货郎担问题
货郎担问题讲稿

贪心算法 送报线路安排 一个送报员从送报中心出发到五个小区 送报,最后要回到送报中心。 送报,最后要回到送报中心。送报中心到各 小区的距离及各小区间的距离均已知( 小区的距离及各小区间的距离均已知(见表 问送报员应按怎样的线路行驶较好? 1),问送报员应按怎样的线路行驶较好? ),问送报员应按怎样的线路行驶较好 距离单位为千米) (距离单位为千米)
阶段指标函数d : 设从城市1出发,第k-1阶段到达到城市j,
ji
则城市j与下一阶段(第k阶段)的目的地城市i之间的距离为d ji 最优指标函数 fk (S, i) :从城市1出发,经过S中k个城市,到 达城市i的最短距离.
则动态规划的顺序递推关系为:
m { fk1(S \ j, j) + d ji} in fk (S, i) = j∈S f0 (φ, i) = d1i , i = 2,3,, n, k =1,2,, n 1.
f1(S,2) = m f0 (φ,3) + d32, f0 (φ,4) + d42} in{
= m 7 + 8,9 + 5} =14, in{
* x2 ({4},2) = 4
即从城市1出发,途经1个城市去城2,应先到4,再到2。
城 城 市 1 2 3 4 0 8 5 6 6 0 8 5 7 9 0 5 9 7 8 0 市 1 2 3 4
当k=3时,从城市1出发,途经3个城市到达城市1的最短距离
f3({2,3,4},1) = m f2 ({2,3},4) + d41, f2 ({2,4},3) + d31, f2 ({3,4},2) + d21} in{ = m 22 + 6,18 + 5,20 + 8} = 23 in{
求解货郎担问题的量子进化算法

( 甘肃民族师范学院计算机科学系
.
甘肃 合作 7 4 7 0 0 0 )
摘 要
货 郎担 问题属于 N P完全 问题 , 对 它的近似求解方法 主要是智 能算法及线性规划 , 但其 中的基本量 子进 化算法 易陷于局
.
部最优解。为此 , 提 出一种新 的量子进化算法 , 结合 乡村货 郎运输 问题 , 对算法进行测试 。结果表 明, 该 算法在全 局寻优 能力及 种群
0 引 言 Biblioteka 传统 的“ 货郎担” 问题 属于典 型的 N P完全 问题 , 最早 由德
国著名数 学家卡尔 ・ 门格 尔 ( K . Me n g e r ) 于1 9 3 2年提 出。对 该 问题的基 本描述是 : 某售货员要到若 干个 村庄售 货 , 各村 庄之 间的路程 是已知的 , 售货员从他所在的商 店 ( 始 发地 ) 出发 , 到 各村庄售货一次然后返回商店 ( 原地 ) , 为 了提 高效率 ,求 出他
E x p e i r me n t l a r e s u l t d e mo n s t r a t e s t h a t t h e n e w a l g o r i t h m i s i mp r o v e d i n p o p u l a t i o n d i v e r s i t y a n d g l o b a l s e a r c h c a p a c i t y c o mp a r e d w i t h t h e c o n — v e n t i o n a l lg a o r i t h ms ,a n d i s e f f e c t i v e i n s o l v i n g t h e T S P.
