基本初等函数复习题(含答案)

合集下载

基本初等函数、函数与方程 专项练习-2023届高三数学二轮专题复习(含解析)

基本初等函数、函数与方程 专项练习-2023届高三数学二轮专题复习(含解析)

冲刺2023年高考二轮 基本初等函数、函数与方程(原卷+答案)1.函数y =log 2(4+3x -x 2)的一个单调增区间是( ) A .⎝ ⎛⎭⎪⎫-∞,32 B .⎣⎢⎡⎭⎪⎫32,+∞ C .⎝ ⎛⎭⎪⎫-1,32 D .⎣⎢⎡⎭⎪⎫32,4 2.已知函数f (x )=⎩⎨⎧ax 2-x -14,x ≤1log a x -1,x >1,是R 上的单调函数,则实数a 的取值范围为( )A .⎣⎢⎡⎭⎪⎫14,12B .⎣⎢⎡⎦⎥⎤14,12 C .⎝ ⎛⎦⎥⎤0,12 D .⎝ ⎛⎭⎪⎫12,1 3.若不等式x 2-log a x <0在⎝⎛⎭⎪⎫0,12 内恒成立,则a 的取值范围是( )A .116 ≤a <1B .116 <a <1 C .0<a ≤116 D .0<a <1164.若函数f (x )=x +ax -1在(0,2)上有两个不同的零点,则a 的取值范围是( )A .⎣⎢⎡⎦⎥⎤-2,14B .⎝ ⎛⎭⎪⎫-2,14C .⎣⎢⎡⎦⎥⎤0,14D .⎝ ⎛⎭⎪⎫0,145.中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:C =W log 2⎝ ⎛⎭⎪⎫1+S N .它表示,在受噪音干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中SN 叫作信噪比.当信噪比比较大时,公式中真数里面的1可以忽略不计.按照香农公式,增加带宽,提高信号功率和降低噪声功率都可以提升信息传递速度,若在信噪比为1 000的基础上,将带宽W 增大到原来的2倍,信号功率S 增大到原来的10倍,噪声功率N 减小到原来的15 ,则信息传递速度C 大约增加了( )(参考数据:lg 2≈0.3) A .87% B .123% C .156% D .213%6.已知函数f (x )=⎩⎪⎨⎪⎧||log 2x ,x >0,-x 2-4x +4,x <0. 若函数g (x )=f (x )-m 有四个不同的零点x 1,x 2,x 3,x 4,则x 1x 2x 3x 4的取值范围是( )A .(0,4)B .(4,8)C .(0,8)D .(0,+∞)7.已知函数f (x )是定义在R 上的奇函数,满足f (x +2)=f (-x ),且当x ∈[0,1]时,f (x )=log 2(x +1),则函数y =f (x )-x 3的零点个数是( )A .2B .3C .4D .5 8.为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量y (mg/m 3)与时间t (h )的函数关系为y =⎩⎪⎨⎪⎧kt ,0<t <12,1kt ,t ≥12, (如图所示)实验表明,当药物释放量y <0.75(mg/m 3)时对人体无害.(1)k =________;(2)为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过________分钟人方可进入房间.9.函数f (x )=⎩⎪⎨⎪⎧x 3+2,x ≤0x -3+e x,x >0 的零点个数为________. 10.已知函数f (x )=⎩⎪⎨⎪⎧4x -1,x ≤1log 2x ,x >1 ,若1<f (a )≤2,则实数a 的取值范围为________.11.已知函数f (x )=⎩⎪⎨⎪⎧10x -2-102-x ,x ≤2||x -3-1,x >2,则不等式f (x )+f (x -1)<0的解集为________.12.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -1),x ∈R .若函数y =f (x )-c 恰有两个零点,则实数c 的取值范围是________.13.已知f (x )是定义在R 上的偶函数,f ′(x )是f (x )的导函数,当x ≥0时,f ′(x )-2x >0,且f (1)=3,则f (x )>x 2+2的解集是( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(0,1)D .(-∞,-1)∪(0,1)14.定义在R 上的偶函数f (x )满足f (2-x )=f (2+x ),且当x ∈[0,2]时,f (x )=⎩⎨⎧2x-1,0≤x ≤12sin π2x -1,1<x ≤2,若关于x 的方程m ln ||x =f (x )至少有8个实数解,则实数m 的取值范围是( )A .⎣⎢⎡⎭⎪⎫-1ln 6,0 ∪⎝ ⎛⎦⎥⎤0,1ln 5B .⎣⎢⎡⎦⎥⎤-1ln 6,1ln 5 C .⎝ ⎛⎭⎪⎫-1ln 6,0 ∪⎝ ⎛⎭⎪⎫0,1ln 5 D .⎝ ⎛⎭⎪⎫-1ln 6,1ln 5参考答案1.解析:函数y =log 2(4+3x -x 2)的定义域为(-1,4). 要求函数y =log 2(4+3x -x 2)的一个单调增区间, 只需求y =4+3x -x 2的增区间,只需x <32 . 所以-1<x <32 .所以函数y =log 2(4+3x -x 2)的一个单调增区间是⎝ ⎛⎭⎪⎫-1,32 .故选C.答案:C2.解析:当函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调递减函数,所以⎩⎪⎨⎪⎧0<a <112a ≥1a -54≥-1,解得14 ≤a ≤12 ,因为a >0且a ≠1,所以当x ≤1时,f (x )不可能是增函数, 所以函数f (x )在R 上不可能是增函数, 综上:实数a 的取值范围为⎣⎢⎡⎦⎥⎤14,12 ,故选B.答案:B3.解析:当a >1时,由x ∈⎝ ⎛⎭⎪⎫0,12 ,可得log a x <0,则-log a x >0,又由x 2>0,此时不等式x 2-log a x <0不成立,不合题意; 当0<a <1时,函数y =log a x 在⎝ ⎛⎭⎪⎫0,12 上单调递减,此时函数y =-log a x 在⎝ ⎛⎭⎪⎫0,12 上单调递增,又由y =x 2在⎝ ⎛⎭⎪⎫0,12 上单调递增,要使得不等式x 2-log a x <0在⎝ ⎛⎭⎪⎫0,12 内恒成立,可得⎝ ⎛⎭⎪⎫12 2-log a 12 ≤0,解得116 ≤a <1.故选A.答案:A4.解析:函数f (x )=x +ax -1在(0,2)上有两个不同的零点等价于方程x +ax -1=0在(0,2)上有两个不同的解,即a =-x 2+x 在(0,2)上有两个不同的解.此问题等价于y =a 与y =-x 2+x (0<x <2)有两个不同的交点.由下图可得0<a <14 .故选D. 答案:D5.解析:提升前的信息传递速度C =W log 2S N =W log 21 000=3W log 210=3Wlg 2≈10W ,提升后的信息传递速度C ′=2W log 210S 15N =2W log 250SN =2W log 250 000=2W ·4+lg 5lg 2 =2W ·5-lg 2lg 2 ≈94W 3 ,所以信息传递速度C 大约增加了C ′-CC =943W -10W 10W ≈2.13=213%.故选D.答案:D6.解析:函数g (x )有四个不同的零点等价于函数f (x )的图象与直线y =m 有四个不同的交点.画出f (x )的大致图象,如图所示.由图可知m ∈(4,8).不妨设x 1<x 2<x 3<x 4,则-4<x 1<-2<x 2<0,且x 1+x 2=-4.所以x 2=-x 1-4,所以x 1x 2=x 1(-x 1-4)=-(x 1+2)2+4∈(0,4),则0<x 3<1<x 4,因为||log 2x 3 =||log 2x 4 ,所以-log 2x 3=log 2x 4,所以log 2x -13 =log 2x 4,所以x 3·x 4=1,所以x 1·x 2·x 3·x 4=x 1·x 2∈(0,4).故选A. 答案:A7.解析:由f (x +2)=f (-x )可得f (x )关于x =1对称, 由函数f (x )是定义在R 上的奇函数,所以f (x +2)=f (-x )=-f (x )=-[-f (x -2)]=f (x -2), 所以f (x )的周期为4,求函数y =f (x )-x 3的零点问题即y =f (x )-x 3=0的解, 即函数y =f (x )和y =x 3的图象交点问题,根据f (x )的性质可得如图所示图形,结合y =x 3的图象,由图象可得共有3个交点,故共有3个零点,故选B. 答案:B8.解析:(1)由题图可知,当t =12 时,y =1,所以2k =1,所以k =2. (2)由(1)可知,y =⎩⎪⎨⎪⎧2t ,0<t <12,12t ,t ≥12,当t ≥12 时,y =12t ,令y <0.75,得t >23 ,所以在消毒后至少经过23 小时,即40分钟人方可进入房间.答案:(1)2 (2)409.解析:当x ≤0时,令x 3+2=0,解得x =3-2 ,3-2 <0,此时有1个零点;当x >0时, f (x )=x -3+e x ,显然f (x )单调递增,又f ⎝ ⎛⎭⎪⎫12 =-52 +e 12 <0,f (1)=-2+e>0,由零点存在定理知此时有1个零点;综上共有2个零点.答案:210.解析:若a ≤1,则f (a )=4a -1,故1<4a -1≤2,解得12 <a ≤log 43,故12 <a ≤log 43;若a >1,则f (a )=log 2a ,故1<log 2a ≤2,解得2<a ≤4; 综上:12 <a ≤log 43或2<a ≤4. 答案:⎝ ⎛⎦⎥⎤12,log 43 ∪(2,4]11.解析:①当x ≤2时,x -1≤1,∵f (x )=10x -2-102-x 在(-∞,2]上单调递增,∴f (x )≤f (2)=0,又f (x -1)≤f (1)<f (2)=0, ∴f (x )+f (x -1)<0恒成立;②当2<x ≤3时,1<x -1≤2,f (x )=||x -3 -1=2-x <0, 又f (x -1)≤f (2)=0,∴f (x )+f (x -1)<0恒成立;③当3<x ≤4时,2<x -1≤3,f (x )=||x -3 -1=x -4,f (x -1)=||x -4 -1=3-x ;∴f (x )+f (x -1)=-1<0恒成立;④当x >4时,x -1>3,f (x )=||x -3 -1=x -4,f (x -1)=||x -4 -1=x -5,∴f (x )+f (x -1)=2x -9<0,解得x <92 ,∴4<x <92 ; 综上所述:不等式f (x )+f (x -1)<0的解集为⎝ ⎛⎭⎪⎫-∞,92 .答案:⎝ ⎛⎭⎪⎫-∞,92 12.解析:因为a ⊗b =⎩⎨⎧a ,a -b ≤1,b ,a -b >1.,所以f (x )=(x 2-2)⊗(x -1)=⎩⎨⎧x 2-2,-1≤x ≤2x -1,x <-1或x >2 ,由图可知,当-2<c ≤-1或1<c ≤2时,函数f (x )与y =c 的图象有两个公共点,∴c 的取值范围是(-2,-1]∪(1,2]. 答案:(-2,-1]∪(1,2] 13.解析:令g (x )=f (x )-x 2, 因为f (x )是定义在R 上的偶函数, 所以f (-x )=f (x ),则g (-x )=f (-x )-(-x )2=g (x ), 所以函数g (x )也是偶函数, g ′(x )=f ′(x )-2x ,因为当x ≥0时,f ′(x )-2x >0,所以当x ≥0时,g ′(x )=f ′(x )-2x ≥0, 所以函数g (x )在(0,+∞)上递增, 不等式f (x )>x 2+2即为不等式g (x )>2, 由f (1)=3,得g (1)=2, 所以g (x )>g (1),所以||x >1,解得x >1或x <-1,所以f (x )>x 2+2的解集是(-∞,-1)∪(1,+∞). 故选B. 答案:B14.解析:因为f (2-x )=f (2+x ),且f (x )为偶函数, 所以f (x -2)=f (x +2),即f (x )=f (x +4), 所以函数f (x )是以4为周期的周期函数,作出y=f(x),y=m ln x在同一坐标系的图象,如图,因为方程m ln ||x=f(x)至少有8个实数解,所以y=f(x),y=m ln |x|图象至少有8个交点,根据y=f(x),y=m ln |x|的图象都为偶函数可知,图象在y轴右侧至少有4个交点,由图可知,当m>0时,只需m ln 5≤1,即0<m≤1ln 5,当m<0时,只需m ln 6≥-1,即-1ln 6≤m<0,当m=0时,由图可知显然成立,综上可知,-1ln 6≤m≤1ln 5.故选B.答案:B。

