电气自动化专业英语
电气自动化专业英语词汇

电流电压功率频率电阻电容电抗current voltage power frequency resistance capacitance reactance电阻率resistivity阻抗impedance相,相位phase有功功率active power 无功功率reactive power视在功率apparent 装设功率installed 安培ampere (A) 伏volt (V) power power欧姆ohm赫兹hertz (HZ)瓦watt (W)供电局power supply authority电力公司power supply company发电厂power plant变电所substation配电站distribution substation配变电站transformer station 终端变电站terminal substation车间变电站substation in workshop :室内变电站indoor substation自动变电站automatic substation成套变电站unit substation 高压室H.T room低压室L.T room变压器室transformer room 变压器平台transformer platform柴油发电机室diesel generator room控制室control room蓄电池室battery room维修间maintenance room值班室duty room 歇息室rest room电容器室condenser room充电室battery -- chargingroom室外储油罐outdoor oiltank地下油罐underground oiltank日用油箱day tank负荷load一类负荷first-class load二类负荷second-class load三类负荷third-class load照明负荷lighting load动力负荷power load电阻负荷resistance load电抗负荷reactive load冲击负荷shock load空载non -load有载on-load满载full -load过载over -load不平衡负荷unbalanced load平衡负荷balanced load额定负载nominal load负荷计算load circulation功率因数power factor同时使用系数diversityfactor需要系数法demand factormethod利用系数法utilizationfactor method二项式法binomial method无功功率补偿reactivepower compensation自然功率因数natural powerfactor补偿后功率因数powerfactor after高压补偿H.T side低压补偿compensatingcompensatingcompensating in L.T side负荷率load rate补偿容量compensatingcapacity设备装设容量installedcapacity备用容量standby capacity额定容量rated capacity视在容量apparent capacity计算容量calculatedcapacity短路容量short circuitcapacity负荷计算表load calculationtable电压voltage高压high tension (H.T)低压low tension (L.T)冲击电压临界电压残存电压击穿电压供电电压照明电压工作电压额定电压impulse voltagecritical voltageresidual voltagebreakdown voltagesupply voltagelighting voltageworking voltagerated voltage相电压phase voltage线电压line voltage过压over--voltage欠压under--voltage电压降voltage drop电压损失电压偏移电压波动电压标准电压等级voltage lossvoltage deviationvoltage variationvoltage standardvoltage class电压调整率voltage regulationrate电流current交流alternating current (A.C)直流direct current (D.C)短路电流short--circuit短路点short circuit point三相短路电流three-phaseshort-circuit current两相短路电流two-phaseshort-circuit current单相短路电流single--phaseshort-circuit current短路电阻short-circuitresistance短路电压short-circuit voltage短路电抗short-circuitreactancein短路容量short-circuit capacity短路稳定性short-circuit stability短路冲击电流short-circuit impulse current热效应thermal effect稳定短路电流steady state short-circuit current切断电流cut-off current整定电流setting current动作电流action current额定电流rated current, nominal current熔体电流melt current熔丝电流fuse current故障电流fault current极限电流limiting current过电流over--current有效值virtual value, effective value电源,供电方式power and supply systempowerpower备用电源应急电源常用电源供电电压standby source emergency source normal source supply voltage双回路供电two-feeder supply 两个独立电源two independent power supply放射式radial system单回路放射式one-circuit radial system双回路放射式two-circuit radial system有公用备用干线的放射式radial system with public standby main line树干式trunk system单回路树干式one-circuit trunk system单侧供电双回路树干式two-circuit trunk system with one-side power supply 双侧供电单回路树干式one-circuit trunk system withtwo-side power supply双侧供电双回路树干式two-circuit trunk system withtwo-side power supply环式ring system链式chain system变压器—干线式transformer-main line systemTN 系统TN systemTN—S 系统TN-S systemTN—C 系统TN-C systemTN —C —S 系统TN-C-SsystemTT 系统TT system单相二线制1-phase 2-wiresystem三相四线制3-phase 4-wiresystem三相五线制3-phase 5-wiresystem保护线protective earth (PE)中性线(N 线) neutral分列运行independentoperation并列运行parallel operation无载运行non-load operation变压器transformer三相变压器transformer油浸变压器transformer自冷变压器transformerthree-phaseoil-immersedself-cooling铜线变压器copper-coiltransformer铝线变压器aluminum-coiltransformer有载调压的变压器on-loadregulating transformer可调变压器variabletransformer全封闭的变压器fully-enclosed transformer干式变压器dry transformer单相变压器single-phasetransformer防雷变压器lightning-prooftransformer环氧浇注变压器epoxy-resinfilled transformer电力变压器transformer低损耗变压器transformer照明变压器transformer控制变压器transformerpowerlow losslightingcontrol三相油浸自冷式铝线低损耗有调压电力变压器3-phaseself-coolingaluminum-coiltransformeroil-immersedand low-losspower变压器系数transformer factor调压器voltage regulator稳压器stabilizer减压器reducer整流器rectifier限流器current limiter不停电电源uninterruptedpower supply (UPS)变阻器rheostat电阻器resister自动功率调整器automaticpower regulator电压互感器voltagetransformer电流互感器currenttransformer降压变压器step-downtransformer自动调压器automaticregulator高频变压器high-frequencytransformer降压器step-down transformer升压器step-up transformer编号code型号type用途function二次接线图号secondarywiring drawing No.工作电源working source操作电源operating source外形尺寸overall dimension一次主要设备preliminary main equipment辅助设备auxiliary equipment 进线incoming line出线outgoing line规格specification数量quantity高压电器H.T equipment高压配电柜H.T distribution cabinet高压开关柜H.T switchgear手车式高压开关柜draw—out type H.T switchgear户内交流金属铠装挪移式开关柜indoor A.C armored movable switchgear高压无功功率补偿装置H.T reactive power compensator高压静电电容器柜H.T electrostatic capacitor cabinet大功率并联电容无功功率补偿high power parallel capacitor reactive power compensating 高压断路器H.T circuit breaker少油断路器minimum oil circuit breaker油断路器oil circuit breaker 真空断路器vacuum circuit breaker空气断路器air circuit breaker 六氟化硫断路器sulfur hexaflouride breaker (SF6 breaker)户内式indoor (type)户外式outdoor (type)电磁式electromagnetic产气式aerogenic高压接触器H.T contactor高压真空接触器H.T vacuum contactor高压负荷开关switch高压隔离开关H.T isolator操动机构control mechanism手动操动机构hand controlmechanism电磁操动机构magneticcontrol mechanism弹簧储能操动机构(energystoring) spring operatingmechanism电动操动机构motor drivedoperating mechanism高压熔断器H.T fuse跌落式熔断器drop—out fuse高压电抗器H.T reactor串联电抗器series reactor高压互感器H.T transformer移相电容器phase —shiftcapacitor低压配电装置L.Tdistributor device低压配电屏L.T distributionpanel低压无功功率补偿装置L.Treactive power compensator抽屉式低压配电屏drawableL.T distribution panel电动机控制中心motorcontrol center (MCC)固定式低压配电屏fixed L.Tdistribution panel低压静电电容器屏L.Telectrostatic capacitor panel出线屏进线屏联络屏计量屏outgoing panelincoming panelconnection panelmeasurement panel动力馈电屏power feederpanel照明馈电屏lighting feederpanel控制柜control cabinet配电箱distribution cabinet总配电箱general distributionbox动力配电箱powerdistribution box照明配电箱lightingdistribution box插座箱socket box电度表箱kilowatt-hour meterbox非标准控制箱,柜,台non-standard control box,cabinet, desk电源切换箱powerchange-over box开关switch总开关master switch主开关main switch刀开关knife switch负荷开关load switch开启式开关open switch封闭式开关closed switch组合开关combination switch自动空气断路器automaticair breaker框架式skeleton type塑料外壳式断路器mouldedcase circuit breaker (MCCB)行程开关position switch微动开关microswitch万能转换开关universalswitch分级转换开关stepping switch换相开关phase converter防爆开关explosion proofswitch漏电保protection三向开关轻载开关压力开关护开关leakageswitchthree—way switchunderload switchpressure switch单刀双掷开关single-poledouble throw switch接触器contactor交流接触器A.C contactor直流接触器D.C contactor消弧接触器arc extinctioncontactor起动器starter电磁起动器electromagneticstarter磁力起动器magnetic