货郎问题

int main()
{
int i, j, k;
while(scanf("%d", &n) && n)
{
for(i = 1; i <= n; i++)
scanf("%d", d + i);
for(i = 0; i <= n; i++)
for(ห้องสมุดไป่ตู้ = 0; j <= n; j++)
{
ans = Min(ans, dp[n][i] + abs(d[i] - d[n]));
}
printf("%d\n", ans);
}
}
#include <stdio.h>
#include <stdlib.h>
const int inf = 1000000000;
int n;
int d[128];
int dp[128][128];
int Min(int a, int b)
{
return a < b ? a : b;
dp[i][j] = inf;
dp[0][0] = dp[1][0] = 0;
for(i = 2; i <= n; i++)
{
for(j = i - 1; j >= 0; j--)
dp[i][i - 1] = Min(dp[i][i - 1], dp[i - 1][j] + (j == 0 ? 0 : abs(d[j] - d[i])));
TSP问题

lb=((1+3)+(3+6)+(1+2)+(3+4)+(2+3))/2=14
于是,得到了目标函数的界[14, 16]。 需要强调的是,这个解并不是一个合法的选择(可能没有 构成哈密顿回路),它仅仅给出了一个参考下界。
d(1, {2, 3})=min{c12+d(2, {3}), c13+ d(3, {2})}=min{2+5, 3+11}=7(1→2) d(2, {1, 3})=min{c21+d(1, {3}), c23+ d(3, {1})}=min{4+6, 2+12}=10(2→1) d(3, {1, 2})=min{c31+d(1, {2}), c32+ d(2, {1})}=min{7+8, 5+9}=14(3→2) 最后有:
③ 边(u, v) 加入解集合S后,S中不产生分枝;
∞3 3 2 6
C= 3 ∞ 7 3 2 3 7 ∞2 5
2 3 2∞3
6 2 5 3∞
1
52
2
4
3
(a) 5城市的代价矩阵 (b) 城市1→城市4
1
2 5
22
4
3
(c) 城市5→城市2
货郎担问题 其他应用

用微分法可求得上式当x1=s1/3=3时,有最大值:f1(s1)= 3 3 3 3 因此,原问题的最优解为: x1= x2= x3= 3,最优值为:
例9 求解四个城市的推销员问题,其距离矩阵如下表所示:
i
j 1 2 3 4
1
2
3
4
0 8 5 6 6 0 8 5 7 9 0 5 9 7 8 0
解:k=0 f0(2,φ)=8, f0(3,φ)=5, f0(4,φ)=6 k=1 f1(2,{3})= f0(3,φ)+d32=5+9=14; f1(2,{4})= f0(4,φ)+d42=6+7=13 f1(3,{2})= f0(2,φ)+d23=8+8=16; f1(3,{4})= f0(4,φ)+d43=6+8=14 f1(4,{2})= f0(2,φ)+d24=8+5=13; f1(4,{3})= f0(3,φ)+d34=5+5=10
k=2 f2(2,{3,4})=min{ f1(4,{3})+ d42, f1(3,{4})+d32} =min{10+7,14+9}=17 p2(2,{3,4})=4 f2(3,{2,4})=min{ f1(4,{2})+ d43, f1(2,{4})+d23} =min{13+8,13+8}=21 p2(3,{2,4})=2或4 f2(4,{2,3})=min{ f1(2,{3})+ d24, f1(3,{2})+d34} =min{14+5,16+5}=19 p2(4,{2,3})=2 k=3 f 3(1,{2,3,4}) =min{f2(2,{3,4})+d21, f2(3,{2,4})+d31, f2(4,{2,3}+d41) =min{17+6,21+7,19+9}=23 员最短路线为 1→3→4→2→1 ,最短距离为23。 实际中很多问题都可以归结为货郎担问题,如物资运输中汽车 应走怎样的路线使路程最短;工厂中机床应如何布置,可使零件所 经过的路线最短等等。
动态规划求解TSP问题