(完整版)基本初等函数测试题及答案

(完整版)基本初等函数测试题及答案

基本初等函数测试题一、选择题 (本大题共 12 个小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.有以下各式:① na n = a ; ②若 a ∈ R ,则 (a 2- a + 1)0= 1;③ 3 x 44y ; ④6- 2 2= 3- 2.y3x3此中正确的个数是 ()A . 0B . 1C .2D .3|x|的图象是 ()2.函数 y = a (a>1)3.以下函数在 (0,+∞ )上是增函数的是 ()-xB . y =- 2x1A . y = 3C . y = logxD . y = x24.三个数 log 21, 20.1,2-1 的大小关系是 ()51-1--11 -A . log 25<2<2 1 B . log 25<2 1<20.1 C . 2<2 1<log 25 D . 2<log 25<215.已知会合 A = { y|y = 2x , x<0} , B = { y|y =log 2x} ,则 A ∩ B = ()A . { y|y>0}B . { y|y>1}C . { y|0<y<1}D .6.设 P 和 Q 是两个会合,定义会合 P -Q = { x|x ∈ P 且 x?Q} ,假如 P ={ x|log x < 1} ,Q2= { x|1<x<3} ,那么 P -Q 等于 ( )A . { x|0< x < 1}B . { x|0< x ≤ 1}C . { x|1≤ x <2}D . { x|2≤ x < 3}17.已知 0<a<1, x = log a 2+ log a 3, y =2log a 5,z =log a 21- log a 3,则 ( )A . x>y>zB . x>y>xC . y>x>zD . z>x>y8.函数 y = 2x - x 2 的图象大概是 ()9.已知四个函数① y = f 1(x);② y = f 2 (x);③ y =f 3(x);④ y = f 4( x)的图象以以下图:- 1 -则以下不等式中可能建立的是 ()A . f (x + x )= f (x )+ f (x )B . f (x + x )=f (x )+ f(x )112111 22122122C . f 3(x 1+ x 2) =f 3(x 1)+ f 3(x 2 )D . f 4(x 1+ x 2)=f 4(x 1)+ f 4(x 2)f ( x)12-1, f 3 2,则 f 1 2 310.设函数x 2(x)= x(2010))) 等于 ()1, f (x)= x ( f (fB . 2010211A . 2010 C.2010 D. 201211.函数 f(x)=3x 2 + lg(3 x + 1)的定义域是 ( )1-xA. -∞,- 1B. - 1, 133 3C. -1, 1D. - 1,+∞332e x -1, x<2,12. (2010 石·家庄期末测试)设 f(x)=则 f[ f(2)] 的值为 ()log 3 x 2- 1 , x ≥ 2.A . 0B . 1C . 2D . 3二、填空题 (本大题共 4 小题,每题 5 分,共 20 分.把答案填在题中横线上 )13. 给出以下四个命题:(1)奇函数的图象必定经过原点;(2)偶函数的图象必定经过原点;1(3)函数 y = lne x 是奇函数; (4)函数 yx 3 的图象对于原点成中心对称.此中正确命题序号为 ________. (将你以为正确的都填上 )14. 函数 y log 1 (x 4) 的定义域是.215.已知函数 y = log a (x +b)的图象以以下图所示,则 a = ________, b = ________.16.(2008 上·海高考 )设函数 f(x)是定义在 R 上的奇函数, 若当 x ∈ (0,+∞ )时,f(x)= lgx ,则知足 f(x)>0 的 x 的取值范围是 ________.- 2 -三、解答题 (本大题共 6 小题,共 70 分.解答应写出必需的文字说明、证明过程或演算步骤 )17. (本小题满分 10 分 )已知函数 f( x)= log 2(ax + b),若 f(2)= 1, f(3)= 2,求 f(5).118. (本小题满分 12 分 )已知函数 f (x)2 x 2 .(1)求 f(x) 的定义域; (2) 证明 f(x)在定义域内是减函数.2x - 1 19. (本小题满分 12 分 )已知函数f( x)=2x + 1.(1)判断函数的奇偶性; (2) 证明: f( x)在(-∞,+∞ )上是增函数.220. (本小题满分 12 分 )已知函数 f x(m 2 m 1)x mm 3是幂函数 , 且 x ∈ (0,+∞ )时, f(x)是增函数,求 f(x)的分析式.21. (本小题满分 12 分 )已知函数 f( x)= lg(a x -b x ), (a>1>b>0) .(1)求 f(x)的定义域;(2)若 f(x)在 (1,+∞ )上递加且恒取正当,求a ,b 知足的关系式.1122. (本小题满分 12 分 )已知 f(x)= 2x -1+2 ·x.(1)求函数的定义域;(2)判断函数 f(x)的奇偶性;(3)求证: f(x)>0.- 3 -参照答案答案速查: 1-5 BCDBC6-10 BCACC11-12 CC1.分析: 仅有②正确. 答案: Ba x , x ≥0 ,2.分析: y = a |x|=-且 a>1 ,应选 C.答案: Ca x, x<0 ,3.答案: D4.答案: B5.分析:A = { y|y = 2x ,x<0} = { y|0<y<1} ,B = { y|y = log 2x} = { y|y ∈ R} ,∴ A ∩ B ={ y|0<y<1} .答案: C6.分析: P ={ x|log 2x<1} = { x|0<x<2} , Q ={ x|1<x<3} ,∴ P - Q = { x|0<x ≤1} ,应选 B.答案: B17.分析: x = log a 2+ log a 3= log a 6= 2log a 6, z = loga21- loga 3= loga 7= 2log 7.1a∵ 0<a<1 ,∴ 111log a 7.2 log a 5> log a 6> 22 即 y>x>z.答案: C8.分析: 作出函数 y =2x 与 y = x 2 的图象知,它们有3 个交点,因此 y =2x - x 2 的图象与x 轴有 3 个交点,清除B 、C ,又当 x<- 1 时, y<0,图象在 x 轴下方,清除 D.应选 A.答案: A9.分析: 联合图象知, A 、 B 、 D 不建立, C 建立. 答案: C10.分析: 依题意可得 f 3(2010) = 20102, f 2(f 3(2010))22 -1-2 = f 2(2010 ) =(2010 ) = 2010 ,∴ f 1(f 2(f 3(2010))) = f 1(2010 - 2-2 1-11 .)= (2010) =2010=20102答案: C1-x>0x<1-111.分析: 由 ?1? <x<1. 答案: C3x +1>0x>- 3312.分析: f(2) = log 3(22- 1)= log 33= 1,∴ f[f(2)] = f(1) = 2e 0= 2.答案: C13.分析: (1) 、 (2)不正确,可举出反例,如1, y = x -2,它们的图象都可是原点. (3)y = x中函数 y = lne x=x ,明显是奇函数.对于(4) , y =x 13是奇函数,而奇函数的图象对于原点对称,因此 (4)正确.答案: (3)(4)- 4 -14.答案: (4,5]15.分析: 由图象过点 (- 2,0), (0,2)知, log a (- 2+ b)= 0, log a b = 2,∴- 2+ b =1,∴ b= 3, a 2= 3,由 a>0 知 a = 3.∴ a = 3, b = 3.答案: 3 316.分析: 依据题意画出 f(x)的草图,由图象可知,f(x)>0 的 x 的取值范围是-1<x<0 或x>1.答案: (- 1,0)∪ (1,+∞ )17.解:由 f(2) log 2 2a + b =12a + b =2 ? a = 2, = 1,f(3)= 2,得 3a + b = 2? ∴ f(x)= log 2(2xlog 2 3a + b =4 b =- 2. - 2),∴ f(5)= log 28 =3.18.∵ x 2>x 1≥ 0,∴ x 2- x 1>0, x 2+ x 1>0,∴ f(x 1) - f(x 2)>0 ,∴ f(x 2)<f( x 1).于是 f(x)在定义域内是减函数.19.解: (1) 函数定义域为 R.2-x - 11- 2x2x - 1f(- x)=- x+ 1 =x =-x=- f(x),21+ 22 + 1因此函数为奇函数.1 2< +∞ ,(2)证明:不如设- ∞<x <x∴ 2x 2>2x 1.又由于 f(x 2)- f(x 1)= 2x 2- 1 - 2x 1- 1 = 2 2x 2- 2x 12 1 1 2x 2>0,2x + 1 2x + 1 2x + 1 +1∴ f(x 2)> f(x 1).因此 f(x)在 (- ∞ ,+ ∞ )上是增函数.20.解: ∵ f(x)是幂函数,∴ m 2- m - 1= 1, ∴ m =- 1 或 m = 2,∴ f(x)= x -3 或 f(x)= x 3,而易知 f(x)= x -3 在 (0,+ ∞ )上为减函数,f(x)=x 3 在 (0,+ ∞ )上为增函数. ∴ f(x)= x 3.21.解: (1) 由 a x- b x>0,得 a x>1.ba∵ a>1>b>0,∴ b >1, ∴ x>0.即 f(x)的定义域为 (0,+ ∞ ).(2)∵ f( x)在 (1,+ ∞ )上递加且恒为正当,∴ f(x)>f(1) ,只需 f(1)≥ 0,即 lg(a - b)≥ 0,∴ a - b ≥1.∴ a ≥ b + 1 为所求22.解: (1) 由 2x - 1≠ 0 得 x ≠0,∴函数的定义域为 { x|x ≠0, x ∈ R} . (2)在定义域内任取 x ,则- x 必定在定义域内. 1 1 f(- x)= 2-x - 1+ 2 (- x)=2xx +1 ( -x) =- 1+2x ·x = 2x +1 ·x.1-2 22 1- 2x 2 2x - 111 2x + 1而f(x)=2x - 1+2 x = 2 2x -1 ·x , ∴ f(- x)= f(x).∴ f(x)为偶函数.(3)证明:当 x>0 时, 2x >1,11∴2x - 1+2 ·x>0.又 f(x)为偶函数,∴当 x<0 时, f(x)>0.故当 x ∈ R 且 x ≠ 0 时, f(x)>0.。