starter自动空气式星三角起动器automatic air star-delta starter减压起动器voltage reducingH.T loadstarter起动控制箱starting controler 低压熔断器L.T fuse螺旋式熔断器screw fuse快速熔断器quick fuse瓷插式熔断器plug-in fuse继电器relay电流继电器current relay电压继电器voltage relay过电流继电器over-current relay信号继电器时间继电器中间继电器漏电继电器signal relay timing relay intermediate relay leakage relay欠压继电器under-voltage relay绝缘监视继合器insulation detection relay交流电度表A.C kilowatt hour meter单相电度表single-phase kilowatt hour meter三相电度表three-phase kilowatt hour meter无功电度表reactive kilovolt ampere-hour meter无功功率表reactive power meteractive power meter电流表ammeter, current meter 电压表voltmeter万用电表universal meter绝缘检查电压表insulation check voltage meter功率因数表power factor meter多相电度表polyphase meter 电力定量器机电electrical machine同步的synchronous异步的asynchronous电动机motor发机电generator转子rotor定子stator 柴油发机电 ( 组 ) dieselgenerator (set)电动发机电 ( 组 ) motorgenerator (set)感应电动机induction motor鼠笼式感应电动机squirrelcage induction motor绕线式电动机wound-rotorinduction motor滑环式电动机slip-ring motor起动电动机starting motor;actuating motor自激电动机motor with selfexcitation同步器synchronizer励磁机exciter伺服电动机service motor插接装置plug device插头plug螺口插座screw socket卡口插座bayonet socket插座socket; outlet单相二极插头1-phase2-pole plug三相插头3-phase plug单相插座single phase socket三相四极插座3-phase4-pole socket接线柱binding post接头adapter接线板terminal block接线盒terminal box;junction box接线箱connection box;junction box线路及安装line andinstallation线,路线高压路线输电路线电源进线line and circuitH.T linetransmission lineincoming line出线outgoing line馈线feeder供电干线main supply line;supply main低压路线L.T line电力干线main power line照明干线main lighting line支线branch line电力支线power branch line照明支线lighting branch line封闭式母线enclosed bus--bar接插式母线plug-in bus--bar接地母线earth line中性线,零线neutral应急照明线emergencylighting line联络线liaison line滑触线trolley line埋地线underground line明线open wire暗线concealed wire明线布线暗线布线通信路线架空路线架空干线电缆路线open wiringconcealed wiringcommunication lineoverhead lineoverhead maincable line电缆沟cable trench电缆桥架cable bridge电缆托架cable tray电缆槽cable duct墙式电缆槽wall duct导线conductor and cable裸导线bare conductor铝线aluminum conductor铜芯线copper core cable电缆cable馈电电缆feed cable电力电缆power cable照明电缆lighting cable通信电缆communicationcable控制电缆信号电缆实心电缆同轴电缆单芯电缆双股电缆高压电缆低压电缆绝缘电缆屏蔽电缆护套电缆铜芯电缆铠装电缆control cablesignal cablesolid cablecoaxial cablesingle-core cablepaired cableH.T cableL.T cableinsulated cableshielded cablesheathed cablecopper core cablearmored cable有功功率表铅包电缆lead-covered cable油浸电缆oil-immersed cable 漆包电缆lacquer-cover cable 纸绝缘电缆paper-insulated cable橡皮绝缘电缆rubber-insulated cable塑料绝缘电缆plastic-insulate cable绕扎电缆wrapped cable聚乙烯polyethylene, polythene聚氯乙烯绝缘电缆polyvinylchloride (PVC) cable 交联聚乙烯绝缘电缆x-linked polyethylene (XLPE) cable乙烯绝缘软性电缆vinyl cabtyre cable阻燃铜芯塑料绝缘电线flame retardant copper core plastic insulated wire交联聚乙烯绝缘钢带铠装聚氯乙烯护套电力电缆x —linked polythene insulated steel tape armored PVC sheathed power cable韧性橡皮绝缘电缆tough-rubber sheathed cable地下电缆ground cable架空电缆overhead cable软电缆flexible cable电缆隧道cable tunnel电缆隧道口cable tunnel exit 电缆井cable pit电缆人孔cable manhole电缆夹cable cleat电缆分线箱cable junction box电缆箱,分线盒cable cabinet 电缆接线头cable plug电缆终端盒,电缆接头电缆吊架,电缆吊杆cable hanger电缆桥架cable bridge埋深buried depth 安装installation安装高度installation height电杆长度pole length线间距离distance betweenlines跨度span弧垂sag交叉点crossing point架空引出over-head leadingout落地安装installed on ground嵌装在墙上built in wall挂墙安装suspended on wall明装surface mounted嵌装flush mounted暗装conceal mounted架空引入over-head leading-in敷设laying明敷exposed laying暗敷concealed laying埋地敷设led underground由……引来(led) from引至(led) to直埋buried directlyunderground穿钢管敷设laid in steelconduit引上led-up引下led--down沿……敷设run along沿墙along wall沿梁along beam跨柱across column弯曲半径bending radius抽头tap-off电缆终端头cable terminationjoint试验,维护test, maintenance试车整定修理验收故障test run, commissionsettingrepairacceptancefault停电power cut, power failure校正correct停机stop定期检修periodicmaintenance继电保护relaying保护protection保护配置protectiondisposition电流速断保护currentquick-breaking protection过电流保护over-currentprotection纵联差动保护tandemdifferential protection过载保护over-load protection距离保护distance protection功率方向保护directionalpower protection继电器relay逆流继电器reverse-currentrelay阻抗继电器impedance relay低周率继电器low frequencyrelay重合闸继电器reclosing relay定向继电器directional relay瞬动继电器instantaneousrelay辅助继电器auxiliary relay差周率继电器differencefrequency relay极化继电器polarized relay合闸位置继电器closingposition relay整定setting整定值set value整定范围setting range时限time lag反时限inverse time定时限definite time定时反时限definite inversetime变时限dependent time死区dead zone保护范围protection range动作action动作时间action time,actuating time动作范围action range延时delay切换switchover瞬时动作instantaneous action 复位reset直流操作D.C operation交流操作A.C operation操作电压control voltage合闸switch on跳闸trip off接通switch-in, close-up备用电源自动投入automatic switch-on of standby power supply自动重合闸automatic reclosing脱扣线圈tripping coil电流脱扣,串联脱扣tripping电压脱扣,并联脱扣series shunttripping起动start住手stop按钮push button断开,切断break, cut off直接起动direct starting延时速断delay quick breaking保护跳闸protecting tripping防跳tripping prevent跳闸指示灯tripping indicating lamp合闸回路closing circuit超温报警over temperature alarming防雷,接地lightning protection and earthing雷击lightning stroke雷害lightning disturbance雷电闪络lightning flash over雷电过电,雷涌lightning surge直击雷direct stroke侧击雷side stroke感应雷induction stroke雷暴thunderstorm雷电日thunder day雷电日数number of lightning days雷电或者然率lightning probability触电electric shock静电感应electrostaticinduction放电electric discharge间隙gap电火花spark电弧arc漏电leakage漏电路径leakage path避雷装置lightning protector避雷针lightning rod,lightning conductor避雷带lightning belt避雷网lightning-protectionnet避雷针支架lightning rodsupport避雷针基础lightning rodbase避雷器arrester球形避雷spherical arrester管式避雷tubular arrester阀式避雷器auto-valvearrester角式避雷器horn arrester多隙避雷器multigap arrester金属氧化物避雷器metal-oxide arrester铅避雷器aluminum arrester氧化膜避雷器oxide filmarrester磁吹避雷器magneticblow-out arrester磁吹阀式避雷器magneticblow-out valve type arrester防雷工程lightning protectionengineering均压网voltage balancing net保护和接地protection andearthing保护范围保护高度保护半径protection rangeprotection heightprotection radius保护角protection angle防雷分类classification oflightning protection一类防雷区first classprotection接地earthing接地电阻earth resistance接地电阻表earth tester防雷接地earthing forlightning protection人工接地artificial earthing工作接地working earthing保护接地protective earthing保护地protective earth信号地signal earth重复接地re-earthing中性点接地neutral pointearthing屏蔽接地接地系统接地故障暗接地线shielding earthingearthing systemearth faultconcealed earth line暗检测点concealed checkpoint接地装置earthing device接地开关earthing switch接地火花避雷器earthingarrester接地母线earth bus接地线earth conductor接地极earth electrode引下线led-down conductor断接卡disconnector接地干线ground bus垂直接地极vertical electrode水平接地极horizontalelectrode降阻剂resistance reducer利用主筋作引下线mainreinforcing bar used asdown-led conductor利用铁爬梯作引下线ironladder used as down-ledconductor接地线引入处entrance ofearth wire自然接地体natural