微积分复习及解题技巧

合集下载

挑战解决复杂的微积分问题

挑战解决复杂的微积分问题

挑战解决复杂的微积分问题在数学领域中,微积分是一个极具挑战性的课程。

它涉及到函数、极限、导数和积分等概念,需要处理各种复杂的数学问题。

本文将探讨挑战解决这些复杂微积分问题的方法。

一、理解基本概念和原理要解决复杂的微积分问题,首先需要理解基本的概念和原理。

例如,我们需要熟悉函数的定义和性质,了解导数和积分的概念,掌握它们的运算法则和基本性质。

只有对这些基础知识有清晰的理解,才能够更好地解决复杂的微积分问题。

二、掌握常见的技巧和方法在解决微积分问题时,常常会用到一些常见的技巧和方法。

比如,我们可以使用导数的基本定义和性质来计算函数的导数,运用极值的判定条件来求函数的最值,利用积分的性质和公式来计算定积分等。

掌握这些技巧和方法,可以帮助我们更快、更准确地解决复杂的微积分问题。

三、分步骤解决问题对于复杂的微积分问题,往往需要进行多个步骤的计算和推导。

为了避免出错,我们可以采取分步骤解决问题的方法。

具体而言,我们可以将复杂的问题拆分为几个简单的部分,逐步分析和解决每个部分。

通过分步骤解决问题,可以更好地掌握整个解题过程,降低出错的概率。

四、灵活运用数学工具和软件在解决复杂的微积分问题时,我们可以借助一些数学工具和软件来辅助计算和分析。

例如,我们可以使用数学软件来绘制函数图像、计算导数和积分,以及进行符号计算等。

这些数学工具和软件可以大大提高我们解决复杂微积分问题的效率和准确性。

五、深入思考和练习解决复杂的微积分问题需要良好的思维能力和实践经验。

因此,我们需要进行深入的思考和大量的练习。

通过不断地思考和练习,我们可以提高自己的数学思维能力,熟悉不同类型的问题,并掌握解决这些问题的方法和技巧。

六、寻求帮助和探讨如果遇到困难或复杂的微积分问题,我们可以主动寻求帮助和与他人进行探讨。

可以向老师请教,与同学一起讨论,或者参加学术讨论会等。

通过与他人的交流和讨论,我们可以获取新的思路和灵感,帮助我们更好地解决复杂的微积分问题。

微积分解题

微积分解题

微积分解题摘要:1.微积分解题的基本步骤2.微积分解题的技巧与方法3.微积分解题的实践应用正文:一、微积分解题的基本步骤微积分作为一门重要的数学学科,在解决实际问题中发挥着重要作用。

微积分解题的基本步骤如下:1.确定问题:首先要对问题进行仔细阅读,理解问题的实际意义,明确需要解决的问题。

2.分析问题:分析问题是微积分解题的关键,需要对问题进行抽象,建立数学模型,确定需要运用的微积分知识。

3.建立微分方程:根据问题的实际情况,建立相应的微分方程,如一阶导数、二阶导数等。

4.求解微分方程:运用微积分的求解方法,如分离变量法、积分法等,求解微分方程。

5.检验解的合理性:将求得的解代入原问题,检验解的合理性,如符合实际情况,则得到问题的解。

二、微积分解题的技巧与方法在解决微积分问题时,除了遵循基本步骤外,还需要掌握一定的技巧与方法,如下:1.善于运用数学软件:如MATLAB、Mathematica 等,可以辅助求解微分方程,提高解题效率。