考点03 指对数运算及基本初等函数复习(解析版)

考点03 指对数运算及基本初等函数复习(解析版)

考点03 指对数运算及基本初等函数复习一、单选题1.设集合(){}ln 1A y y x ==-,{B y y ==,则A B =( )A .[)0,2B .()0,2C .[]0,2D .[)0,1【答案】A 【解析】 【分析】先分别利用对数型函数以及指数型函数求值域的方法求出集合,A B ,注意集合中的代表元素,再利用集合的交集运算求解即可. 【详解】∵(){}ln 1A y y x R ==-=,{[)0,2B y y ===,∴[)0,2AB =.故选:A. 【点睛】本题主要考查了集合间的运算以及对数函数和指数函数.属于较易题.2.已知3log 2a =,5log 6b =,ln 2c =,则a ,b ,c 的大小关系为( ) A .a c b << B .c a b <<C .a b c <<D .c b a <<【答案】A 【解析】 【分析】根据对数函数的图象与性质,求得(0,1)a c <∈,(1,)b ∈+∞,即可求解,得到答案. 【详解】由题意,根据对数的性质,可得3log 2(0,1)a =∈,5log 6(1,)b =∈+∞, 又由321log 2log 3a ==,21ln 2log c e==,因为3e >,所以22log 3log 1e >>,可得1a c <<, 所以a c b <<. 故选:A. 【点睛】本题主要考查了对数函数的图象与性质的应用,其中解答中熟记对数函数的图象与性质,求得,,a b c 的取值范围是解答的关键,着重考查了推理与运算能力,属于基础题.3.已知3x=5y=a ,且 1 x +1 y=2,则a 的值为( )A B .15C .D .225【答案】A 【解析】 【分析】把指数式化为对数式,再利用对数的运算法则即可得出答案 【详解】35x y a == lg3lg5lg x y a ∴==1lg 31lg 5,lg lg x a y a∴== 则11lg 3lg 5lg152=lg lg x y a a++== 2lg lg15,0a a ∴=>a ∴=故选A 【点睛】本题主要考查了对数的运算性质,在求解过程中指数与对数的互化是解题关键,属于基础题 4.已知22log log a b >,则下列不等式一定成立的是( )A .11a b>B .()2log 0a b ->C .1132a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .21a b -<【答案】C 【解析】 【分析】根据22log log a b >,利用对数函数的单调性得到0a b >>,然后利用不等式的基本性质判断A ;利用特殊值判断B ;利用指数函数和幂函数的单调性判断C ;利用指数函数的单调性判断D 即可. 【详解】因为22log log a b >, 所以0a b >>, 所以11a b<,0221a b ->= , 当3,12a b ==时,()221log log 102a b -==-<,由指数函数和幂函数的单调性得111332abb⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故选:C 【点睛】本题主要考查对数函数、指数函数和幂函数的单调性的应用,还考查了转化求解问题的能力,属于中档题. 5.设()f x 是定义域为R 的偶函数,且在()0,∞+单调递增,则( )A .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】B 【解析】 【分析】根据函数()f x 的性质可知,只需分析31log 4,322-,232-的大小关系,绝对值越大函数值越大.因为函数()f x 为偶函数且在()0,∞+递增,所以()f x 在(),0-∞上递减, 又3311log log 143<=-,则31log 14>,23320221--<<<,所以23233102lo 2g 4--<<<, 所以233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:B. 【点睛】本题考查利用函数的性质比较函数值的大小关系,较简单.6.已知函数())3ln 2f x x x =+-,则()()20202020f f +-=( )A .2B .0C .2-D .4-【答案】D 【解析】 【分析】引入函数())3lng x x x =+,它是奇函数,则()2020g +()20200g -=,由此可计算(2020)(2020)f f +-.【详解】设())3lng x x x =+.则()()g x g x -=-,即()g x 为奇函数,所以()2020g +()20200g -=,所以()()()()202020202020202044f f g g +-=+--=-. 故选:D. 【点睛】本题考查函数的奇偶性,掌握奇函数的定义与性质是解题关键.7.已知0x >,0y >,lg 4lg 2lg8x y+=,则142x y+的最小值是( ). A .3 B .94 C .4615D .9【解析】 【分析】由已知结合指数与对数的运算性质可得23x y +=,从而根据()141142232x y x y x y ⎛⎫+=++ ⎪⎝⎭,展开后利用基本不等式可得解. 【详解】0x ,0y >,428x y lg lg lg +=,所以428x y =,即23x y +=,则()14114181255232323y x x y x y x y x y ⎛⎛⎫⎛⎫+=++=++≥+ ⎪ ⎪ ⎝⎭⎝⎭⎝3=, 当且仅当82y x x y =且23x y +=即12x =,2y =时取等号, 则142x y+的最小值是3. 故选:A 【点睛】本题主要考查了指数与对数的运算性质及利用基本不等式求解最值,要注意应用条件的配凑.属于中档题.8.若函数122log (3),1,()6,1m x x f x x x m x ⎧-<⎪=⎨⎪-+⎩的值域为R ,则m 的取值范围为( ) A .(0,8] B .(0,9]2C .9[2,8]D .(-∞,1](0-⋃,9]2【答案】B 【解析】 【分析】讨论0m >和0m 时函数的单调区间,得到0m 时不成立,0m >时需满足f (3)129(31)m mlog m =--=-,解出即可.【详解】①若0m >时,则当1x <时,12()(3)mf x log x =-单调递增,当1x 时,22()6(3)9f x x x m x m =-+=-+-在(3,)+∞上单调递增,在[1,3)上单调递减, 若函数值域为R 则需12(31)(3)9mlo f m g m --==-,解得902m <;②若0m 时,则当1x <时,12()(3)mf x log x =-单调递减,当1x 时,22()6(3)9f x x x m x m =-+=-+-在(3,)+∞上单调递增,在[1,3)上单调递减,不满足函数值域为R ,不符合题意,舍去, 综上:m 的取值范围为(0,9]2, 故选:B 【点睛】本题主要考查分段函数的值域,考查分类讨论思想、函数思想,属于中档题.二、多选题9.下列关于幂函数y x α=的性质,描述正确的有( )A .当1α=-时函数在其定义域上是减函数B .当0α=时函数图象是一条直线C .当2α=时函数是偶函数D .当3α=时函数有一个零点0【答案】CD 【解析】 【分析】根据幂函数的性质对选项逐一分析,由此确定正确选项. 【详解】 对于A 选项,1y x=,在(),0-∞和()0,∞+上递减,不能说在定义域上递减,故A 选项错误. 对于B 选项,0y x =,0x ≠,图象是:直线1y =并且除掉点()0,1,故B 选项错误. 对于C 选项,2yx ,定义域为R ,是偶函数,所以C 选项正确.对于D 选项,3y x =,只有一个零点0,所以D 选项正确.故选:CD 【点睛】本小题主要考查幂函数的图象与性质,属于基础题. 10.下列四个函数中过相同定点的函数有( ) A .2y ax a =+- B .21a y x -=+C .()310,1x y aa a -=+>≠D .()()log 210,1a y x a a =-+>≠【答案】AB 【解析】 【分析】分别求出各个函数的定点,即可判断. 【详解】对于2y ax a =+-,当1x =时,2y =,则2y ax a =+-过定点()1,2;对于21a y x -=+,当1x =时,2y =,则21a y x -=+过定点()1,2;对于()310,1x y aa a -=+>≠,当3x =时,2y =,则()310,1x y a a a -=+>≠过定点()3,2;对于()()log 210,1a y x a a =-+>≠,当1x =时,1y =,则()()log 210,1a y x a a =-+>≠过定点()1,1,故A ,B 中的函数过相同的定点. 故选:AB. 【点睛】本题考查函数定点的判断,属于基础题. 11.在同一坐标系中,函数()0ay xa =≠和1y ax a=-的图像不可能是( ) A . B .C .D .