f5(i, )=min{Cij+f6(1, )}=Ci1, d5(i, 1), i=2, 3, 4, 5 f5(i, )的值列表如下:
1
i 2
f5(i, ) 2
5 3
5 1 2 7
2
2 3 3
3
4 5
7
2 5
6
4 4
5
7
对于k=4, 有
f4(i, S4)=min{Cij+f5(j, S5)}, jS4, f4(i, S4。并且有 xn=(i, ), i=2, 3, …, n,
xn+1=(1, )
4
动态规划模型构造
决策变量:dk=(i, j), 其中i为当前所在的城市, j为下一站将要到达的城市。 状态转移方程:若当前的状态为 xk=(i, Sk) 采取的决策为 dk=(i, j) 则下一步到达的状态为 xk+1=T(xk, dk)=(j , Sk\{j})
9
(i, S3) (2, {3, 4}) (2, {3, 5})
J {3} {4} {3} {5}
Cij 3 5 3 1
S4 {4} {3} {5} {3}
Cij+f4(j, S4) 3+f4(3, {4})=3+6=9* 5+f4(4, {3})=5+11=16 3+f4(3, {5})=3+11=14* 1+f4(5, {3})=1+13=14*
(1, S1) (1, {2, 3, 4, 5})
J {2} {3} {4} {5}
Cij 2 7 2 5
S2 {3, 4, 5} {2, 4, 5} {2, 3, 5} {2, 3, 4}
TSP问题分析
太 原
南 昌
呼 和 浩 特
最短路程路线
为了得到任意两城市之间的路程,需 要34个城市的地理坐标,经纬度;
得到了,经纬度,知道了地球半径, 通过球面距离公式:
Dis(i,j)=2Rarcsin{sin[ Lat(i) Lat( j)]2 2
+sin[
Lon(i)
Lon(
j)
]2
1
cos[Lat(j)cos(Lat(j))]}2
5.End Do 6. 输出当前最优解,计算结束
1)产生一个初始路径X=randperm(34)
23 14 ........ 19 18 34 26 1;
2)计算初始路径总长D(X);
3)设置始末温度T0,Te ,降温率Decay; 4)对初始路径经行局部扰动,得到新路径Xn ,
计算D(Xn); 5)T=T0 * Decay Te ,如果T<= Te ,继续循环,
2
算出任意两个城市之间的球面距离
最经济路线
价格来源: ,中国票价网 价格组合: 全部乘火车、全部乘飞机、火车飞机两种混 合
模型的假设
假设两个城市间的旅行距离就为两个目标点 的球面距离; 假设选最短路线时,在前一阶段决策路线时 不受下一阶 段距离的影响,两者相互独立; 假设交通工具的票价在周先生旅行的近三个 月间保持不变。
LINGO求解:
决策变量是 xij 0 或1(0表示不连接,1表示连接)
目标函数与约束条件:
min s
D1(i , j ) xij
i , jV
xij 1
jV
s.t
xij 1iVຫໍສະໝຸດ (i V ), (i V ),
xi
,
货郎担问题
以一个例题来加以说明
设有5个工件需要在机床A,B上加工,加工的顺序是先A后 B,每个工件所需加工时间(单位:小时) 如下表. 问如何安 排加工顺序可使机床连续加工完所有的加工总时间最少?
机床 加工时间 工件号码
A 3 7 4 5
B 6 2 7 3
1 2 3 4
5
7
4
(2) 在工时矩阵M中找到最小的元素(若最 小的不止一个,可任选其一);若它在上行, 则将相应的工件排在最前面的位置;若它在 下行,则将相应的工件排在最后面的位置.
这是因为:1,各城市之间可能是复线2,两地之间可能会 使用不同的交通工具从而费用不同。
实际中很多问题都可以归结为货郎担这类问题. 如: 1,物资运输路线中,汽车应该走怎样的路线使路程 最短; 2,工厂里在钢板上要挖一些小圆孔,自动焊接机的 割咀应走怎样的路线使路程最短; 3,城市里有一些地方铺设管道时,管子应走怎样 的路线才能使管子耗费最少,等等 比如说,前面曾经遇到的排序问题,以前我们 是用0-1整数规划来解决这类问题的。 在这里,我们同样可以使用动态规划的方法。 而且相对简单了很多。
排序问题 一,问题的提出:设有n个工件要在机床A,B上加 工,每个工件都必须经过先A后B的两道加工工序,
以ai,bi分别表示工件i(1<=i<=n) 在A,B上的加工 时间.问应如何在两机床上安排工件加工的顺序,
使在机床A上加工第一个工件开始到在机床B上
将最后一个工件加工完为止,所用的加工时间 最 少?