2.熟练掌握常见题型:多加练习,对常见题型的解题思路和方法了如指掌,有利于快速解决实际问题。

3.注意物理意义:在求解微分方程时,要注意其物理意义,如速度、加速度等,确保解的合理性。

4.建立解题思维:在解题过程中,要培养自己的解题思维,善于从问题的实际出发,灵活运用所学知识。

三、微积分解题的实践应用微积分在实际生活中的应用非常广泛,如物理、化学、生物、经济等领域。

通过解决实际问题,可以加深对微积分知识的理解,提高解题能力。

例如,在物理学中,运用微积分可以求解物体的位移、速度等;在经济学中,通过微积分可以研究成本、收益等。

这些实际问题的解决,都离不开微积分的运用。

学霸用微积分解高中数学

学霸用微积分解高中数学

学霸用微积分解高中数学【导言】微积分是现代数学的一个重要分支,它是理解自然科学和工程技术中很多问题的基础。

在高中阶段,学霸们常常运用微积分知识解决高中数学难题,本文将以分类的方式详细解读学霸使用微积分解决高中数学难题的方法和技巧。

【一、函数极值问题】学霸们经常运用微积分来解决函数的最大值和最小值问题。

对于一元函数f(x),通过求解其导数f'(x),我们可以得到它的驻点和拐点,然后我们计算对应函数值的大小,最终可以得出函数的最大值和最小值。

这在高中数学中经常出现的函数极值问题中尤为常见。

例如,对于函数f(x)=x^3-3x^2,我们可以通过求解函数导数f'(x)等于0的根,得到其驻点为x=0和x=2。

然后我们可以分别将驻点代入函数中,得到f(0)=0,f(2)=-4,因此函数的最大值为0,最小值为-4。

【二、定积分求解面积问题】学霸们运用微积分的方法来解决复杂图形的面积问题。

例如,我们需要计算y=x^2和y=2x-x^2这两个函数图像所围成的图形面积,我们可以通过计算它们的定积分来解决这个问题。

对于图像所在区间[0,2],我们可以先求出它们的交点x=1,然后使用定积分公式计算面积:A = ∫[0,1](2x-x^2-x^2)dx + ∫[1,2](x^2-2x+x^2)dx通过简单的计算,我们可以得到这个图形所围成的面积为2/3。

【三、拐点问题】学霸们通过微积分的方法解决拐点问题。

对于拐点的问题,我们需要求解函数的二阶导数f''(x)。

当f''(x)>0时,函数在该点处是凸向上的,当f''(x)<0时,函数在该点处是凸向下的。

而拐点则是函数由凸向上转为凸向下或者由凸向下转为凸向上的转折点。

例如,对于函数f(x)=x^3-3x^2+2,我们可以计算它的导数和二阶导数:f'(x) = 3x^2 - 6xf''(x) = 6x - 6当f''(x)>0时,函数凸向上;当f''(x)<0时,函数凸向下。

微积分复习及解题技巧.docx

微积分复习及解题技巧.docx

《微积分》复习及解题技巧第一章函数一、据定义用代入法求函数值:典型例题:《综合练习》第二大题之2二、求函数的定义域:(答案只要求写成不等式的形式,可不用区间表示)对于用数学式子来表示的函数,它的定义域就是使这个式子有意义的自变量X的取值范围(集合)主要根据:①分式函数:分母H0②偶次根式函数:被开方式20③对数函数式:真数式>0④反正(余)弦函数式:自变量W1在上述的函数解析式中,上述情况有几种就列出几个不等式组成不等式组解之。

典型例题:《综合练习》第二大题Z1补充:求y=、巨的定义域。

(答案:-2<^<|)]ll-2x 2三、判断函数的奇偶性:典型例题:《综合练习》第一大题之3、4第二章极限与连续式(用罗彼塔法则)求极限主要根据:1、常见的极限:lim 占=()(。

>0)X->COXlimlim/(x)= /(x o ) XT%初等函数在其定义域上都连续。

例:lim*TXT1兀3、求极限r ‘⑴ 1 lim —- = 1—a gO )的思路:lim/W= ci (ci 工0常数)X —可考虑以下9种可能:00①彳型不定式(用罗彼塔法则)④5=00⑦汁limgU ) x->a②冷⑤牙<C 2(C 2^O 常数)③2=000@ —=000⑨丝型不定00X丿特别注意:对于f (X )、g (X )都是多项式的分式求极限吋,解法见 教材P70下总结的“规律”。

