曲线 y = x 3 在点 (1 ,1) 处的切线与 x 轴、直线 x = 2 所围成的三角形的面积为 ________ .分析:因为22y -1= 3( xy ′= 3x . 因此切线的斜率为y ′|x = 1=3×1= 3,因此切线方程为2 012-28 -1) ,与 x 轴的交点为, ,与直线 x = 2 的交点为 (2 ,4) .因此 S = 2 × 3 ×4=3 .38答案: 3x18.设曲线 y = e 在点 (0 ,1) 处的切线与曲线 y = x ( x >0) 上点 P 处的切线垂直, 则点 P 的坐标为 ________.分析:设f ( x ) = e x ,则 ′( ) = e x ,fx1因此 f ′(0) = 1. 设 g ( x ) = x ( x >0) ,1则 g ′(x ) =- x 2 . 由题意可得 g ′(x P ) =- 1,解得 x P =1.因此 P (1 ,1) .答案: (1 , 1)9.求与曲线 y = f ( x ) = 3 x 2在点 P (8 ,4) 处的切线垂直,且过点(4 , 8) 的直线方程.33 221211 2y ′= ( ) ′=2 -= -3 解:因为 y =x ,因此x x 3′= x 3. 因此 f ′(8)3 × 8 = ,即33 曲线在点 P (8 ,4) 处的切线的斜率为13. 因此合适条件的直线的斜率为-3. 从而合适条件的直线方程为 y - 8=- 3( x - 4) ,即 3x + y - 20= 0.xP 到直线 y = x 的最小距离.10.点 P 是曲线 y = e 上任意一点,求点 解:依据题意设平行于直线 y = x 的直线与曲线 = e x 相切于点 ( 0, 0) ,该切点即为y P x y与 y = x 距离近来的点,如图.则在点 P ( x , y ) 处的切线斜率为 1,0 0即 y ′|x = x = 1.因为 y ′= (e x ) ′= e x ,xx因此 e 0= 1,得 x 0= 0,代入 y =e ,得 y 0= 1,即 P (0 ,1) .2利用点到直线的距离公式得距离为2 .[B 能力提高 ]11.若函数y=f ( x)的图象上存在两点,使得函数的图象在这两点处的切线相互垂直,则称 y= f ( x)拥有T性质.以下函数中拥有T性质的是 ()A.y=sin x B.y=ln xC.y=e x D.y=x3分析:选 A. 设函数y =(x) 的图象上两点(1,1),( 2,2),则由导数的几何意义f P x y Q x y可知,点 P,Q处切线的斜率分别为 k = f ′(x ),k=f ′(x ),若函数拥有T性质,则 k ·k211221=f ′(x1)· f ′(x2)=-1.对于A选项, f ′( x)=cos x,明显 k1· k2=cos x1·cos x2=-1有无数组解,因此该函数拥有1( x> 0) ,明显k1·k2=1·1 T 性质;对于 B 选项,f′ ( x) =x xx21=- 1 无解,故该函数不拥有T 性质;对于 C 选项,f′ ( x) = e x>0,明显k1·k2= e x1·e x2=- 1 无解,故该函数不拥有T 性质;对于 D 选项,f′( x) = 3x 222=≥ 0,明显k1·k= 3x1·3x2-1 无解,故该函数不拥有T 性质.应选 A.12.设f0( x) = sin x,f1( x) =f′0 ( x) ,f2( x) =f′1( x) ,,f n+1( x) =f′n( x) ,n∈ N,则 f 2 018( x)=________.分析:由已知 f 1( x)=cos x, f 2( x)=-sin x,f 3( x)=-cos x, f 4( x)= sin x,f5( x)=cos x,挨次类推可得,函数呈周期变化,且周期为3,则f2 018 ( x) =f2( x) =- sin x.答案:- sin x13.若曲线f ( x) =x-2在点 ( a,a-2)( a>0) 处的切线与两坐标轴围成的三角形的面积为3,求 log 3a的值.2解:由题意,得 f ′(x)=-2x-3,因此曲线 f( x) 在点 ( a,a - 2- 2- 3) 处的切线方程为y- a =-2a ( x- a),3a令 x=0,得 y=3a-2,令 y=0,得 x=2.因此1× 3 -2×3=3,2a2a3解得a=4.因此log3a=2.214.( 选做题) 已知两条曲线y1=sin x,y2=cos x,能否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线相互垂直?并说明原由.解:不存在.原由以下:因为y1=sin x,y2=cos x,设两条曲线的一个公共点为P( x0,y0) ,因此两条曲线在P( x0, y0)处切线的斜率分别为k1=y′1| x= x0=cos x0, k2=y′2| x=x0=- sin x0.若使两条切线相互垂直,一定使cos x· ( - sin x )=-1,即sin x ·cos x= 1,也0000就是 sin 2x0=2,这是不行能的,因此两条曲线不存在公共点,使在这一点处的两条切线互相垂直.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修一第二章基本初等函数试题
一、选择题:
1、若()1fxx,则(3)f()
A、2B、4 C、22D、10
2、对于函数()yfx,以下说法正确的有()
①y是x的函数;②对于不同的,xy的值也不同;③()fa表示当xa时函数()fx的值,是一
个常量;④()fx一定可以用一个具体的式子表示出来。
A、1个B、2个C、3个D、4个
3、下列各组函数是同一函数的是()
①3()2fxx与()2gxxx;②()fxx与2()gxx;③0()fxx与01()gxx;