grounding基础接地体foundationgrounding接零保护neutral protection保护接零protectiveneutralization接零干线neutral main利用电线管作零线conduit used as neutral line零线,接地线(conductor) 零线,中性线(conductor) neutral line neutral line带电金属外壳current carrying metallic case不带电金属外壳non-current carrying metallic case材料material金属metal镀锌zinc plating , galvanization镀铂镀钠镀铬镀镍镀锡platinum plating cadmium plating chromium plating nickel plating tin plating镀锌板galvanized sheet 镀锌层zinc coat镀锌钢板plate镀锌扁钢steel镀锌角钢steel镀锌圆钢steel镀锌钢管galvanized steel galvanized flat galvanized angle galvanized round galvanized steelpipe镀锌槽钢steel硬塑料管galvanized channel hard plastic pipe绝缘材料insulating materials 绝缘包布insulating tape填充filling填料filler, filling material电缆膏cable compound绝缘膏insulating compound 膏compound漆lacquer, paint清漆varnish搪瓷enamel; porcelain enamel 沥青bitumen; asphalt云母mica 环氧树脂epoxy resin腊wax石膏gypsum石棉asbestos电木,酚醛塑料bakelite玻璃纤维glass fiber橡皮rubber辅件auxiliaries支架support电缆夹具cable cleal电缆接头cable spice电缆套cable box电缆铠装cable armouring接地螺栓earthing bolt百页窗louvres隔板closure, partition隔热板heat shield法兰,垫圈flange镀锌螺母galvanized nut螺钉螺栓垫块垫木垫片垫圈吊钩screw, nailboltbearerskidgasket, spacerwasher; (ring ) gaskethanging hook轨rail照明lighting人工照明artificial lighting工作照明working lighting直接照明direct lighting间接照明indirect lighting局部照明local lighting; spotlighting挪移照明portable lighting应急照明emergency lighting疏散照明egress lighting值班照明duty lighting警卫照明guard lighting障碍照明obstacle lighting正常照明normal lighting舞台照明stage lighting走道照明corridor lighting盘面照明dial lighting楼梯照明staircase lighting剧场照明theater lighting室内照明indoor lighting室外照明道路照明广场照明街道照明照明方式普通照明辅助照lightingoutdoor lightingroad lightingplaza lightingstreet lightinglighting patterngeneral lighting明supplementary大面积照明area lighting大面积泛光照明area floodlighting逆光照明back lighting漫散照明diffuse lighting橱窗照明shop windowlighting。
电气工程及其自动化专业英语介绍

电气工程及其自动化专业英语介绍Introduction to Electrical Engineering and its Automation1. IntroductionElectrical Engineering and its Automation is a specialized field that combines the principles of electrical engineering with automation technology. It focuses on the design, development, and implementation of electrical systems and their automation for various applications in industries, power generation, communications, and transportation.2. CurriculumThe curriculum of Electrical Engineering and its Automation program is designed to provide students with a strong foundation in electrical engineering principles, automation technology, and practical skills. The courses typically include:2.1 Electrical Engineering Courses- Circuit Theory: This course introduces the fundamental concepts of electrical circuits, including Ohm's Law, Kirchhoff's Laws, and circuit analysis techniques.- Electromagnetic Field Theory: Students learn about the behavior of electromagnetic fields and how they interact with electrical systems.- Power Systems: This course covers the generation, transmission, and distribution of electrical power, as well as power system protection and control.- Digital Electronics: Students study the principles of digital logic circuits and learn to design and analyze digital systems.- Control Systems: This course focuses on the theory and techniques used in the design and analysis of control systems.2.2 Automation Technology Courses- Programmable Logic Controllers (PLCs): Students learn about the programming and application of PLCs, which are widely used in industrial automation.- Industrial Robotics: This course introduces the principles and applications of industrial robots in manufacturing processes.- Human-Machine Interface (HMI): Students study the design and development of user-friendly interfaces for interacting with automated systems.- Industrial Networks: This course covers the communication protocols and network architectures used in industrial automation.3. Laboratory FacilitiesThe Electrical Engineering and its Automation program provides state-of-the-art laboratory facilities to enhance practical learning and research opportunities for students. These facilities include:3.1 Electrical Circuits Laboratory: Equipped with various electrical components and instruments, this lab allows students to conduct experiments related to circuit analysis, electrical measurements, and troubleshooting.3.2 Automation Laboratory: This lab provides hands-on experience with programmable logic controllers, industrial robots, and human-machine interfaces.3.3 Power Systems Laboratory: Students can simulate and analyze power system operations, protection schemes, and control strategies using advanced software tools.4. Career ProspectsGraduates of the Electrical Engineering and its Automation program have diverse career opportunities in various industries, research institutions, and government organizations. Some potential career paths include:4.1 Electrical Engineer: Graduates can work as electrical engineers, involved in the design, installation, and maintenance of electrical systems in industries such as power generation, telecommunications, and transportation.4.2 Automation Engineer: With expertise in automation technology, graduates can work as automation engineers, responsible for designing and implementing automated systems in manufacturing and process industries.4.3 Control Systems Engineer: Graduates can pursue careers as control systems engineers, involved in the design and optimization of control systems for industrial processes and machinery.4.4 Research and Development: Graduates can also pursue research and development roles, working on advanced technologies and innovations in electrical engineering and automation.5. ConclusionThe Electrical Engineering and its Automation program offers a comprehensive education in electrical engineering principles and automation technology. With a strong theoretical foundation and practical skills, graduates are well-equipped to contribute to the advancement of industries and society through the design and implementation of innovative electrical systems and automation solutions.。
(最新整理)(完整版)电气工程及其自动化专业英语

电气工程及其自动化专业教研室
6
• The exciting or magnetizing current (励磁电流)can thus be very small. Further, the proportion of the total flux which is linked mutually by the two coils is greatly increased.
of two coils in close proximity. One coil of N1 turns is excited with
alternating current and therefore establishes a flux φ11 which alternates with the current (随时间交变). The other coil is linked
• the applied voltage 外施电压
• zero-power-factor 零功率因数
• the no-load power factor 空载功率因数
• formulate 用公式表示,系统地阐述
• saturation 饱和
2021/7/26
电气工程及其自动化专业教研室
4
Unit 11 The Transformer on No Load
a result (因此), is called the secondary winding.