【答案】ABD 【解析】 【分析】 已知函数()0ay xa =≠和1y ax a=-,对于选项A 和D ,通过幂函数过第一象限且是减函数对一次函数的图像与其是否相符进行判断,对于选项B ,通过幂函数是增函数确定a 的正负性,进而对其进行判断,对于选项C ,根据幂函数是偶函数且过一、二象限对其进行判断,进而得出最终答案. 【详解】对于选项A 和D ,由于幂函数的图像过第一象限,且是减函数,0a <,与一次函数是增函数和一次函数在y 轴上的截距为负矛盾,故错误;对于选项B ,由于幂函数的图像过第一、三象限,且是增函数,1a >,与一次函数的图像不相符,故错误; 对于选项C ,由于幂函数图像过第二象限,且是偶函数,0a >,与-次函数的图像相符,故正确. 故选:ABD . 【点睛】这是一道考查函数图像的题目,解题的突破口是对幂函数图像的性质进行应用,考查学生对幂函数的理解,是中档题.12.下列选项中说法正确的是( )A .函数()()22log 2f x x x =-的单调减区间为(),1-∞B .幂函数()f x mx α=过点12⎛⎝⎭,则32m α+= C .函数()y f x =的定义域为[]1,2,则函数()2xy f =的定义域为[]2,4D .若函数()()2lg 54f x ax x =++的值域为R ,则实数a 的取值范围是250,16⎡⎤⎢⎥⎣⎦【答案】BD 【解析】 【分析】对于A 选项:由对数函数的定义域和复合函数的单调可判断;对于B 选项:由幂函数的定义和函数过的点可判断;对于 C 选项:由复合函数的定义域可判断;对于 D 选项:由对数函数的值域可判断. 【详解】对于A 选项:由22>0x x -得>2x 或0x <,所以()()22log 2f x x x =-中函数的定义域为()()02-∞+∞,,,又函数22t x x =-在(),1-∞上单调递减,函数2log y t =在()0,∞+上单调递增,所以函数()()22log 2f x x x =-的单调减区间为(),0-∞,故A 不正确;对于B 选项:因为幂函数()f x mx α=过点1,22⎛ ⎝⎭,所以212m α⎛⎫= ⎪⎝⎭,且1m =,解得12α=,所以32m α+=,故B 正确; 对于 C 选项:因为函数()y f x =的定义域为[]1,2,所以122x ≤≤,解得01x ≤≤,所以函数()2xy f =的定义域为[]0,1,故C 不正确;对于 D 选项:因为函数()()2lg 54f x ax x =++的值域为R ,所以当0a =时,()()lg 54f x x =+,满足其值域为R , 当0a ≠时,需>0a 且25160a ∆=-≥,解得25016a <≤, 所以实数a 的取值范围是250,16⎡⎤⎢⎥⎣⎦,故D 正确,故选:BD. 【点睛】本题考查函数的定义域,复合函数的单调性,对数函数的值域和幂函数的定义,属于中档题.三、填空题13.设102a =,lg3b =,则5log 12=________.【答案】21a ba【解析】 【分析】首先变指数式为对数式求得a ,把2log 6运用乘积的对数等于对数的和展开后,再运用换底公式转化成含有2lg 和3lg 的式子,代入a 和b 后可的结果. 【详解】解:由102a =,得:2a lg =,又因为3b lg =,所以()25lg 32lg12lg32lg 22log 1210lg5lg10lg 21lg 2b aa ⨯++====--⎛⎫⎪⎝⎭. 故答案为:21b aa+-. 【点睛】本题主要考查对数值的求法,以及对数的运算,考查了对数的换底公式,关键是从102a =,求得a 的值,属于基础题.14.已知函数41,(,1)()2log ,(1,)xx f x x x ⎧⎛⎫∈-∞⎪ ⎪=⎨⎝⎭⎪∈+∞⎩,则()1f x >的解集为________.【答案】()(),04,-∞+∞【解析】 【分析】根据分段函数解析式,分类讨论分别计算,再取并集即可; 【详解】解:当1x <时,1()2xf x ⎛⎫= ⎪⎝⎭,因为()1f x >,所以1121xx ⎧⎛⎫>⎪ ⎪⎨⎝⎭⎪<⎩解得0x <,当1x >时,4()log f x x =时,因为()1f x >,所以4log 11x x >⎧⎨>⎩,解得4x >综上可得不等式的解集为()(),04,-∞+∞故答案为:()(),04,-∞+∞【点睛】本题考查分段函数的性质的应用,分段函数不等式的解法,考查分类讨论思想,属于中档题.15.已知点(2,9)在函数()xf x a =(0a >且1a ≠)图象上,对于函数()y f x =定义域中的任意1x ,()212x x x ≠,有如下结论:①()()()1212f x x f x f x +=⋅; ②()()()1212f x x f x f x ⋅=+; ③()()12120f x f x x x -<-;④()()121222f x f x x x f ++⎛⎫<⎪⎝⎭. 上述结论中正确结论的序号是___________. 【答案】①④ 【解析】 【分析】先求出a ,根据指数运算与指数函数性质依次讨论即可逐项排除得到答案. 【详解】点(2,9)在函数()xf x a =(0a >且1a ≠)图象上,即29a =,3a ∴=,()3x f x =, ∵对于函数()3xf x =定义域中的任意的()1212,x x x x ≠,有()()()12121212333x x x x f x x f x f x ++==⋅=∴结论(1)正确;又()12123x xf x x =,()()121233xxf x f x +=+,()()()1212f x x f x f x ∴≠+,∴结论(2)错误;又()3xf x =是定义域R 上的增函数,∴对任意的12,x x ,不妨设12x x <,则()()12f x f x <,120x x ∴-<,()()120f x f x -<,()()12120f x f x x x -∴->,∴结论(3)错误;又1212232x xx x f ++⎛⎫= ⎪⎝⎭,()()12123322x x f x f x ++= ()()12211212121222122213312()(33)22332x x x x x x x x x x f x f x x x f --+++∴=+=++⎛⎫⎪⎝⎭,12x x ≠122122332x x x x --∴+>,()()1212212f x f x x x f +∴>+⎛⎫ ⎪⎝⎭∴结论(4)正确; 故答案为:(1),(4). 【点晴】本题考查命题真假判断,实质上是考查函数的性质.对于这种给出具体函数式的问题,只要把函数式代入一一验证即可,解决此类问题不能限入误区,认为这类问题都是有难度,没处下手,事实上最简单的方法反而是最好的方法.16.已知2()24,()xf x x xg x a =-+=(0 a >且1a ≠),若对任意的1[1,2]x ∈,都存在2[1,2]x ∈-,使得12()()f x g x <成立,则实数a 的取值范围是______________ 【答案】1(0,)(2,)4+∞【解析】 【分析】由题意,只要()g x 在[1,2]-上的最大值大于()f x 在[1,2]上的最大值即可,再分01a << 和1a >两种情况讨论可得答案. 【详解】因为()221()24+3f x x x x -=-+=,1[1,2]x ∈,所以()()211()242f f x x x f ≤=-+≤,所以13()4f x ≤≤,要使对任意的1[1,2]x ∈,都存在2[1,2]x ∈-,使得12()()f x g x <成立, 则需()g x 在[1,2]-上的最大值大于()f x 在[1,2]上的最大值,即max ()>4g x ,当01a <<,()xg x a =在[1,2]-上单调递减,所以max 1()(1)>4g x g a=-=,解得104a <<,当>1a ,()xg x a =在[1,2]-上单调递增,所以2max ()(2)>4g x g a ==,解得>2a ,所以实数a 的取值范围是1(0,)(2,)4+∞,故答案为:1(0,)(2,)4+∞.【点睛】本题考查任意和存在的问题,注意辨别函数的最值之间的大小关系,属于中档题.四、解答题17.求下列各式的值.(1)()100.2531.8201927-⨯---(2)7log 5229814log log 7log 43-++ 【答案】(1)2-;(2)294. 【解析】 【分析】(1)利用指数幂的运算性质即可求出; (2)运用对数的运算性质即可得出. 【详解】 (1) (2)原式22214log 3log 81log 454221294log 34log 32544. 【点睛】本题考查了指数幂与对数的运算性质,考查了计算能力,属于基础题. 18.已知命题p :指数函数()()26xf x a =-在R 上是单调减函数;命题q :关于x 的方程223210x ax a -++=有实根,(1)若p 为真,求a 的范围 (2)若q 为真,求a 的范围(3)若p 或q 为真,p 且q 为假,求实数a 的范围. 【答案】(1)732a <<;(2)2a ≤-或2a ≥;(3)2a ≤-或72a ≥ 【解析】 【分析】(1)根据指数函数的单调性,即可求出命题p 为真时a 的取值范围;(2)利用判别式,求出命题q 为真时a 的取值范围;(3)根据题意知,p 、q 一真一假,求出p 真q 假和p 假q 真时a 的取值范围,再取并集. 