以上解法都必须贯穿极限四则运算的法则典型例题:《综合练习》第二大题之3. 4;第三大题之1、3、5. 7、81砂[而+而+而+」(2-1畑+ 1)『1]更寸一3+3丐+」右一冇丿补充4:2型一匚 limf = iXT1 丄(此题用了 “罗彼塔法则”)补充1: 洛lim x-»lsin 2(x-l)广 + ax+补充厶 limX —>00 \2x^lim 12/? +1 丿lim XT1lnxx-1贝 ij a= ~2X 4- Px — \)第三章导数和微分一、根据导数定义验证函数可导性的问题:典型例题:《综合练习》第一大题之12二、求给定函数的导数或微分:求导主耍方法复习:1、求导的基本公式:教材P1232、求导的四则运算法则:教材P110—1113、复合函数求导法则(最重要的求导依据)4、隐函数求导法(包括对数函数求导法)6、求高阶导数(最高为二阶)7、求微分:dy=y z dx即可典型例题:《综合练习》第四大题之1、2、7、9补充:设\ + (arctgx)2,求dy.解:岛…右話十,丿 / X 2arctgx、右+K)dx第四章中值定理,导数的应用一、关于罗尔定理及一些概念关系的识别问题: 典型例题:《综合练习》第一大题之16、19二、利用导数的几何意义,求曲线的切、法线方程: 典型例题:《综合练习》第二人题之5二、函数的单调性(增减性)及极值问题:典型例题:《综合练习》第一大题之18,第二大题之6,第六大题之2第五章不定积分第六章定积分I理论内容复习:1、原函数:F f(x) = /(x)则称F (x)为f (x)的二±原函数。

微积分中函数极限的几种常用求解方法与策略

微积分中函数极限的几种常用求解方法与策略

微积分中函数极限的几种常用求解方法与策略【摘要】微积分中函数极限是微积分学习中的重要内容,对于理解函数的性质和变化趋势具有重要意义。

本文将介绍一些常用的函数极限求解方法和策略,包括数列极限法、无穷小量代换法、夹逼定理法、利用极限性质的方法以及利用导数的方法。

通过多种方法的结合运用,可以更准确地求解函数的极限。

我们也要注意极限存在的条件,确保计算的准确性。

提高极限求解的技巧和效率,可以帮助我们更好地掌握函数极限的求解过程,提高学习效果。

深入理解和掌握这些方法,将有助于我们更好地应用和推广到实际问题中,从而更好地理解和应用微积分知识。

【关键词】微积分、函数极限、数列极限法、无穷小量代换法、夹逼定理法、利用极限性质的方法、利用导数的方法、多种方法结合运用、注意极限存在的条件、提高极限求解的技巧和效率1. 引言1.1 微积分中函数极限的重要性微积分中函数极限是微积分学习中的重要概念之一,它能够帮助我们理解函数在某一点的变化趋势和极限取值。