2021/7/26
电气工程及其自动化专业教研室
7
• It should not be difficult to realize that the two functions are interchangeable: if coil 2 were excited instead, a mutual e.m.f. would be induced in coil 1 which would then become the secondary winding(二次绕组).
电气自动化专业英语词汇

nylonflexibleconduit,polyamidetubing波纹管fleciblecable曲挠电缆electronicballast电子镇流器sheathedcontrolcable屏蔽控制电缆horsepower马力slip转差率SSR(SolidStateRelay)固态继电器gain增益powerfrequency工频harmonic谐波airknife风刀anodizing阳极化DIWater去离子水BJ(bubblejet)二流体exhaust排气drain排水humidity湿度RH相对湿度perssure压力temperature温度negatibepole负极positivepole正极common公共端source原极sink漏极FFU(fanfilterunit)风扇过滤单元intensity,绝缘体conductor导体tacttime节拍lifetime寿命NG(nogood)不良品OKREWORK再生laminator,coat,贴膜vaccum真空absoluteencoder绝对值编码器ABSabsoluteposition绝对位置INCincreasepisition增量位置velocity速度acceleratedtime加速时间decelaretimeanalogtodigitalconvertetA/Dantenna天线acceleration加速度stroke行程bolt螺栓boltholebypass旁路interpolation插补100baseT双绞线电缆相连速率100mbpsthreshole灰度值tolerance容忍度TBD待决定capacitor电容有功activepowerreactivepower无功lowerlimit上限upperlimit下限CIMcomputerintegrationmanufacturing电脑整合创造FAfactoryautomation工厂自动化DIWDE-IonizedWater去离子水UPWUltra-pureWater超纯水cleanroom洁净室HEPAhighefficientparticulateairfilter高效粒子空气过滤MGVmanualguidedvehicle人力搬运车AGVautomaticguidedvehicle自动搬运车
专业是电气工程及其自动化英语

专业是电气工程及其自动化英语Electrical Engineering and Automation.Electrical engineering and automation is a branch of engineering that deals with the generation, transmission, distribution, and utilization of electrical energy. It also involves the design, development, and maintenance of automated systems.Electrical engineers are responsible for designing and maintaining electrical systems in a variety of settings, including homes, businesses, and industrial facilities. They also work on the development of new electrical technologies, such as solar and wind power.Automation engineers are responsible for designing and maintaining automated systems in a variety of settings, including factories, warehouses, and hospitals. They also work on the development of new automation technologies, such as robotics and artificial intelligence.Education.Electrical engineering and automation programstypically require students to complete coursework in mathematics, physics, and computer science. Students also take courses in electrical engineering fundamentals, such as circuit theory, electromagnetic fields, and power systems. Automation engineering students take additional courses in control theory, robotics, and artificial intelligence.Most electrical engineering and automation programs are accredited by the Accreditation Board for Engineering and Technology (ABET). ABET accreditation ensures that programs meet the highest standards of quality and that graduates are prepared to enter the workforce.Career Outlook.The job outlook for electrical engineers and automation engineers is expected to be good over the next few years.The demand for electrical engineers is expected to increase as the world becomes increasingly electrified. The demand for automation engineers is also expected to increase as businesses look to automate more of their operations.Salary.The median annual salary for electrical engineers is $97,410. The median annual salary for automation engineers is $110,140.Related Fields.Electrical engineering and automation is a relatedfield to several other engineering disciplines, including computer engineering, mechanical engineering, andindustrial engineering.Professional Societies.There are a number of professional societies that electrical engineers and automation engineers can join.These societies offer opportunities for professional development, networking, and leadership. Some of the most popular professional societies for electrical engineers and automation engineers include:Institute of Electrical and Electronics Engineers (IEEE)。
电气工程及其自动化专业英语

time-invariant 时不变的
self-(or mutual-)induction 自(互)感
displacement current 位移电流 conductance 电导
voltage drop 电压降 volt-ampere characteristics 伏安特性
metal-filament lamp 金属丝灯泡
seen, increase of current from zero to
I≈I1 causes the terminal voltage of the source to decrease linearly
V12=V=E-VS=E-RSI
Fig.1.3
In other words, the voltage drop VS across the source resistance rises in proportion to the current. This goes on until
电气自动化专业英语lesson 1.1_new

济南大学控制科学与工程学院
自动化专业英语
7
• This general diagram can represent (代表, 说明) a wide variety of control systems.
• The system to be controlled might be an aircraft ( 飞 行 器 ), a large electric power generation (发电站) and distribution system ( 传 输 系 统 ), an industrial process, a head positioner (磁头定位器) for a computer disk
methods to solve these optimal control
problems.
• 实际上,我们将现代控制理论分为两个阶段,一是从 60年代到80年代,线性系统理论、最优控制、系统辨 识、状态估计为基础的现代控制理论。二是80年代以
后发展的多种现代控制算法:非线性控制、鲁棒控制、 自适应、模型预测、人工智能…
• Control objective(s)
• Input variables – manipulated or disturbance variables.
• Output variables – measured or unmeasured variables.
• Constraints – classify these as hard or soft.
.
.
.
.
.
.
.
. Control processors(s)
.
.
.