【详解】解:(1)命题p :指数函数()()26xf x a =-在R 上是单调减函数;若p 为真,则0261a <-<,解得732a <<, ∴a 的取值范围是:732a <<; (2)命题q :关于x 的方程223210x ax a -++=有实根, 若q 为真,则()2294210aa ∆=-+≥,解得:2a ≤-或2a ≥,∴a 的取值范围是2a ≤-或2a ≥;(3)若p 或q 为真,p 且q 为假,则p 、q 一真一假;当p 真q 假时,73222a a ⎧<<⎪⎨⎪-<<⎩,解得:a ∈∅;当p 假q 真时,73222a a a a ⎧≤≥⎪⎨⎪≤-≥⎩或或,解得:2a ≤-或72a ≥;综上,实数a 的取值范围是:2a ≤-或72a ≥. 【点睛】本题考查了复合命题的真假性判断与应用问题,还考查了指数函数的单调性以及一元二次方程的根的判别式,是中档题.19.已知幂函数()()22421m m f x m x -+=-在()0,∞+上单调递增.(1)求m 的值;(2)当[]1,2x ∈时,记()f x 的值域为集合A ,若集合[]2,4B k k =--,且=A B ∅,求实数k 的取值范围.【答案】(1)0m =;(2)3k >或2k <-. 【解析】 【分析】(1)由幂函数的定义可得;(2)求出()f x 的值域,再由集合交为空集的含义可得k . 【详解】(1)∵()f x 为幂函数,∴()211m -=,∴0m =或2.当0m =时,()2f x x =在()0,∞+上单调递增,满足题意.当2m =时,()2f x x -=在()0,∞+上单调递减,不满足题意,舍去.∴0m =.(2)由(1)知,()2f x x =.∵()f x 在[]1,2上单调递增,∴[]1,4A =由于此题中B ≠∅,要满足=A B ∅,只需4124k k -<->或,32k k ><-或.【点睛】此题考查幂函数概念、空集概念、集合交运算,属于基础题.20.已知函数()()2101x x f x m m -=>+,且()325f =. (1)求m 的值,并指出函数()y f x =在R 上的单调性(只需写出结论即可); (2)证明:函数()f x 是奇函数; (3)若()()2230f mf m +-<,求实数m 的取值范围.【答案】(1)2,()f x 在R 上为增函数;(2)证明见解析;(3)(3-,1).【解析】 【分析】 (1)由()325f =,代入解析式,解方程求出m 的值,利用指数函数的单调性即可求解. (2)利用函数的奇偶性定义即可判断. (3)利用函数为奇函数,将不等式转化为()()232f m f m <-,再利用函数为增函数可得232mm <-,解不等式即可求解. 【详解】(1)因为()325f =,所以2221315m -=+,即24m =,因为0m >,所以2m =.函数()21212121x x xf x -==-++在R 上为增函数. (2)由(1)知()2121x x f x -=+定义域为(),-∞+∞.对任意(),x ∈-∞+∞,都有()()211221211221x x x x xx f x f x --------====-+++. 所以函数()f x 是奇函数, (3)不等式()()2230f mf m +-<等价于()()223f m f m <--,因为函数()f x 是奇函数, 所以()()232f mf m <-,又因为函数()f x 在R 上为增函数, 所以232m m <-,即2230m m +-<. 解得31m -<<.所以实数m 的取值范围为(3-,1). 【点睛】本题考查了利用定义判断函数的奇偶性、利用函数的单调性解不等式,考查了基本运算求解能力,属于基础题.21.已知函数()21log 1axf x x +=-(a 为常数)是奇函数. (1)求a 的值与函数()f x 的定义域.(2)若当()1,x ∈+∞时,()()2log 1f x x m +->恒成立.求实数m 的取值范围. 【答案】(1)1a =,定义域为{1x x <-或}1x >;(2)(],1-∞. 【解析】 【分析】(1)根据函数是奇函数,得到()()f x f x -=-,求出1a =,再解不等式101xx +>-,即可求出定义域; (2)先由题意,根据对数函数的性质,求出()()2log 1f x x +-的最小值,即可得出结果. 【详解】(1)因为函数()21log 1axf x x +=-是奇函数, 所以()()f x f x -=-,所以2211log log 11ax axx x -+=----, 即2211log log 11ax x x ax--=++, 所以1a =,令101xx +>-,解得1x <-或1x >, 所以函数的定义域为{1x x <-或}1x >; (2)()()()22log 1log 1f x x x +-=+,当1x >时,所以12x +>,所以()22log 1log 21x +>=. 因为()1,x ∈+∞,()()2log 1f x x m +->恒成立, 所以1m ,所以m 的取值范围是(],1-∞. 【点睛】本题主要考查由函数奇偶性求参数,考查求具体函数的定义域,考查含对数不等式,属于常考题型.22.已知2()x f e ax x =-,a R ∈.⑴求()f x 的解析式;⑵求(0,1]x ∈时,()f x 的值域;⑶设0a >,若()[()1]log x h x f x a e =+-⋅对任意的3112,[,]x x e e --∈,总有121()()3h x h x a -≤+恒成立,求实数a 的取值范围.【答案】(1)2()(ln )ln (0)f x a x x x =->(2)1(,]4a -∞-(3)13115a ≤≤ 【解析】试题分析:(1)由题已知2()x f e ax x =-,求()f x ,可利用换元法,即:x e t =,ln 0x t =>,将条件中的x ,换为t 得:2()(ln )ln f t a t t =-,求出()f x(2)由(1)得2()(ln )ln (0)f x a x x x =->,可继续换元,ln (0)x m m =≤ 得:2()()f x g m am m ==-,需对a 进行分类讨论,而化为熟悉的二次函数的值域问题解决.(3)由121()()3h x h x a -≤+恒成立,可转化为()h x 在31[,]e e --满足max min 1()()3h x h x a -≤+,则需对()h x 的单调性进行分析,由(1)()ln 1ln a h x a x x-=-+,采用换元法ln ([3,1])x s s =∈--,得:1()()1ah x r s as s-==+-,由0a >,借助函数的单调性,对a 进行分类讨论,分别得出a 的取值范围,取各种情况的并集,得出结果.试题解析:⑴设x e t =,则ln 0x t =>,所以2()(ln )ln f t a t t =-,所以2()(ln )ln (0)f x a x x x =->;⑵设ln (0)x m m =≤,则2()()f x g m am m ==- 当0a =时,()()f x g m m ==-,()g m 的值域为[0,)+∞ 当0a ≠时,2211()()()(0)24f x g m am m a m m a a==-=--≤ 若0a >,102a>,()g m 的值域为[0,)+∞ 若0a <,102a <,()g m 在1(,]2a -∞上单调递增,在1[,0]2a上单调递减, ()g m 的值域为1(,]4a-∞-综上,当0a ≥时()f x 的值域为[0,)+∞,当0a <时()f x 的值域为1(,]4a-∞-; ⑶因为(1)()ln 1ln a h x a x x -=-+对任意3112,[,]x x e e --∈总有121()()3h x h x a -≤+所以()h x 在31[,]e e --满足max min 1()()3h x h x a -≤+设ln ([3,1])x s s =∈--,则1()()1ah x r s as s-==+-,[3,1]s ∈-- 当10a -<即1a >时()r s 在区间[3,1]--单调递增 所以1(1)(3)3r r a ---≤+,即8412()333a a ----≤+,所以35a ≤(舍) 当1a =时,()1r s s =-,不符合题意当01a <<时, 1≤即112a ≤<时,()r s 在区间[3,1]--单调递增所以1(1)(3)3r r a ---≤+,则1325a ≤≤若13<<即11102a <<时()r s 在[3,-递增,在[1]-递减所以,得11102a <<3≥即1010a <≤时()r s 在区间[3,1]--单调递减所以1(3)(1)3r r a ---≤+,即8412333a a --+≤+,得111110a ≤<综上所述:13115a ≤≤. 考点:1.换元法求函数解析式; 2.换元法与二次函数的值域问题及分类思想. 3.恒成立中的函数思想及分类思想.。