函数极限的研究不仅有助于我们解决数学问题,还可以应用于物理、经济、工程等各个领域。

函数极限的重要性体现在以下几个方面:函数极限是微积分的基础,它是导数、积分等概念的前提。

只有对函数极限有深入的理解,才能更好地理解微积分中的其他内容。

函数极限在研究函数在某一点的性质时起到至关重要的作用,能够帮助我们确定函数在该点的连续性、可导性等特性。

函数极限也可以应用于求解极限值、证明极限存在等问题,是数学分析中的重要工具之一。

微积分中函数极限的重要性不言而喻。

只有深入理解函数极限的概念,掌握各种求解方法和技巧,才能在微积分学习中取得更好的成绩,并将其运用到实际问题中取得更好的效果。

强调函数极限的重要性,也有助于引起我们对微积分学习的重视和兴趣。

对函数极限的研究具有极其重要的意义。

2. 正文2.1 数列极限法数总结和统计等。

以下是关于数列极限法的内容:数列极限法是微积分中函数极限求解的一种常用方法,通过研究数列的性质和极限,可以推导出函数的极限值。

微积分复习整理

微积分复习整理

微积分复习整理微积分是数学的一个重要分支,它研究的是函数的极限、导数、积分等概念与性质。

在许多领域中,微积分都起着关键的作用,如物理学、经济学、工程学等。

因此,对微积分的复习整理对于学生来说非常重要,可以帮助他们更好地理解微积分的基本概念和运算规则。

一、函数的极限函数的极限是微积分的基本概念之一。

当自变量趋近于某个特定值时,函数的取值是否有限,这就是函数的极限。

在复习微积分时,我们需要了解如何计算函数的极限以及如何判断函数的极限是否存在。

计算函数的极限需要掌握以下几个基本的计算方法:1. 代入法:将自变量的值代入函数中计算;2. 无穷法则:通过观察无穷大或无穷小的部分来确定函数的极限;3. 基本极限:掌握常见函数的极限,如多项式函数、三角函数、指数函数等;判断函数的极限是否存在有以下几个常用的方法:1. 单调性:观察函数在一定区间上的增减性;2. 夹逼定理:利用已知函数的极限来确定函数的极限;3. 左右极限:分别求解函数在特定点左侧和右侧的极限;二、导数与微分导数是微积分中的重要概念,它表示函数在某一点处的变化率。

计算导数需要掌握以下几个基本的求导规则:1. 变化率定义:导数定义为函数$f(x)$在点$x_0$处的极限,表示函数在该点处的瞬时变化率;2. 已知函数的导数:掌握常见函数的导数,如多项式函数、三角函数、指数函数等的导数公式;3. 基本运算规则:了解求导的加减乘除法则,如求和法则、乘法法则、除法法则等;微分是导数的一个应用,它表示函数的微小变化量。

通过微分可以求得函数在某一点处的斜率,从而帮助我们研究函数的变化趋势和曲线的形状。

三、积分与定积分积分是微积分的另一个重要概念,它表示函数与自变量之间的累积关系。

计算积分需要掌握以下几个基本的积分规则:1. 基本积分公式:了解常见函数的积分公式,如多项式函数、三角函数、指数函数等的积分公式;2. 反向求导法:通过对已知函数求导来求解函数的积分;3. 特殊方法:掌握特殊函数的积分方法,如换元法、分部积分法、分式分解法等;定积分是积分的一种特殊形式,它表示函数在一定区间上的累积变化量。

微积分复习及解题技巧

微积分复习及解题技巧

《微积分》复习及解题技巧第一章 函数一、据定义用代入法求函数值: 典型例题:《综合练习》第二大题之2二、求函数的定义域:(答案只要求写成不等式的形式,可不用区间表示)对于用数学式子来表示的函数,它的定义域就是使这个式子有意义的自变量x 的取值范围(集合) 主要根据: ①分式函数:分母≠0 ②偶次根式函数:被开方式≥0 ③对数函数式:真数式>0④反正(余)弦函数式:自变量 ≤1在上述的函数解析式中,上述情况有几种就列出几个不等式组成不等式组解之。

典型例题:《综合练习》第二大题之1补充:求y=xx 212-+的定义域。

(答案:212<≤-x )三、判断函数的奇偶性:典型例题:《综合练习》第一大题之3、4第二章 极限与连续求极限主要根据: 1、常见的极限:2、利用连续函数:初等函数在其定义域上都连续。

例:3、求极限的思路:可考虑以下9种可能:①00型不定式(用罗彼塔法则) ②20C =0 ③∞0=0④01C =∞ ⑤21C C ⑥∞1C =0⑦0∞=∞ ⑧2C ∞=∞ ⑨∞∞型不定式(用罗彼塔法则)1sin lim 0=→x xx e x xx =⎪⎭⎫⎝⎛+∞→11lim )0(01lim >=∞→ααxx )()(0lim 0xf x f x x =→11lim 1=→x x 1)()(lim =→x g x f x α⎪⎩⎪⎨⎧∞≠=→)0(0)(11lim 常数C C x f x α⎪⎩⎪⎨⎧∞≠=→)0(0)(22lim 常数C C x g x α特别注意:对于f (x )、g (x )都是多项式的分式求极限时,解法见教材P70下总结的“规律”。