sensors
电气工程及其自动化专业英语

电气工程及其自动化专业英语Section I basic electric circuitChapter 1 Introduction to electric circuitsNew Words and Expressions1. electrical circuit n. 电路2. voltage n. 电压,伏特3. curre nt n. 电流,通用的,流通的,现在的4. curre nt flow n. 电流5. resistor n. 电阻,电阻器6. battery n. 电池7. load n. 负载,负荷8. performa nee n. 性能9. circuit diagram n. 电路图10. idealized model n. 理想模型Introduction*A simple circuit and its components.idealized model of the circuit*Model can be cha nged if n ecessary.*summarizeIn elementary physics classes you undoubtedly have been introduced to the fun dame ntal con cepts of electricity and how real comp onen ts can be put together to form an electrical circuit. A very simple circuit, for example, might consist of a battery, some wire, a switch, and an incandescent light bulb as shown in Fig.1-1. The battery supplies the en ergy required to force electro ns around the loop, heati ng the filame nt of the bulb and caus ing the bulb to radiate a lot of heat and some light.Energy is transferred from a source, the battery, to a load, the bulb———You probably already know that the voltage of the battery and the electrical resista nee of the bulb have something to do with the amount of curre nt that will flowin the circuit. From your own practical experienee you also know that no current will flow until the switch is closed. That is, for a circuit to do anything, the loop has to be completed so that electro ns can flow from the battery to the bulb and the n back aga in to the battery. And fin ally, you probably realize that it doesn t much matter, whether there is on e foot or two feet of wire connecting the battery to the bulb, but that it probably would matter if there is a mile of wire between it and the bulb.Also shown in Fig. 1-1 is a model made up of idealized components. The batteryis modeled as an ideal source that puts out a constant voltage, VB, no matter what amount of curre nt, i, is draw n. The wires are con sidered to be perfect con ductors that offer no resista nee to curre nt flow. The switch is assumed to be ope n or closed. There is no arcing of curre nt across the gap whe n the switch is ope ned, nor is there any bounce to the switch as it makes con tact on closure. The light bulb is modeled as a simple resistor, R, that never changes its value, no matter how hot it becomes or how much curre nt is flow ing through it.Fig. 1-1 (a) A simple circuit(b) An idealized represe ntati on of thecircuitFor most purposes, the idealized model shown in Fig. 1-1b is an adequate represe ntati on of the circuit; that is, our prediction of the current that will flow through the bulb whenever the switch is closed will be sufficiently accurate that we can consider the problem solved. There may be times, however, when the model is in adequate. The battery voltage, for example, may drop as more and more curre nt is drawn, or as the battery ages. --------------------------------- T he light bulb' s resistance may change as it heats up, and the filame nt may have a bit of inductance and capacitance associated with it as well as resistance so that when the switch is closed, the current may not jump in sta ntan eously from zero to some fin al, steady state value. The wires may beundersized, and some of the power delivered by the battery may be lost in the wires before it reaches the load. These subtle effects may or may not be important, depending on what we are trying to find out and how accurately we must be able to predict the performa nee of the circuit. If we decide they are importa nt, we can always cha nge the model as n ecessary and then proceed with the an alysis. The point here is simple. The comb in ati ons of resistors, capacitors, in ductors, voltage sources, curre nt sources, and so forth, that you see in a circuit diagram are merely models of real comp onents that comprise a real circuit, and a certa in amount of judgme nt is required to decide how complicated the model must be before sufficie ntly accurate results can be obta in ed. For our purposes, we will be using very simple models in general, leav ing many of the complicati ons to more adva need textbooks.Chapter 2Definitions of key electrical quantitiesNew Words and Expressionscharge n. vt.电荷;充电nu cleus n.原子核(pl.); nuclear adj.n egative n.否定,负数,底片adj.否定的,消极的,负的,阴性的positive adj.[数]正的adj.[电]阳的in gen eral 通常,大体上,一般而言,总的说来algebraic adj.代数的,关于代数学的soluti on to the circuit problem n.关于电路问题的解法the un its of power n.功率的单位direct curre nt (dc) n 直流电alter nat ing curre nt(ac) n.交流电sinu soidally adv.正弦地tran sistor n.晶体管Part 1 Charge and CurrentAn atom con sists of a positively charged nu cleus surro un ded by a swarm of n egativelycharged electr ons. The charge associated with one electr on has bee n found to be 1.602 x 10- 19 coulombs; or, stated the other way around, one coulomb can be defined as the charge on 6.242 x 1018 electro ns. While most of the electr ons associated with an atom are tightly bound to the nu cleus, good con ductors, like copper, have free electrons that are sufficie ntly dista nt from their nu clei that their attract ion to any particular n ucleus is easily overcome. These con ducti on electr ons are free to wan der from atom to atom, and their moveme nt con stitutes an electric curre nt.In a wire, when one coulomb ' s worth of charge passes a given spot in one second, the current is defined to be one ampere (abbreviated A), named after the nineteenth-century physicist Andr ' e Marie Amp'ere. That is, curre nt i is the net rate of flow of charge q past a point, or through an area:i=d q/d t (1.1)In general, charges can be negative or positive. For example, in a neon light, positive ions move in one direct ion and n egative electr ons move in the other. Each con tributes to curre nt, and the total curre nt is their sum. By conven ti on, the direct ion of curre nt flow is take n to be the direct ion that positive charges would move, whether or not positive charges happen to be in the picture. Thus, in a wire, electrons moving to the right constitute a current that flows to the left, as shown in Fig.1-2.(〉)dq--- / =—dtFig. 