基本初等函数经典复习题+答案

基本初等函数经典复习题+答案

必修1根本初等函数复习题求函数的定义域时列不等式组的主要依据是:⑴偶次方根的被开方数不小于零;(2)对数式的真数必须大于零;⑶分式的分母不等于零;[4〕指数、对数式的底必须大于零且不等于1.4、函数单调区间与单调性的判定方法(八)定义法:①任取xι,X 2∈D,且XKX2;Q)作差千(xι)—fa);(3)变形〔通常是因式分解和配方];④定号[即判断差千(x∣)-f(x2)的正负〕;@下结论[指出函数f(x)在给定的区间D 上的单调性].(B)图象法(从图象上看升降)⑹复合函数的单调性:复合函数Hg"]的单调性与构成它的函数u=g(x),y 二人。

的单调性密切相关,其规律:"同增异减〃 1、以下函数中,在区间(0,÷oo)不是增函数的是()1、暴的运算性质 〔1〕a r ∙a s = a r+s (r,5 ∈ R); 〔3〕a r ∙b r = (ab)r (r ∈ R) 2对数的运算性质 如果 α>0,且 awl, M >0, ① Iog“(M ・N)= Iogq M +log” N ; ③ IOg“M" =〃Iog"M,(Y ∈R). 换底公式:log” b = l°g 。

■ 〔 a IogC α(1)log b n= —log rt ⅛ ; [2 〃7 〔2〕S)' =α" ; (r,StR)(4)a" =yja n, (a>0,m,n E N ∖n> 1) a' = N Q IOga N = x N>0,那么:② log 噂=log” M Tog” N ;④ IOgQl= O, bg" = lO,且 awl ; c>0,且 CW1; b>0〕 log” b =; ---- ∙log/y = a x a>1 0<a<1 y = Iog tj X a>1 II0<a<1定义域R 值域y>0 在R 上单调递增 非奇非偶函数 函数图象都过定点[0, 1〕 3、定义域: 定义域R 值域y>0 在R 上单调递减 非奇非偶函数 函数图象都过定点〔〕 定义域x>0 值域为R在R 上递增 非奇非偶函数 函数图象都过定点定义域x>0值域为R 在R 上递减 非奇非偶函数 函数图象都过定点[1, 能使函数式有意义的实数X 的集合称为函数的定义域。

《函数与基本初等函数》复习试卷及答案解析

《函数与基本初等函数》复习试卷及答案解析

2021年新高考数学总复习第二章《函数与基本初等函数》复习试卷及答案解析一、选择题1.下列函数中,既是偶函数又存在零点的是( )A .y =cos xB .y =sin xC .y =ln xD .y =x 2+1答案 A解析 y =cos x 是偶函数且有无数多个零点,y =sin x 为奇函数,y =ln x 既不是奇函数也不是偶函数,y =x 2+1是偶函数但没有零点.故选A.2.方程log 3x +2x =6的解所在区间是( )A .(1,2)B .(3,4)C .(2,3)D .(5,6)答案 C解析 令f (x )=log 3x +2x -6,则函数f (x )在(0,+∞)上单调递增,且函数在(0,+∞)上连续,因为f (2)<0,f (3)>0,故有f (2)·f (3)<0,所以函数f (x )=log 3x +2x -6的零点所在的区间为(2,3),即方程log 3x +2x =6的解所在区间是(2,3).故选C.3.(2020·模拟)函数f ()x =2x -1x零点的个数为( ) A .0 B .1 C .2 D .3答案 B解析 在同一平面直角坐标系下,作出函数y =2x 和y =1x 的图象,如图所示.函数f (x )=2x -1x 的零点个数等价于方程2x =1x 的根的个数,等价于函数y =2x 和y =1x的交点个数.由图可知,有一个交点,所以有一个零点.故选B.4.若函数f (x )=x 2+mx +1有两个不同零点,则实数m 的取值范围是( )A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)答案 C 解析 依题意,知Δ=m 2-4>0,∴m >2或m <-2.5.若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点有( )A .多于4个B .4个C .3个D .2个答案 B解析 因为偶函数f (x )满足f (x +2)=f (x ),故函数的周期为2.当x ∈[0,1]时,f (x )=x ,故当x ∈[-1,0]时,f (x )=-x .函数y =f (x )-log 3|x |的零点的个数等于函数y =f (x )的图象与函数y =log 3|x |的图象的交点个数.在同一个坐标系中画出函数y =f (x )的图象与函数y =log 3|x |的图象,如图所示.显然函数y =f (x )的图象与函数y =log 3|x |的图象有4个交点,故选B.6.函数f (x )=⎩⎪⎨⎪⎧ln x -x 2+2x ,x >0,2x +1,x ≤0的零点个数为( ) A .0 B .1 C .2 D .3答案 D解析 对于求函数f (x )=ln x -x 2+2x 的零点个数,可以转化为方程ln x =x 2-2x 的根的个数问题,分别画出y =ln x ,y =x 2-2x 的图象如图.由图象可得两个函数有两个交点.又方程2x +1=0的根为x =-12<0,个数是1. 故函数f (x )=⎩⎪⎨⎪⎧ln x -x 2+2x ,x >0,2x +1,x ≤0的零点个数为3. 故选D.。