以上解法都必须贯穿极限四则运算的法则!典型例题:《综合练习》第二大题之3、4;第三大题之1、3、5、7、8补充1:若1)1(sin 221lim =++-→bax x x x ,则a= -2 ,b= 1 . 补充2:21221211111lim lim e x x x x xx x xx =⎪⎪⎪⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+-∙-∞→∞→补充3:21121121121121...513131121)12)(12(1...751531311lim lim lim =⎪⎭⎫ ⎝⎛+-=⎪⎭⎫⎝⎛+--++-+-=⎥⎦⎤⎢⎣⎡+-++⨯+⨯+⨯∞→∞→∞→n n n n n n n n 补充4:1ln lim 1-→x xx 111lim 1=→x x (此题用了“罗彼塔法则”)型0第三章 导数和微分一、根据导数定义验证函数可导性的问题: 典型例题:《综合练习》第一大题之12 二、求给定函数的导数或微分: 求导主要方法复习:1、求导的基本公式:教材P1232、求导的四则运算法则:教材P110—1113、复合函数求导法则(最重要的求导依据)4、隐函数求导法(包括对数函数求导法) 6、求高阶导数(最高为二阶) 7、求微分:dy=y / dx 即可典型例题:《综合练习》第四大题之1、2、7、9 补充:设y=22)(1arctgx x ++,求dy. 解:∵222212111221121x arctgxxx x arctgx x x y +++=+⋅+⋅+⋅=' ∴dy=)121(22xarctgx x x dx y +++=⋅'dx第四章中值定理,导数的应用一、关于罗尔定理及一些概念关系的识别问题:典型例题:《综合练习》第一大题之16、19二、利用导数的几何意义,求曲线的切、法线方程:典型例题:《综合练习》第二大题之5二、函数的单调性(增减性)及极值问题:典型例题:《综合练习》第一大题之18,第二大题之6,第六大题之2第五章 不定积分 第六章 定积分Ⅰ理论内容复习: 1、原函数:)()(x f x F ='则称F (x )为f (x )的一个原函数。

高考数学一轮总复习微积分应试技巧总结

高考数学一轮总复习微积分应试技巧总结

高考数学一轮总复习微积分应试技巧总结微积分是高考数学中的重要内容之一,也是考生们容易出现困惑的部分。

为了帮助大家更好地复习微积分,下面将总结一些应试技巧,希望能对大家备战高考有所帮助。

一、掌握基础概念和公式在应试中,掌握基础的微积分概念和公式是非常重要的。

首先要熟悉微积分的基本定义和常用的公式,如导数的定义、反函数的导数关系、积分的定义和性质等。

只有对这些基础知识牢记于心,才能够更好地理解和解决微积分题目。

二、多做题,掌握解题方法做题是学习微积分的重要环节,通过大量的练习可以加深对知识点的理解和掌握解题的方法。

在做题过程中,要注意每一步的推导和计算,尽量做到简洁清晰。

可以先从简单的题目开始,循序渐进地提高解题能力。

三、注意函数的可导性和连续性在应试中,经常会涉及到函数的可导性和连续性的问题。

要注意判断函数在某一点的可导性和连续性,可以通过导数的定义和极限的性质来进行推导。

同时,还需要掌握一些常见函数的可导性和连续性的特点,如多项式函数、指数函数、对数函数等。

四、熟悉微积分的应用微积分的应用题是高考中常见的题型之一。

在应试过程中,要熟悉微积分的应用,如求函数的极值、最值、曲线的切线方程、区间的积分等。

熟练掌握这些应用技巧,可以帮助解答一些实际问题。

五、重点复习典型例题在复习微积分的过程中,可以选择一些典型的例题进行重点复习。

通过分析和解答这些典型例题,可以更好地掌握微积分的知识点和解题技巧。

可以结合教材或者相关的复习资料进行选择。

总之,复习微积分需要有持之以恒的学习态度,多做题、多思考,在解题过程中逐渐提高解题能力和应对考试的技巧。

希望以上的技巧总结能够对广大考生在高考数学微积分复习中有所帮助,实现优异的成绩。

祝愿大家都能取得好成绩,实现理想的高考目标!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《微积分》复习及解题技巧
第一章 函数
一、据定义用代入法求函数值: 典型例题:《综合练习》第二大题之2
二、求函数的定义域:(答案只要求写成不等式的形式,可不用区间表示)
对于用数学式子来表示的函数,它的定义域就是使这个式子有意义的自变量x 的取值范围(集合) 主要根据: ①分式函数:分母≠0 ②偶次根式函数:被开方式≥0 ③对数函数式:真数式>0
④反正(余)弦函数式:自变量 ≤1
在上述的函数解析式中,上述情况有几种就列出几个不等式组成不等式组解之。