1-2 By conven tio n, n egative charges movi ng in one direct ion con stitute a positive curre ntflow in the opposite direct ionW/hen charge flows at a steady rate in one direction only, the current is said to be direct current, or 血A battery, for example, supplies direct curre nt. When charge flows back and forth sinusoidally, it is said to be alternating current, or ac. In the United States the ac electricity delivered by tes of ac and dc are show n in Fig.1-3.Time ―(a)Fig. 1-3 (a) Steady-state direct curre nt (de) (b) Alter nat ing curre nt(ac)Part 2 Kirchhoff' s Current LawTwo of the most fun dame ntal properties of circuits were established experime ntally a cen tury and a half ago by a Germa n professor, Gustav Robert Kirchhoff (1824 - 1887). The first property, known as Kirchhoff ' s current law (abbreviated KCL), states that at every instant of time the sum of the curre nts flow ing into any node of a circuit must equal the sum of the curre nts leavi ng the no de, where a node is any spot where two or more wires are join ed. This is a very simple, but powerful con cept. It is in tuitively obvious once you assert that curre nt is the flow of charge, and that charge is con servative—n either being created nor destroyed as it en ters a no de. Uni ess charge somehow builds up at a no de, which it does not, the n the rate at which charge en ters a node must equal the rate at which charge leaves the no de.There are several alter native ways to state Kirchhoff ' s curre nt law. The most com monly used stateme nt says that the sum of the curre nts flow ing into a node is zero as show n in Fig. 1-4a, in which case some of those curre nts must have n egative values while some have positive values. Equally valid would be the stateme nt that the sum of the curre nts leav ing a node must be zero as show n in Fig. 1-4b(aga in some of these curre nts n eed to have positive values and some n egative). Fin ally, we could say that the sum of the curre nts en teri ng a node equals the sum of the curre nts leav ing a node (Fig. 1-4c). These are all equivale nt as long as we un dersta nd what is meant about the directi on of curre nt flow whe n we in dicate it with an arrow on a circuit diagram. Curre nt that actually flows in the directi on show n by the arrow is give n a positive sig n. Curre nts that actuallyflow in the opposite direct ion have n egative values.(a) The sum of the curre nts into a node equals zero(b) The sum of the curre nts leav ing the node is zero(c) The sum of the curre nts en teri ng a node equals the sum of the curre nts leavi ng the node Note that you can draw curre nt arrows in any directio n that you want — that much is arbitrary — but once havi ng draw n the arrows, you must the n write Kirchhoff ' s curre nt law in a manner that is con siste nt with your arrows, as has bee n done in Fig.1-4. The algebraic soluti on to the circuit problem will automatically determ ine whether or not your arbitrarily determ ined direct ions for curre nts were correct.Example 1.1 Using Kirchhoff ' s Current LawA node of a circuit is shown with current direction arrows chosen arbitrarily. Havingpicked those directi on s, i1 = - 5 A, i2 = 3 A, and i3 = - 1 A. Write an expressi on for Kirchhoff ' s current law and solve for i4.Solution. By Kirchhoff ' s current law,i1 + i2 = i3 + i4 so thatThat is, i4is actually 1 A flowi ng into the no de. Note that i2, i3, and i4 are all en teri ng the no de, and i1 is the only curre nt that is leavi ng the no de.Part 3 Kirchhoff ' s Voltage LawElectr ons won ' t flow through a circuit uni ess they are give n some en ergy to help send them on their way. That “ push ” is measured in volts, where voltage is defi ned to be the amount nodenodenode1 + i4 i4 = - 1 AFig. 1-4 lllustrating various ways that Kirchhoff ' s current law can be statedof en ergy (w, joules) give n to a un it of charge,v=dw/dq A 12-V battery therefore gives 12 joules of en ergy to each coulomb of charge that it stores. Note that the charge does not actually have to move for voltage to have meaning. Voltage describes the potential for charge to do work.While curre nts are measured through a circuit comp onent, voltages are measured across componen ts. Thus, for example, it is correct to say that curre nt through a battery is 10 A, while the voltage across that battery is 12 V. Other ways to describe the voltage across a comp onent in clude whether the voltage rises across the comp onent or drops. Thus, for example, for the simple circuit in Fig. 1-1, there is a voltage rise across the battery and voltage drop across the light bulb. Voltages are always measured with respect to someth ing. That is, the voltage of the positive terminal of the battery is“ so many volts ” with respect to the negative terminal; or, the voltage at a point in a circuit is some amount with respect to some other poin t. In Fig. 1-5, curre nt through a resistor results in a voltage drop from point A to point B of VAB volts. V A and VB arethe voltages at each end of the resistor, measured with respect to some other point.The reference point for voltages in a circuit is usually desig nated with a ground symbol. While many circuits are actually groun ded — that is, there is a path for curre nt to flow directly into the earth —some are not (such as the battery, wires, switch, and bulb in a flashlight). When a ground symbol is show n on a circuit diagram, you should con sider it to be merely a reference point at which thevoltage is defi ned to be zero. Fig.1-6 points out how cha nging the node labeled as ground cha nges the voltages at each node in the circuit, but does not cha nge the voltage drop across each comp onent.(1-2)Fig. 1-5 The voltage drop from point A to point B is V AB, where VAB = VA - VBThe sec ond of Kirchhoff ' s fun dame ntal laws states that the sum of the voltages around any loop of a circuit at any instant is zero. This is known as Kirchhoff ' s voltage law (KVL). Just as was the case for Kirchhoff ' s curre nt law, there are alter native, but equivale nt, ways of stat ing KVL. We can, for example, say that the sum of the voltage rises in any loop equals the sum of the voltagedrops around the loop. Thus in Fig. 1-6, there is a voltage rise of 12 V across the battery and avoltage drop of 3 V across R1 and a drop of 9 V across R2. ------------- Notice that it doesn' t matterwhich node was labeled ground for this to be true. Just as was the case with Kirchhoff ' s current law, we must be careful about labeli ng and in terpret ing the sig ns of voltages in a circuit diagram in order to write the proper vers ion of KVL. A plus (+) sig n on a circuit comp onent in dicates a reference direct ion un der the assumpti on that the pote ntial at that end of the comp onent is higher than the voltage at the other end. Aga in, as long as we are con siste nt in writi ng Kirchhoff ' s voltage law, the algebraic soluti on for the circuit will automatically take care of sig ns.Part 5 Summary of