④2()21fxxx与2()21gttt。
A、①②B、①③C、③④D、①④
4、二次函数245yxmx的对称轴为2x,则当1x时,y的值为()
A、7B、1 C、17D、25
5、函数265yxx的值域为()
A、0,2B、0,4C、,4D、0,
6、下列四个图像中,是函数图像的是()

A、(1)
B、(1)、
(3)、
(4)C、
(1)、
(2)、(3)D、(3)、(4)
7、若:fAB能构成映射,下列说法正确的有()

(1) (2) (3)
(4)
(1)A中的任一元素在B中必须有像且唯一;(2)B中的多个元素可以在A中有相同的原
像;(3)B中的元素可以在A中无原像;(4)像的集合就是集合B。
A、4个B、3个C、2个D、1个
8、)(xf是定义在R上的奇函数,下列结论中,不正确...的是()

A、()()0fxfxB、()()2()fxfxfxC、()()0fxfx≤D、()1()fxfx
9、如果函数2()2(1)2fxxax在区间,4上是减少的,那么实数a的取值范围是()
A、3a≤B、3a≥C、a≤5D、a≥5
10、设函数()(21)fxaxb是R上的减函数,则有()
A、12aB、12aC、12a≥D、12a≤
11、定义在R上的函数()fx对任意两个不相等实数,ab,总有()()0fafbab成立,则必有()
A、函数()fx是先增加后减少B、函数()fx是先减少后增加
C、()fx在R上是增函数D、()fx在R上是减函数
12、下列所给4个图象中,与所给3件事吻合最好的顺序为()
(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;
(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;
(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

A、(1)
(2)(4)
B、(4)
(2)(3)
C、(4)
(1)(3)D、(4)(1)(2)

二、填空题:
13、已知(0)1,()(1)()ffnnfnnN,则(4)f。
14、将二次函数22yx的顶点移到(3,2)后,得到的函数的解析式为。

(1) (2) (3)
(4)
时间 时间 时

离开家的距

离开家的距离 离开家的距离 离开家的距


15、已知()yfx在定义域(1,1)上是减函数,且(1)(21)fafa,则a的取值范围是。
16、设22 (1)() (12)2 (2)xxfxxxxx≤≥,若()3fx,则x。
17.设有两个命题:①关于x的方程9(4)340xxa有解;②函数22()logaafxx是减函
数。当①与②至少有一个真命题时,实数a的取值范围是__
18.方程0422axx的两根均大于1,则实数a的取值范围是_____。
三、解答题:
19、已知(,)xy在映射f的作用下的像是(,)xyxy,求(2,3)在f作用下的像和(2,3)在f作
用下的原像。
20、证明:函数2()1fxx是偶函数,且在0,上是增加的。

21、对于二次函数2483yxx,
(1)指出图像的开口方向、对称轴方程、顶点坐标;
(2)画出它的图像,并说明其图像由24yx的图像经过怎样平移得来;
(3)求函数的最大值或最小值;
(4)分析函数的单调性。

22、设函数)(xfy是定义在R上的减函数,并且满足)()()(yfxfxyf,131f,
(1)求)1(f的值,(2)如果2)2()(xfxf,求x的取值范围。
答案
一、选择题:
ABCDABCDABCD
二、填空题:
13、2414、222(3)221216yxxx
15、203a16、3

17、11,8,0,122 18、52,2
三、解答题:
19、(2,3)在f作用下的像是(1,6);(2,3)在f作用下的原像是(3,1)(1,3)或
20、略
21、(1)开口向下;对称轴为1x;顶点坐标为(1,1);
(2)其图像由24yx的图像向右平移一个单位,再向上平移一个单位得到;
(3)函数的最大值为1;
(4)函数在(,1)上是增加的,在(1,)上是减少的。
22、解:(1)令1yx,则)1()1()1(fff,∴0)1(f

(2)∵131f∴23131)3131(91ffff

∴91)2(2fxxfxfxf,又由)(xfy是定义在R+上的减函数,得:






020912x
x
xx

解之得:3221,3221x。

相关文档
最新文档