典型例题:《综合练习》第二大题之1
补充:求y=x
x 212-+的定义域。

(答案:2
12<≤
-x )
三、判断函数的奇偶性:
典型例题:《综合练习》第一大题之3、4
第二章 极限与连续
求极限主要根据: 1、常见的极限:
2、利用连续函数:
初等函数在其定义域上都连续。

例:
3、求极限
的思路:
可考虑以下9种可能:
①0
0型不定式(用罗彼塔法则) ②
2
0C =0 ③∞
0=0
④01
C =∞ ⑤21C C ⑥∞
1C =0

0∞=∞ ⑧2C ∞=∞ ⑨∞

型不定
式(用罗彼塔法则)
1sin lim 0
=→x x
x e x x
x =⎪⎭⎫

⎛+∞→11lim )0(01
lim >=∞→αα
x
x )
()(0
lim 0
x
f x f x x =→11
lim 1
=→x x 1)
()
(lim =→x g x f x α⎪⎩
⎪⎨⎧∞
≠=→)0(0
)(11lim 常数C C x f x α⎪⎩
⎪⎨⎧∞
≠=→)0(0)(22lim 常数C C x g x α
特别注意:对于f (x )、g (x )都是多项式的分式求极限时,解法见教材P70下总结的“规律”。

以上解法都必须贯穿极限四则运算的法则!
典型例题:《综合练习》第二大题之3、4;第三大题之1、3、5、7、8
补充1:若1)
1(sin 2
21
lim =++-→b ax x x x ,则a= -2 ,b= 1 . 补充2:21
221211111lim lim e x x x x x
x x x
x =⎪
⎪⎪⎪⎭⎫

⎛-+=⎪⎭⎫ ⎝⎛-+-•-∞→∞→
补充3:
2
1121121121121...513131121)12)(12(1...751531311lim lim lim =⎪⎭⎫ ⎝⎛+-=
⎪⎭⎫
⎝⎛+--++-+-=⎥⎦⎤⎢⎣⎡+-++⨯+⨯+⨯∞→∞→∞→n n n n n n n n 补充4:
1ln lim 1
-→x x x 1
11
lim 1
=→x x (此题用了“罗彼塔法则”)
型0
第三章 导数和微分
一、根据导数定义验证函数可导性的问题: 典型例题:《综合练习》第一大题之12 二、求给定函数的导数或微分: 求导主要方法复习:
1、求导的基本公式:教材P123
2、求导的四则运算法则:教材P110—111
3、复合函数求导法则(最重要的求导依据)
4、隐函数求导法(包括对数函数求导法) 6、求高阶导数(最高为二阶) 7、求微分:dy=y / dx 即可
典型例题:《综合练习》第四大题之1、2、7、9 补充:设y=22)(1arctgx x ++,求dy. 解:∵2222
1211122112
1
x arctgx
x
x x arctgx x x y +++=+⋅
+⋅+⋅=' ∴dy=)121(
2
2
x
arctgx x x dx y ++
+=⋅'dx
第四章中值定理,导数的应用
一、关于罗尔定理及一些概念关系的识别问题:
典型例题:《综合练习》第一大题之16、19
二、利用导数的几何意义,求曲线的切、法线方程:
典型例题:《综合练习》第二大题之5
二、函数的单调性(增减性)及极值问题:
典型例题:《综合练习》第一大题之18,第二大题之6,第六大题之2
第五章 不定积分 第六章 定积分
Ⅰ理论内容复习: 1、原函数:)()(x f x F ='
则称F (x )为f (x )的一个原函数。