Principal Electrical QuantitiesThe key electrical qua ntities already in troduced and the releva nt relati on ships betwee n these quantities are summarized in Table 1-1.Since electrical quantities vary over such a large range of magnitudes, you will often find yourself work ing with very small qua ntities or very large qua ntities. For example, the voltage created by your TV antenna may be measured in millionths of a volt (microvolts, 卩V), while the power gen erated by a large power stati on may be measured in billi ons of watts, or gigawatts (GW). To describe quantities that may take on such extreme values, it is useful to have a system of prefixes that accompany the units. The most commonly used prefixes in electrical engineering are give n in Table 1-2.Part 6 Ideal Voltage Source and Ideal Current SourceElectric circuits are made up of a relatively small nu mber of differe nt kinds of circuiteleme nts, or comp onen ts, which can be in terc onn ected in an extraord in arily large nu mber of ways.At this point in our discussion, we will concentrate on idealized characteristics of these circuit eleme nts, realiz ing that real comp onents resemble, but do not exactly duplicate, the characteristics that we describe here.An ideal voltage source is one that provides a give n, known voltage vs, no matter what sort ofload it is conn ected to. That is, regardless of the curre nt draw n from the ideal voltage source, it will always provide the same voltage. Note that an ideal voltage source does not have to deliver a con sta nt voltage; for example, it may produce a sinu soidally vary ing voltage —the key is that voltage is not a fun ctio n of the amount of curre nt draw n. A symbol for an ideal voltage source is show n in Fig. 1-7.A special case of an ideal voltage source is an ideal battery that provides a con sta nt dc output, as show n in Fig. 1-8. A real battery approximates the ideal source; but as curre nt in creases, the output drops somewhat. To acco unt for that drop, quite ofte n the model used for a real battery is an ideal voltage source in series with the internal resista nee of the battery.An ideal curre nt source produces a give n amount of curre nt is no matter what load it sees. As show n in Fig. 1-9, a commo nly used symbol for such a device is circle with an arrow in dicati ng the directi on of curre nt flow. While a battery is a good approximati on to an ideal voltage source, there is nothing quite so familiar that approximates an ideal curre nt source. Some tran sistor circuits come close to this ideal and are ofte n modeled with idealized curre nt sources.Section II The electric power systemChapter 1 Brief Introduction to The Electric Power SystemNew Words and ExpressionsMinimum a 最小prime mover n 原动机gen erator n 发电机load n 负载furn ace n 炉膛boiler n 锅炉fissi on able n 可裂变的fissi on able material 核燃料Part 1 Minimum Power systemelevatio n n 高度,海拔internal combusti on engine 内燃机 steam-drive n turbi ne 汽轮机hydraulic turbi ne 水轮机convert v 变换,转换 shaft n 传动轴,轴 torquen 力矩servomecha nism n 伺服机构* Elements of a minimum electric power system *Types of energy source *Types of prime mover *Types of electrical load*Functions of the control systemA minimum electric power system is shown in Fig.1-1, the system consists of an energy source, a prime mover, a generator, and a load.The en ergy source may be coal, gas, or oil burned in a furnace to heat water and gen erate steam in a boiler; it may be fissi on able material which, in a nu clear reactor, will heat water to produce steam; it may be water in a pond at an elevatio n above the gen erat ing stati on; or it may be oil or gas burned in an internal combusti on engine.The prime mover may be a steam-driven turbine, a hydraulic turbine or water wheel, or aninternal combustion engine. Each one of these prime movers has the ability to convert energy in the form of heat, falling water, or fuel into rotation of a shaft, which in turn will drive theEnergy source Prime nioverGenerator Lx>adContjolFig* 1-1 The tninfnmm electric power systemgen erator.The electrical load on the gen erator may be lights, motors, heaters, or other devices, alone or in comb in ati on. Probably the load will vary from mi nute to min ute as differe nt dema nds occur. The control system functions (are ) to keep the speed of the machines substantially constant and the voltage within prescribed limits, even though the load may cha nge. To meet these load con diti on s, it is n ecessary for fuel in put to cha nge, for the prime mover in put to vary, and for the torque on the shaft from the prime mover to cha nge in order that the gen erator may be kept at con sta nt speed. In additi on, the field curre nt to the gen erator must be adjusted to maintain con sta nt output voltage. The con trol system may in clude a man stati oned in the power pla nt who watches a set of meters on the gen erator output term in als and makes the n ecessary adjustme nts manu ally .In a moder n stati on, the con trol system is a servomecha nism that sen ses gen erator-output con diti ons and automatically makes the n ecessary cha nges in en ergy in put and field curre nt to hold the electrical output with in certa in specificati ons.Part 2 More Complicated Systems*Foreword*Cases of power system with out circuit breaker *Power system with circuit breakerNew Words and Expressions1. associated2. circuit3. circuit breaker4. dee nergize5. dee nergized6. outage n7. diagram8. switch out of9. switch offIn most situati ons the load is not directly conn ected to the gen erator term in als. More com monlya 联接的 n 电路n 断路器 vt 切断,断电 adj 不带电的停电 n 简图退出来,断开 v 切断,关闭the load is some distanee from the generator, requiring a power line connecting them. It is desirable to keep the electric power supply at the load with in specificati ons. However, the con trols are near the generator, which may be in another building, perhaps several miles away.If the dista nce from the gen erator to the load is con siderable, it may be desirable to in stall transformers at the generator and at the load end, and to transmit the power over a high-voltage line (Fig.1-2). For the same power, the higher-voltage line carries less current, has lower losses for the same wire size, and provides more stable voltage., TransformerTransformerPrime 〔Mover Generator f C High-voltage line—Fig- 1-2 A generator connected through transformers anda high-voltage line to a distant loadIn some cases an overhead line may be un acceptable. In stead it may be adva ntageous to use an un dergro und cable. With