基本初等函数含答案,附上学生版

基本初等函数含答案,附上学生版

基本初等函数1.若函数y =f (x )的定义域是[0, 2 018],则函数g (x )=f (x +1)x -1的定义域是________. 解析:要使函数f (x +1)有意义,则0≤x +1≤2 018,解得-1≤x ≤2 017,故函数f (x +1)的定义域为[-1,2 017],所以函数g (x )有意义的条件是⎩⎪⎨⎪⎧-1≤x ≤2 017x -1≠0,解得-1≤x <1或1<x ≤2 017.故函数g (x )的定义域为[-1,1)∪(1,2 017]. 2解析:∵ƒ(x )=log 2(x 2+a )且ƒ(3)=1,∴1=log 2(9+a ),∴9+a =2,∴a =-7. 答案:-73.若幂函数y =(m 2-3m +3)·x (m-2)(m +1)的图象不经过原点,则实数m 的值为________.解析:由⎩⎪⎨⎪⎧m 2-3m +3=1,(m -2)(m +1)≤0,解得m =1或2,经检验m =1或2都适合.答案:1或24.下列函数在其定义域上既是增函数又是奇函数的是________. A .f (x )=sin xB .f (x )=x 3+1C .f (x )=log 2(x 2+1+x )D .f (x )=1-2x1+2x解析:依题意,对于选项A ,注意到f (0)=f (π),因此函数f (x )=sin x 在其定义域上不是增函数;对于选项B ,注意到f (x )的定义域为R ,但f (0)=1≠0,因此函数f (x )=x 3+1不是奇函数;对于选项C ,注意到f (x )的定义域是R ,且f (-x )=log 2(x 2+1-x )=log 21x 2+1+x=-log 2(x 2+1+x )=-f (x ),因此f (x )是奇函数,且f (x )在R 上是增函数;对于选项D ,注意到f (x )=1-2x 1+2x =-1+21+2x 在R 上是减函数.故选C. 5.函数f (x )=|log 2 x |+x -2的零点个数为_______.解析:函数f (x )=|log 2 x |+x -2的零点个数,就是方程|log 2 x |+x -2=0的根的个数.令h (x )=|log 2 x |,g (x )=2-x ,画出两函数的图象,如图.由图象得h (x )与g (x )有2个交点,∴方程|log 2 x |+x -2=0的解的个数为2.6.已知a =log 372,b =⎝⎛⎭⎫1413,c =log 1315,则a ,b ,c 的大小关系为 .A .a >b >cB .b >a >cC .c >b >aD .c >a >b解析:∵ c =log 1315=log 35,a =log 372,又y =log3x 在(0,+∞)上是增函数, ∴ log35>log372>log33=1,∴ c >a >1.∵ y =14x 在(-∞,+∞)上是减函数,∴ 1413<140=1,即b <1.∴ c >a >b . 故选D.7.已知定义在R 上的偶函数f (x )满足对任意的0<x 1<x 2,f (x 2)-f (x 1)x 2-x 1>0均成立,若a =f (334),b=f (943-),c =f (-543),则a ,b ,c 的大小关系为( )A .b <a <cB .a <b <cC .c <b <aD .b <c <a解析:因为偶函数f (x )满足对任意的0<x 1<x 2,f (x 2)-f (x 1)x 2-x 1>0均成立,所以f (x )在(0,+∞)上是增函数.因为幂函数y =x 43在(0,+∞)上是增函数,指数函数y =3x 在(0,+∞)上是增函数,所以343<543,943-=383-<334<343,故c =f (-543)=f (543)>a =f (334)>b =f (943-),故b <a <c ,故选A.8.已知f (x )是R 上的奇函数,且f (x )=则f = .[解析] f=-f =-f =-f =-log 2=-log 22-1=1.9.若函数y =⎝⎛⎭⎫12|1-x |+m 的图象与x 轴有公共点,则实数m 的取值范围是________. 解析:∵|1-x |≥0,∴0<⎝⎛⎭⎫12|1-x |≤1,由题意得0<-m ≤1,即-1≤m <0. 答案:[-1,0)10.已知函数f (x )在定义域(0,+∞)上是单调函数,若对于任意x ∈(0,+∞),都有f =2,则f的值是 . 因为函数f (x )在定义域(0,+∞)上是单调函数,且f=2恒成立,所以f (x )-为一个大于0的常数,令这个常数为n (n>0),则有f (x )-=n ,且f (n )=2,所以f (n )=+n=2,解得n=1,所以f (x )=1+,11.设m ∈N ,若函数f (x )=2x -m 10-x +10存在整数零点,则符合条件的m 的个数为 .解析:由f (x )=0得m =2x +1010-x .又m ∈N ,因此有⎩⎪⎨⎪⎧10-x >0,2x +10≥0,解得-5≤x <10,x ∈Z ,∴x=-5,-4,-3,…,1,2,3,…,8,9,将它们分别代入m =2x +1010-x,一一验证得,符合条件的m 的取值为0,4,11,28,共4个.12.已知函数f (x )=⎩⎪⎨⎪⎧|x +2|,-3≤x <0,log a x ,x >0,其中a >0且a ≠1,若函数f (x )的图象上有且仅有一对点关于y 轴对称,则实数a 的取值范围是 . 解析:∵函数f (x )的图象上有且仅有一对点关于y 轴对称,∴f (x )=|x +2|(-3≤x <0)的图象关于y 轴对称的图象与f (x )=log a x (x >0)的图象有且只有一个交点.记f (x )=|x +2|(-3≤x <0)的图象关于y 轴对称的图象对应的函数为g (x ),则g (x )=|x -2|(0<x ≤3),作出函数f (x )与g (x )的大致图象.当0<a <1时,如图(1),显然g (x )的图象与f (x )(x >0)的图象有且只有一个交点,符合题意;当a >1时,如图(2),要使g (x )的图象与f (x )(x >0)的图象有且只有一个交点,则需log a 3>1,∴ 1<a <3.综上a ∈(0,1)∪(1,3).13.已知函数f (x )=⎩⎪⎨⎪⎧|log 3x |,0<x <3,13x 2-103x +8,x ≥3,若存在实数a 、b 、c 、d ,满足f (a )=f (b )=f (c )=f (d ),其中d >c >b >a >0,则abcd 的取值范围是 .解析:画出f (x )的图象,如图.由图象知0<a <1,1<b <3,则f (a )=|log 3a |=-log 3a ,f (b )=|log 3b |=log 3b ,∵f (a )=f (b ),∴-log 3a =log 3b ,∴ab =1.又由图象知,3<c <4,d >6,点(c ,f (c ))和点(d ,f (d ))均在二次函数y =13x 2-103x +8的图象上,故有c +d 2=5,∴d =10-c ,∴abcd =c (10-c )=-c 2+10c =-(c -5)2+25,∵3<c <4,∴21<-(c -5)2+25<24,即21<abcd <24.14.已知f (x )=2|x |+x 2+a 有唯一的零点,则实数a 的值为________.解析:设函数g (x )=2|x |+x 2,因为g (-x )=g (x ),所以函数g (x )为偶函数,当x ≥0时,g (x )=2x +x 2,为增函数;当x <0时,g (x )=⎝⎛⎭⎫12x +x 2,为减函数,所以g (x )≥g (0)=1.因为f (x )=2|x |+x 2+a 有唯一的零点,所以y =g (x )与y =-a 有唯一的交点,即a =-1. 答案:-115.已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm=________.解析:∵f (x )=|log 3x |,正实数m ,n 满足m <n ,且f (m )=f (n ),∴-log 3m =log 3n ,∴mn =1.∵f (x )在区间[m 2,n ]上的最大值为2,函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数,∴-log 3m 2=2或log 3n =2.若-log 3m 2=2,得m =13,则n =3,此时log 3n =1,满足题意.那么n m =3÷13=9.同理:若log 3n =2,得n =9,则m =19,此时-log 3m 2=4,不满足题意.综上,可得nm=9.答案:916.函数f (x )的定义域为D ,若满足f (x )在D 内是单调函数,且存在[a ,b ]⊆D ,使得f (x )在[a ,b ]上的值域为,则称函数f (x )为“成功函数”.若函数f (x )=log m (m x +2t )(其中m>0且m ≠1)是“成功函数”,则实数t 的取值范围为 .[解析] 无论m>1还是0<m<1,f(x)=log m(m x+2t)都是R上的增函数,故应有则问题可转化为已知f(x)=,即log m(m x+2t)=,即m x+2t=在R上有两个不相等的实数根,求实数t的取值范围.令λ=(λ>0),则m x+2t=可化为2t=λ-λ2=-+,结合图像(图略)可得t∈.。

基本初等函数经典复习题答案

基本初等函数经典复习题答案

())1,,,0(.4*>∈>=n N n m a a a n m n mxN N a a x =⇔=log 必修1基本初等函数 复习题1、幂的运算性质(1)s r s r a a a +=⋅),(R s r ∈; (2)rs s r a a =)(;),(R s r ∈ (3)()r r r ab b a =⋅)(R r ∈ 2、对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么: ○1()N M N M a a a log log log +=⋅; ○2 N M NM a a a log log log -=; ○3()R n M n M a n a ∈=,log log . ④1log ,01log ==a a a换底公式:abb c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ) (1)b mnb a n a m log log =;(2)a b b a log 1log =.求函数的定义域时列不等式组的主要依据是:(1)偶次方根的被开方数不小于零; (2)对数式的真数必须大于零; (3)分式的分母不等于零;(4)指数、对数式的底必须大于零且不等于1. 4、函数单调区间与单调性的判定方法(A) 定义法:○1 任取x 1,x 2∈D ,且x 1<x 2;○2 作差f(x 1)-f(x 2); ○3 变形(通常是因式分解和配方);○4 定号(即判断差f(x 1)-f(x 2)的正负); ○5 下结论(指出函数f(x)在给定的区间D 上的单调性). (B)图象法(从图象上看升降)(C)复合函数的单调性:复合函数f [g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”1、 下列函数中,在区间()0,+∞不是增函数的是( ) A.x y 2= B. x y lg = C. 3x y = D. 1y x= 2、函数y =log 2x +3(x≥1)的值域是( )A.[)+∞,2B.(3,+∞)C.[)+∞,3D.(-∞,+∞) 3、若{|2},{|x M y y P y y ====,则M∩P ( ) A.{|1}y y > B. {|1}y y ≥ C. {|0}y y > D. {|0}y y ≥ 4、对数式2log (5)a b a -=-中,实数a 的取值范围是( ) A.a>5,或a<2 B.2<a<5 C.2<a<3,或3<a<5 D.3<a<45、 已知x a x f -=)( )10(≠>a a 且,且)3()2(->-f f ,则a 的取值范围是( )A. 0>aB. 1>aC. 1<aD. 10<<a 6、函数|log |)(21x x f =的单调递增区间是 ( )A 、]21,0( B 、]1,0( C 、(0,+∞) D 、),1[+∞7、图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =,l g d y o x =的图象,,,,a b c d 的关系是( ) A 、0<a<b<1<d<c B 、0<b<a<1<c<d C 、0<d<c<1<a<b D 、0<c<d<1<a<b 8、已知幂函数f(x)过点(2,22),则f(4)的值为 ( )A 、21 B 、 1 C 、2 D 、8 9、6.0log 5.0=a ,5.0log 2=b ,5log3=c ,则( )A.a <b <cB.b <a <cC.a <c <bD.c <a <b 10、已知)2(log ax y a -=在[0,1]上是x 的减函数,则a 的取值范围是1.a 0a ,1)2(212≠>⎪⎭⎫⎝⎛>--且其中x x a a A.(0,1) B.(1,2) C.(0,2) D.[2,+∞] 11、函数)1(log 21-=x y 的定义域为 .12. 设函数()()()()4242xx f x x f x ⎧≥⎪=⎨<+⎪⎩,则()2log 3f =13、计算机的成本不断降低,如果每隔5年计算机的价格降低31,现在价格为8100元的计算机,15年后的价格可降为 14、函数2)23x (lg )x (f +-=恒过定点15、求下列各式中的x 的值1)1x (ln )1(<-16.点(2,1)与(1,2)在函数()2ax bf x +=的图象上,求()f x 的解析式。

基本初等函数历年高考题1答案

基本初等函数历年高考题1答案

基本初等函数历年高考题1答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2基本初等函数11.若函数()y f x =是函数1xy a a a =>≠(0,且)的反函数,且(2)1f =,则()f x =A .x 2logB .x 21C.x 21log D .22-x 2.为了得到函数3lg10x y +=的图像,只需把函数lg y x =的图像上所有点 ( )A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度3.设3.02131)21(,3log ,2log ===c b a ,则( )A a<b<cB a<c<bC b<c<aD b<a<c 4.函数)(21R x y x ∈=+的反函数是A. )0(log 12>+=x x yB. )1)(1(log 2>-=x x yC. )0(log 12>+-=x x yD. )1)(1(log 2->+=x x y 5.设32log ,log log a b c π===A. a b c >>B. a c b >>C. b a c >>D. b c a >>6. 2log 的值为( ) A . B C .12- D . 1237.设函数()y f x =在(,)-∞+∞内有定义,对于给定的正数K ,定义函数(),(),(),().K f x f x K f x K f x K ≤⎧=⎨>⎩取函数()2xf x -=。