Vj 距离 Vi
1 2 3 4
1 0
8 5 6
2 6
0 8 5
3 7
9 0 5
4 9
7 8 0
解:K=0 由边界条件知: f0(2,空集)=d12=6 f0(3,空集)=d13=7 f0(4,空集)=d14=9
【算法复习二】货郎担(旅行售货商)动态规划
【算法复习二】货郎担(旅行售货商)动态规划一,问题由来货郎担问题也叫旅行商问题,即TSP问题(Traveling Salesman Problem),是数学领域中著名问题之一。
二,问题描述1)货郎担问题提法:有n个城市,用1,2,…,n表示,城i,j之间的距离为dij,有一个货郎从城1出发到其他城市一次且仅一次,最后回到城市1,怎样选择行走路线使总路程最短?2)旅行商问题的提法:假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路经的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。
路径的选择目标是要求得的路径路程为所有路径之中的最小值。
三,问题求解1)动态规划解例题:设v1,v2,……..,vn是已知的n个城镇,城镇vi到城镇vj的距离为dij,现求从v1出发,经各城镇一次且仅一次返回v1的最短路程。
分析:设S表示从v1到vi中间所可能经过的城市集合,S实际上是包含除v1和vi两个点之外的其余点的集合,但S中的点的个数要随阶段数改变。
建模:状态变量(i,S)表示:从v1点出发,经过S集合中所有点一次最后到达vi。
最优指标函数fk(i,S)为从v1出发,经过S集合中所有点一次最后到达vi。
决策变量Pk(i,S)表示:从v1经k个中间城镇的S集合到vi 城镇的最短路线上邻接vi的前一个城镇,则动态规划的顺序递推关系为:fk(i,S)= min{ fk-1(j,S、{ j }+dji} j属于Sf0(i,空集)=d1i (k=1,2,…,n-1,i=2,3,…n)求解:K=0f0(2,空集)=d12=6f0(3,空集)=d13=7f0(4,空集)=d14=9当k=1时:从城市V1出发,经过1个城镇到达Vi的最短距离为:f1(2,{ 3 }) = f0 (3,空)+d 32 =7+8=15f1(2,{ 4 }) = f0 (4,空)+d 42 =9+8=14f1(3,{ 2 }) = f0 (2,空)+d 23 =6+9=15f1(3,{ 4 }) = f0 (4,空)+d 43 =9+5=14f1(4,{ 2 }) = f0 (2,空)+d 24 =6+7=13f1(4,{ 3 }) = f0 (3,空)+d 34 =7+8=15当k=2时,从城市V1出发,中间经过2个城镇到达Vi的最短距离.f2(2,{ 3,4 }) = min[ f1(3,{4})+d32, f1(4,{3})+ d42] =min[14+8,15+5]=20P2(2,{3,4})=4f2(3,{ 2,4 })= min[14+9,13+5]=18P2(3,{2,4})=4f2(4,{ 2,3})= min[15+7,15+8]=22P2(4,{2,3})=2当k=3时:从城市V1出发,中间经过3个城镇最终回到Vi的最短距离.f3(1,{ 2,3,4 })= min[f2(2,{ 3,4 }) + d 21,f2(3,{ 2,4})+ d31,f2(4,{ 2,3 }) + d41]=min[20+8,18+5,22+6]=23P3(1,{2,3,4})=3逆推回去,货郎的最短路线是1 2 4 3 1,最短距离为23.四,源码[html] view plaincopyprint?1.#include<iostream>2.#include<iomanip>ing namespace std;4.5.int n;6.int cost[20][20]={};7.bool done[20]={1};8.int start = 0; //从城市0开始9.10.int imin(int num, int cur)11.{12.if(num==1) //递归调用的出口13.return cost[cur][start]; //所有节点的最后一个节点,最后返回最后一个节点到起点的路径14.15.int mincost = 10000;16.for(int i=0; i<n; i++)17.{18.cout<<i<<" i:"<<done[i]<<endl;19.if(!done[i] && i!=start) //该结点没加入且非起始点20.{21.if(mincost <= cost[cur][i]+cost[i][start])22.{23.continue; //其作用为结束本次循环。