the power systems talked above, the power supply to the load must be in terrupted if, for any reas on, any comp onent of the system must be moved from service for maintenance or repair.Additi onal system load may require more power tha n the gen erator can supply. Ano ther gen erator with its associated tran sformers and high-voltage line might be added.It can be shown that there are some advantages in making ties between the generators (1) and at the end of the high-voltage lines (2 and 3), as shown in Fig.1-3. This system will operate satisfactorily as long as no trouble develops or no equipment needs to be taken out of service.Kig. 1-3 A system with para)lei operation or the generators t of the transformers andof the transmission lintsThe above system may be vastly improved by the in troducti on of circuit breakers, which may be ope ned and closed as n eeded. Circuit breakers added to the system, Fig.1-4, permit selected piece of equipme nt to switch out of service without disturb ing the rema in der of system. With this arran geme nt any eleme nt of the system may be dee nergized for maintenance or repair by operati on of circuit breakers. Of course, if any piece of equipme nt is take n out of service, the n the total load must be carried by the remaining equipment. Attention must be given to avoid overloads duri ng such circumsta nces. If possible, outages of equipme nt are scheduled at times when load requireme nts are below no rmal.Low-voltageo=^GeneratorsFig.1-5 shows a system in which three gen erators and three loads are tied together by threeFig* 1-4 A system with necessary circuit breakerstran smissi on lin es. No circuit breakers are show n in this diagram, although many would berequired in such a system.Fis- 1-S Three generators supplying threeloads over hlgh-voltnge trAnsmlsston linesChapter 2 Faults on Power SystemNew Words and Expressions1. fault2. in terfere neen 干扰,防碍6. feed (fed)给。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章的参考译文:仅供参考,不恰当的地方,请自行修改补充,欢迎通过Email(qiulk@)进行讨论和交流。
5.1 电动机发展简史电动机已经存在很多年了。
自从多年前的第一次应用以来,电动机的应用领域快速地扩大了。
目前,其应用范围继续以快速增长。
托马斯.爱迪生因提出了大规模发电和传输电力而得名。
他完成了由蒸汽机驱动的直流发电机的研发工作。
爱迪生在电灯和发电方面的贡献引领了直流电机以及相关控制设备的发展。
大多数与电机运行相关的早期科学发现主要涉及直流系统。
不久之后,交流电的发电和传输推广开来。
转变到交流发电和传输的主要原因是变压器被用来提升交流电压以便于远距离传输电力。
因此,变压器的发明使得发电和电力传输从直流向交流变换成为可能。
目前,几乎所有的电力系统产生和传输的都是三相交流电。
变压器使得由交流发电机产生的电压被升高而电流相应地被减小。
这一切使得在一个降低了的电流水平上进行长距离的电力传输,减小了功率损失,而提高了系统的效率。
电机广泛应用于家用电器、工业和商业上,用于驱动机器和复杂的设备。
许多机器和自动化设备需要精确控制。
因此,自从早期应用于火车的直流电机以来,电机设计和复杂性已经发生了变化。
电机控制方法已经成为关系机器和设备运行效率的至关重要的因素。
一些创新,例如伺服控制系统和工业机器人已经引领了电机设计的新的发展方向。
我们复杂的交通系统也对电机的应用产生了影响。
汽车和其它地面交通工具用电动机作为点火启动系统,用发电机作为电池充电系统。
电动汽车成为最近的研究热点。
飞机应用电机的方式与汽车相似,然而,在实际应用中,飞机上采用了复杂的同步电机和伺服控制电机。
5.2 电机的基本结构旋转电机实现了电能-机械能之间的转换。
发电机将机械能转换成电能,而电动机将电能转换成机械能。
发电机和电动机具有相同的基本结构特点,这一点对于大多数类型的电机来说是一致的。
虽然多种电机在结构上是相同的,但是,它们的功能是不同的。
发电机的旋转运动由提供机械能输入的原动机提供。
导体和发电机磁场之间的相对运动产生电能输出。
电动机将电能施加到其绕组和磁场上,形成电磁感应作用,产生机械能或力矩。
大多数旋转电机的结构具有某种程度的相似性,多数电机具有一个静止的部件称为定子,而旋转的一组导体称之为转子。
定子由轭或机壳组成,用于支撑和构成磁通的金属回路。
5.2.1磁极与绕组旋转电机具有磁极,他们是电机定子的一个组成部分。
磁极由钢片叠制而成,并且与机壳是绝缘的,在靠近转子的部分是弯曲的,用于提供低租的磁通回路。
磁场绕组或磁场线圈被置于磁极周围。
这些磁场线圈构成了电磁铁,用来与转子产生电磁场相互作用,从而产生感生电压或在电动机中产生力矩。
5.2.2转子结构在电机的研究中,需要理解由电动机或发电机的旋转部分产生的电磁场,该旋转部分称为电枢或转子。
一些类型的电机采用坚固的金属转子,成为为鼠笼式转子。
5.2.3滑环、开口环和电刷为了将电能施加到旋转装置上,例如电枢,一些滑刷接触必须建立起来。
滑刷接触可以是滑环,也可以是开口环。
滑环由绝缘的圆柱形材料构成,其上粘贴两块分开的固态金属环,滑动电刷由碳或石墨制成,放在金属环上,在旋转过程中,向滑环施加或抽取电能。
开口环换向器与滑环相似,只不过该金属环被分成两个或更多个独立的部分。
作为一个基本原则/惯例,滑环用于交流电动机和发电机,而开口环用于直流电动机。
开口尽可能地小,以减少碳刷的火花。
滑环和开口环如图5.1所示。
5.2.4其它电机部件在旋转电机的结构中,还用到其它几个部件。
其中有电机轴,在一组轴承上进行旋转。
轴承可以是滚珠轴承、滚柱轴承或轴套轴承。
轴承密封通常是由毡类材料制成,用于保持轴承润滑和防止灰尘进入。
转子芯通常由叠制的钢片组成,以在磁极之间提供低磁阻的磁通回路,并有利于减小涡流。
内部和外部接线柱提供了传入或传出电能的途径。
5.3 电动机的结构特点在现有的电子机械装置中,能量转换过程通常有两个重要特点。
有磁场绕组,用以产生磁通密度,还有电枢绕组,产生起作用的感生电动势。
在本小节中,将描述主流类型电动机的突出结构特点,揭示这些绕组的位置、并展示这些电机的基本组成部分。
5.3.1 三相感应电动机这是一种工业上最耐用、应用最广的电动机。
它的定子有高规格的钢片叠制而成,内表面开槽用于安放三相绕组。
在图5.2(a)中,三相绕组用三个线圈表示,它们之间呈120度电气角。
线圈aa’表示一对磁极的所有的a相线圈。
与之类似,线圈bb’表示所有的b相线圈,cc’表示所有的c相线圈。
当每相线圈的一端连在一起时,如图5.2(b)所示。
这种三相定子绕组的接法称为Y型连接(接法)。
这样的绕组被称为三相绕组,因为在三相绕组的每一个绕组中产生的感应电压在相位上相差120度电气角—这是平衡的三相系统的一个突出特点。
转子也由开槽的铁磁性材料叠制而成,但转子绕组可以是鼠笼式的,也可以使绕线式的。
后者形式和定子绕组类似。
绕组的末端被引出到三个滑环,使得可以连接一个外部的三相电阻,用于实现转速控制。
事实上,也是转速控制的需要,这种情况下,多考虑使用绕线式感应电机。
否则,将使用鼠笼式感应电机。
鼠笼式绕组只,由几根嵌入到转子槽中的铜棒组成,其两端通过铜端环相连。
(在一些小尺寸电机中,用铝来做)。
鼠笼式结构不仅简单、比其它绕线式电机更经济,而且更耐用。
没有令人烦恼的滑环和碳刷。
在正常运行中,三相电压施加到如图5.2所示的a-b-c点(定子绕组)。
磁化电流流经每一相线圈,它们合在一起产生一个具有两极的旋转磁场。
旋转磁场的速度取决于磁化电流的频率和磁极的数目,其由定子绕组设计所决定。
图5.2所示的是两极磁场的结构。
如果模式a-c’-b-a’-c-b’只占180度机械角,而且在剩余的180度角上重复一次,那么这个电机具有四极磁场分布。
对于一个P-极电机,基本的绕组模式必须在定子内表面的圆周上重复P/2次。
由定子绕组产生的旋转磁场切割转子导体从而产生感应电压。
由于转子绕组由铜端环短路,那么感应电压就会产生电流,该电流反过来与磁场相互作用产生电磁力矩—这样电机就旋转起来。
因此,在前面叙述的基础上,对三相感应电机来说,显而易见,磁场绕组位于定子上,电枢绕组在转子上。
另一个值得注意之处是该电机是单励的,即,电能只施加到定子绕组上。
电流因电磁感应而流过转子绕组。
因此,用于建立磁场的励磁电流和传输能量到电机轴负载的功率电流都流过定子绕组。
正是因为这个原因,并且对于一个给定的电流额定,为了尽可能地减小励磁电流和相应地提高输出功率电流,感应电机的气隙尽机械公差允许地小。
气隙的长度在小电机的0.02英寸,和高额定功率和转速电机的0.05英寸之间变化。
5.3.2同步电机同步电机的基本结构特点如图5.3所示。
定子由定子机壳、开槽的定子芯—为磁通提供低磁阻通路、和嵌入槽内的三项绕组构成。
注意:图5.2(a)中的模式在这里重复了两次,表明该三相绕组是按四极电机设计的。
转子要么是装有分布式绕组的圆柱形,要么是图5.3中所示的那样:几个凸出的磁极,根部绕有线圈。
圆柱形转子结构只用于高速旋转的涡轮发电机上;另一方面,凸极结构只用在转速在1800转/分及其以下的同步电机上。
当同步电机用作发电机时,从原动机输入机械能,例如,蒸汽涡轮机,并以固定的速度运行。
同时,转子绕组由一个直流电源供电,从而建立一个沿气隙的磁场分布。
当转子静止且直流流过转子绕组时,因磁通没有切割定子线圈,所以在定子线圈中没有产生感生电压。
然而,当转子全速旋转时,在定子线圈中产生感生电压,根据应用负载情况,相应的电能被施加到同步电机上。
对于同步电机来说,磁场绕组位于转子上,电枢绕组位于定子上。
当同步电机用作电动机时,上述论述也是正确的。
在这种模式下,交流电能施加到定子绕组,且直流电能施加到转子绕组上,给磁极提供能量,在电机轴上就能够输出机械能了。
也要注意:与感应电机不同,同步电机是双励电机,也就是说,需要向转子和定子输入电能,实际上,正是这个特点使得该电机只能在一个速度下输出非零力矩—称为“同步”的由来。
对于同步电机来说,因磁化电流来自单独的电源(直流电源),所以,气隙的长度与同尺寸同额定功率的感应电机相比要大。
然而,在小额定功率的情况下,同步电机比感应电机的价格高,耐用性差,因为转子必须安装滑环和电刷,以便于直流电流流过磁场绕组。
5.3.3 直流电机直流的“电能-机械能”能量转换装置比交流型的能量转换装置复杂很多。
除了磁场绕组和电枢绕组之外,还有第三个部件,用作将感生的交流电枢电压转换成直流电压。
一般地,该装置是一个机械整流器,称为换向器。
直流电机的主要特征如图5.4所示。
定子有不分层的铁磁性材料制成,带有突起的结构,在其上有线圈缠绕。
流过该线圈的电流建立一个磁场分布沿着气隙圆周形成回路,这与同步电机转子的情形类似。
因此,在直流电机种,磁场绕组位于定子上,可以推出电枢绕组在转子上。
转子由叠制的钢芯组成,其上开槽用以安放电枢绕组。
直流电机也有一个换向器—一组铜片,它们之间彼此绝缘,且以圆柱形式存在。
碳刷以恰当的位置分布在换向器上,其作用是当电机作为电动机或发电机运行时,使直流嗲六流入或流出电枢绕组。
在图5.4中,电枢绕组被简化为一个缠绕在圆环上的线圈。
这仅仅是为了示意的方便。
在一个实际的绕组中,没有磁通穿过的转子芯内表面不放置导线而不会造成导线浪费。
在图5.4中,电枢绕组中直接位于电刷下的那部分可以设想成没有绝缘,即,铜线是裸露的,这使得在转子旋转时,电流可以通过电刷流入和流出电枢绕组。
在实际的绕组中,通过将线圈连接到每个换向片且把碳刷放在换向片上,电刷可以访问到每一个绕组。
要是电机动作,直流必须流过磁场绕组和电枢绕组。
如图5.4所示,如果假定电流流入B1,则注意对转子左侧外边导线而言,电流流入纸面,而右侧外边导线(电流流出纸面)的情况刚好相反。
在每一个导线上都产生一个力,从而产生一个沿顺时针方向旋转的力矩。
现在换向器的作用是确保当图5.4中1#导线从电刷左侧旋转到右侧时,电流反向流动,从而对整个电枢绕组产生一个连续的单方向力矩。
回忆一下:一个电流方向反向的导体在一个磁极反向的磁场中,保持所产生的力矩方向不变。
无论电枢是否旋转,由于换向器总是使电枢绕组两侧的电流以不变的方向流入,从而导致电流反向。
在图5.4中,感兴趣的另一点是电刷的位置。
将电刷放置在垂直磁轴的方向上,所有的导线将产生单方向力矩。
另一方面,如果电刷放置在磁轴方向,则一半导线产生顺时针力矩,而另一半导线产生逆时针力矩,使得净力矩为零。
第六章的参考译文:仅供参考,不恰当的地方,请自行修改补充,欢迎通过Email(qiulk@)进行讨论和交流。
6.1 直流电动机的类型市场上可购买到的电动机基本上分为四种类型:①永磁直流电机;②串励直流电机;③并励直流电机;④复励直流电机。