当K =12时,函数()K f x 的单调递增区间为 ( ) A .(,0)-∞ B .(0,)+∞ C .(,1)-∞- D .(1,)+∞ 8.下列函数()f x 中,满足“对任意1x ,2x ∈(0,+∞),当1x <2x 时,都有1()f x >2()f x 的是( ) A .()f x =1xB. ()f x =2(1)x - C .()f x =x e D.()ln(1)f x x =+9.已知函数()f x 满足:x ≥4,则()f x =1()2x ;当x <4时()f x =(1)f x +,则2(2log 3)f +=( ) A.124 B.112 C.18 D.3810.函数)(21R x y x ∈=+的反函数是A. )0(log 12>+=x x yB.)1)(1(log 2>-=x x yC.)0(log 12>+-=x x yD.)1)(1(log 2->+=x x y11.设曲线1*()n y x n N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则12n x x x ⋅⋅⋅的值为( ) A.1n B.11n + C. 1nn + D.1 12.已知函数()f x 的反函数为()()10g x x =+2lgx >,则=+)1()1(g f (A )0 (B )1 (C )2 (D )413.若2log a <0,1()2b >1,则( )A .a >1,b >0B .a >1,b <0 C. 0<a <1, b >0 D. 0<a <1, b <014.已知函数22log (2)()24(22a x x f x x x x x +≥⎧⎪==⎨-<⎪-⎩当时在点处当时)连续,则常数a 的值是 ( )4A.2 B.3 C.4 D.515.若函数()f x 的零点与()422x g x x =+-的零点之差的绝对值不超过0.25, 则()f x 可以是 ( )A. ()41f x x =-B. ()2(1)f x x =-C. ()1x f x e =-D. ()12f x In x ⎛⎫=- ⎪⎝⎭二、填空题16.已知集合{}2log 2,(,)A x x B a =≤=-∞,若A B ⊆则实数a 的取值范围是(,)c +∞,其中c = .17.若函数f(x)=a x -x-a(a>0且a ≠1)有两个零点,则实数a 的取值范围是 . 18.记3()log (1)f x x =+的反函数为1()y f x -=,则方程1()8f x -=的解x = .19.函数2()f x =的定义域为 .三、解答题20.已知函数()),0(2R a x xax x f ∈≠+= (1)判断函数()x f 的奇偶性;(2)若()x f 在区间[)+∞,2是增函数,求实数a 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6题xyo 1A xxoo o y y y-1 11 -1B CD 1基本初等函数练习题1.下列函数中,值域是(0,)+∞的是( A )A. xy -=131)( B. 12-=x y C. xy -=215D x y 21-=2.设函数1, 0()1, 0x f x x ->⎧=⎨<⎩,则()()()()2a b a b f a b a b +---≠的值为( D )A.a B .b C.,a b 中较小的数D. ,a b 中较大的数3. 已知f (x )=(m -1)x 2-2mx +3是偶函数,则在(-∞, 3)内此函数(B )A.是增函数B.不是单调函数C.是减函数D.不能确定4. 下列图形表示具有奇偶性的函数可能是( B )5. 已知偶函数f (x )在区间(-∞,0]上为增函数,下列不等式一定成立的是( C )A .f (-3)>f (2)B .f (-π)>f (3)C .f (1)>f (a 2+2a +3) D .f (a 2+2)>f (a 2+1)6. 函数log a y x =,log b y x =,log c y x =,log d y x =的图象如图所示,则a ,b ,c ,d 的大小顺序是( B ).A .1<d <c <a <bB .c <d <1<a <bC .c <d <1<b <aD .d <c <1<a <b7. 当10<<x 时,则下列大小关系正确的是 ( C )A x x x 33log 3<<B x x x 33log 3<<C x x x 3log 33<<D 333log x x x <<8. 据报道,全球变暖 使北冰洋冬季冰盖面积在最近50年内减少了5%,按此规律, 设2009年的冬季冰盖面积为m , 从2009年起, 经过x 年后冬季冰盖面积y 与x 的函数关系是 ( A ) A .y=500.95x m ⋅ B .y=50(10.05)x m -⋅ C .y=500.95x m ⋅⋅ D .y=50(10.05)x m ⋅-⋅9. 设()833-+=x x f x,用二分法求方程()2,10833∈=-+x x x在内近似解的过程中得()()(),025.1,05.1,01<><f f f 则方程的根落在区间 ( B ) A (1,1.25) B (1.25,1.5) C (1.5,2) D 不能确定 10. 对于定义在R 上的函数)(x f ,有如下四个命题:(1)若)2()2(f f =-,则)(x f 为偶函数 (2)若)2()2(f f -≠-,则)(x f 不是奇函数(3)若)2()1(f f <,则)(x f 在R 上是增函数 (4)若)2()1(f f <,则)(x f 在R 上不是减函数. 其中正确命题的个数是( B )A.1 B.2 C.3 D.4 二.填空11.已知函数()x f -1的定义域是[],4,1则函数()x f 的定义域是_____[]0,3-_____ 12. 已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨≥⎩是(,)-∞+∞上的减函数,那么a 的取值范围是11[,)7313. 已知()x f 是定义在[]2,2-上的函数,且对任意实数)(,2121x x x x ≠,恒有()()02121>--x x x f x f ,且()x f 的最大值为1,则满足()1log 2<x f 的解集为 )4,41[14. 函数)10(1)1(log )(≠>+-=a a x x f a 且恒过定点 (2,1)15. 幂函数)(x f y =的图象过点)22,2(,则)(x f 的解析式是:)(x f = 21-x 三.解答与计算 16. 计算 1255532log 2log log 344e e +++⨯21log32-⨯17.已知定义域为R 的函数12()22x x b f x +-+=+是奇函数.(1)求b 的值;(2)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.解:(1)因为()f x 是奇函数,所以(0)f =0,即111201,().2222xx b b f x +--=⇒=∴=++ (2)由(1)知11211(),22221x x xf x +-==-+++设12x x <,则 211212121122()()2121(21)(21)x x x x x x f x f x --=-=++++,因为函数y=2x 在R 上是增函数且12x x <, ∴2122x x->0,又12(21)(21)xx++>0,∴12()()f x f x ->0即12()()f x f x >. ∴()f x 在(,)-∞+∞上为减函数.因()f x 是奇函数,不等式22(2)(2)0f t t f t k -+-<等价于222(2)(2)(2)f t t f t k f k t -<--=-, 又因()f x 为减函数,∴2222t t k t ->-.即对一切t R ∈有:2320t t k -->, 从而判别式14120.3k k ∆=+<⇒<-18. 某商品在近30天内每件的销售价格p (元)与时间t (天)的函数关系是20,025,,100,2530,.t t t N p t t t N +<<∈⎧=⎨-+≤≤∈⎩该商品的日销售量Q (件)与时间t (天)的函数关系是40+-=t Q ),300(N t t ∈≤<,求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?解:设日销售金额为y (元),则Q p y ⋅=,则2220800,(025,),1404000,(2530,),t t t t N y t t t t N ⎧⎪⎨⎪⎩-++<<∈=-+≤≤∈22(10)900,(025,),(70)900,(2530,),t t t N t t t N ⎧⎪⎨⎪⎩--+<<∈=--≤≤∈--------8分 当N t t ∈<<,250,t =10时,900max =y (元); 当N t t ∈≤≤,3025,t=25时,1125max =y (元).由1125>900,知y max =1125(元),且第25天,日销售额最大-----12分19.已知函数1()lg1xf x x+=-. (1)判断并证明()f x 的奇偶性; (2)求证:()()()1a bf a f b f ab++=+;(3)已知a ,b ∈(-1,1),且()11a b f ab +=+,()21a bf ab-=-,求()f a ,()f b 的值. 2分5分(2)ab b a ab b a abb a ab ba ab b a f +--+++=++-+++=++11lg 1111lg )1(,∴)1()()(ab b a f b f a f ++=+ 10分(3) ∵)1()()(ab b a f b f a f ++=+∴f(a)+f(b)=1 ()()()1a bf a f b f ab-+-=-,∴()()2f a f b +-=∵()()f b f b -=-,∴()()2f a f b -=,解得:31(),()22f a f b ==-. 16分20.已知函数).2lg()(2a ax x x f +-=(1) 若)(x f 的定义域为R ,求实数a 的取值范围;(2) 若)(x f 的值域为R ,求实数a 的取值范围,并求)(x f 定义域.解:(1) 要使022>+-a ax x 恒成立,只要0442<-=a a ∆,---------------2分 得10<<a .-------------------------------------------------------4分(2) 要使函数的值域是R ,只要0442≥-=a a ∆,得0≤a 或1≥a .------8分 这时由022>+-a ax x 得 a a a x --<2或a a a x -+>2,-------10分所以这时)(x f 定义域是),(),(22∞+-+---∞a a a a a a .-------12分21. 已知定义在()-1,1上的函数()f x 满足: 对任意的(),1,1x y ∈-,都有()()()1x y f x f y f xy++=+ ⑴ 求(0)f 的值;⑵ 求证:函数()f x 是奇函数;⑶ 若当()1,0x ∈-时,有()0f x >,求证:()f x 在()-1,1上是减函数; 解:(1)(0)0f =(2)任取()01,1x ∈-,则()01,1x -∈- ,00()()(0)0f x f x f +-== 则()f x 为奇函数。

(3)任取1211x x -<<<,则12120,10x x x x -<->12121212()()()()()01f x f x f x f x x xf x x -=+--=>-即12()()0f x f x ->所以()f x 在()-1,1为减函数。

相关文档
最新文档