算法分支限界法货郎担问题解法
标题:算法分支限界法在货郎担问题中的应用摘要:分支限界法是一种高效的解决组合优化问题的算法,本文将详细介绍分支限界法在货郎担问题中的应用,包括问题的描述、算法原理、实现步骤以及案例分析等内容。
一、问题描述货郎担问题,又称为旅行商问题(TSP),是一个经典的组合优化问题。
问题的描述为:有n个城市,货郎担需要从一个城市出发,经过所有的城市且只经过一次,最后回到出发的城市,要求找到一条最短的路径。
这是一个NP-hard问题,传统的穷举法在城市数量较大时难以找到最优解。
二、算法原理分支限界法是一种以深度优先搜索为基础的优化算法。
其核心思想是根据当前问题状态的下界(或上界)对搜索空间进行剪枝,从而减少搜索空间,提高搜索效率。
在货郎担问题中,分支限界法通过动态规划的方式记录已经访问过的城市,从而避免重复计算,同时利用启发式信息(如最近邻居、最小生成树等)进行路径选择,不断更新路径的下界,直至找到最优解或者搜索空间被完全剪枝。
三、实现步骤1. 初始化:设置初始的城市路径、已访问城市集合、路径长度、下界等参数。
2. 搜索:利用深度优先搜索,根据当前路径确定下一个访问的城市,并更新路径长度和下界。
3. 剪枝:根据当前路径长度与下界的关系,对搜索空间进行剪枝。
4. 回溯:如果搜索路径无法继续扩展,进行回溯,更新路径状态。
5. 结束条件:当所有城市都被访问过一次后,得到一条完整的路径,更新最优解。
四、案例分析假设有5个城市,它们的坐标为:A(0, 0)、B(1, 2)、C(3, 1)、D(5, 3)、E(4, 0)利用分支限界法求解货郎担问题,我们按照以下步骤进行计算:(1)初始化:选择一个城市作为出发点,并初始化已访问城市集合、路径长度和下界。
(2)搜索:根据当前路径选择下一个访问的城市,并更新路径长度和下界。
(3)剪枝:根据当前路径长度与下界的关系,进行搜索空间的剪枝。
(4)回溯:如果搜索路径无法继续扩展,进行回溯,更新路径状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《计算复杂性分析》实验报告
实验序号:6实验项目名称:货郎担问题
学 号
13
姓 名
魏倩
专业、班级
2011级信息与计算科学
实验地点
214年6月11日
一、实验目的及要求
1.理解掌握动态规划的基本思想
2.了解货郎担问题
3.用动态规划实现货郎担问题
4.分析动态规划的时间复杂性
六、教师评语
签名:
日期: 年 月 日
成绩
d=min(k(4,2)+h(2,3),k(4,3)+h(3,2));
v=min(a+k(1,2),b+k(1,3));
l=min(v,d+k(1,4));
四、实验结果与数据分析
输入城市数目:4
n =
4
输入城市间的距离:[0 6 7 9;8 0 9 7;5 8 0 8;6 5 5 0]
k =
0 6 7 9
8 0 9 7
5 8 0 8
6 5 5 0
>> a
a =
17
>> b
b =
21
>> d
d =
19
>> v
v =
23
>>
五、分析与讨论
动态规划的实质是分治思想和解决冗余,动态规划是一种将问题实例分解为更小的,相似的字问题。其所针对的问题有一个显著的特征,即它所对应的子问题呈现大量的重复。动态规划法的关键就在于,对于重复出现的子问题,只在第一次遇到时加以求解,并把答案保存起来,让以后再遇到时直接引用,不必重新求解。动态规划在最好的情况下的时间复杂性是O(n^2),最坏的情况下是O(n^2)。此次试验不足的地方是该程序只能解决4个城市之间的问题,有待改进。
for i=2:n
h(i,1)=k(i,1);
end
% abs(s)=1
for i=2:n
for j=2:n
if (i~=j)
h(i,j)=k(i,j)+h(j,1);
end
end
end
% abs(s)=2
a=min(k(2,3)+h(3,4),k(2,4)+h(4,3));
b=min(k(3,2)+h(2,4),k(3,4)+h(4,2));
二、实验设备(环境)及要求
1.硬件:win7系统
2.软件:MATLAB7.0编程软件。
三、实验内容及步骤
货郎担问题:一个货郎从某个城镇出发,经过若干个城镇一次,且仅经过一次,最后仍回到原出发的城镇,问应如何选择行走路线可使总行程最短。
n=input('输入城市数目:')
k=input('输入城市间的距离:')