2、不定积分:
⑴概念:f (x )的所有的原函数称f (x )的不定积分。

⎰+=C x F dx x f )()(
注意以下几个基本事实:
())()(x f dx x f ='⎰ ⎰+='C x f dx x f )()(
⎰=dx x f dx x f d )()(
⎰+=C x f x df )()(
⑵性质:⎰⎰≠=⋅)0()()(a dx x f a dx x f a 注意 []⎰⎰⎰±=±dx x g dx x f dx x g x f )()()()( ⑶基本的积分公式:教材P206 3、定积分: ⑴定义 ⑵几何意义
⑶性质:教材P234—235性质1—3 ⑷求定积分方法:牛顿—莱布尼兹公式 Ⅱ习题复习:
一、关于积分的概念题:
典型例题:《综合练习》第一大题之22、24、25、第二大题之11、14
二、求不定积分或定积分: 可供选用的方法有——
⑴直接积分法:直接使用积分基本公式
⑵换元积分法:包括第一类换元法(凑微分法)、第二类换元法 ⑶分部积分法
典型例题:《综合练习》第五大题之2、3、5、6 关于“换元积分法”的补充题一:
⎰⎰++=++=+C x x d x x dx 12ln 21
)12(1212112 关于“换元积分法”的补充题二:⎰-3
x xdx
解:设x -3=t 2,即3-x =t , 则dx=2tdt.
∴⎰
-3
x xdx
=⎰⋅+dt t t t 2)3(2=C t t +++⋅+612121
2 =C t t ++63
23=C x x +-+-36)3(3
23
关于“换元积分法”的补充题三:
⎰+8
031x
dx
解:设x=t 3
,即
t =3
x ,则dx=3t 2dt.
当x=0时,t=0; 当x=8时,t=2. 所以
⎰+8
031x dx =0
21ln )1(21313)1(313202
202⎰⎰⎥⎦⎤⎢⎣⎡++-=⎥⎦⎤⎢⎣⎡++-=+t t dt t t t dt t =3ln3
(此题为定积分的第二类换元积分法,注意“换元必换限”,即变量x 换成变量t 后,其上、下限也从0、8变为0、2) 关于“分部积分法”的补充题一:
⎰⎰⎰
+-=-==C e x dx e xe xde dx xe x
x x x x )1( 关于“分部积分法”的补充题二:
C x arctgx dx x
x xarctgx arctgxdx ++-=+⋅
-=⎰⎰2
2
1ln 2111 关于“分部积分法”的补充题三:

e
xdx x 1
ln
=⎪⎪⎭⎫ ⎝
⎛-=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=⎰⎰⎰121211ln 21ln 1ln 21ln 21221212212e x e xdx e x x x d x e x x xdx e
e e =)1(41)2121(211212122222+=+-=⎪⎪⎭
⎫ ⎝⎛-e e e e x e (此题为定积分的分部积分法)
三、定积分的应用(求曲线围成的平面图形面积): 典型例题:《综合练习》第六大题之4
注意:此题若加多一条直线y=3x ,即求三线所围平面图形的面积,则解法为——(草图略)
S=⎰⎰-+-3
12
1
0)3()3(dx x x dx x x =⎰⎰-+3
121
0)3(2dx x x dx x
=13312301212322⎪⎭⎫ ⎝⎛-+⨯x x x =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛⨯-⨯+3123273192
31
=3
13
(平方单位)
使用指南——本复习参考资料应当与人手一册的《综合练习题》配套使用并服从于《综合练习题》。

另外,请注意如下几点:
①本复习参考资料中的蓝色字体的“补
充”题是以往年级的部分应试复习题,对今年
9月份考试的同志来说,仅仅作为参考补充。

②《综合练习题》是我们复习重点中的重点,请
对照答案将所有
..题目
..完整地做一遍(使题目与答案相结合而不要相分离,以便需要时加快查
找的速度和准确度)。

③请将上述做好的
...《综合练习题》随身携带,经常复习、记忆,为应试作好准备;
④考试时请注意审题,碰到实在不会做的大题,
如果你发现只是《综合练习题》上的题目改变
了数字,那么请将你能够知道的、原来那个题
目的解法步骤完整地写出来,也能获得该题一
部分的分数。

对于填空、选择这样的小题,尽
你所能去做,不要留下空白!。

相关文档
最新文档