对数函数及其性质学案
学案7:2.2.2 对数函数及其性质(一)

2.2.2 对数函数及其性质(一)学习目标1.理解对数函数的概念,会求对数函数的定义域.(重点、难点)2.能画出具体对数函数的图象,并能根据对数函数的图象说明对数函数的性质.(重点) 基础·初探教材整理1 对数函数的概念 阅读教材,完成下列问题.对数函数:一般地,我们把函数 叫做对数函数,其中 是自变量,函数的定义域为 .练一练1.判断(正确的打“√”,错误的打“×”) (1)函数y =1log 2x是对数函数.( ) (2)函数y =2log 3x 是对数函数.( )(3)函数y =log 3(x +1)的定义域是(0,+∞).( ) 教材整理2 对数函数的图象和性质 阅读教材,完成下列问题.对数函数y =log a x (a >0,且a ≠1)的图象和性质如下表所示:定义域:练一练2.(1)函数y =log (3a -1)x 是(0,+∞)上的减函数,则实数a 的取值范围是________. (2)函数y =log a (x -1)+1(a >0,且a ≠1)恒过定点________. 教材整理3 反函数 阅读教材,完成下列问题.反函数:对数函数y =log a x 与指数函数 (a >0,且a ≠1)互为反函数. 练一练3.函数f (x )=⎝⎛⎭⎫12x 的反函数为g(x ),则g(x )=________.对数函数的概念例1 (1)下列函数表达式中,是对数函数的个数有( )①y =log x 2;②y =log a x (a ∈R );③y =log 8x ;④y =ln x ;⑤y =log x (x +2);⑥y =2log 4x ; ⑦y =log 2(x +1).A .1个B .2个C .3个D .4个(2)若对数函数f (x )的图象过点(4,-2),则f (8)=________. 名师指导1.判断一个函数是对数函数必须是形如y =log a x (a >0且a ≠1)的形式,即必须满足以下条件: (1)底数a >0,且a ≠1;(2)自变量x 在真数的位置上,且x >0;(3)在解析式y =log a x 中,log a x 的系数必须是1,真数必须是x .2.对数函数的解析式中只有一个参数a ,故用待定系数法求对数函数的解析式时只需一个条件即可求出.跟踪训练1.若函数f (x )=log (a +1)x +(a 2-2a -8)是对数函数,则a =________. 类型二:对数函数的定义域例2 (1)函数f (x )=121log 1x +的定义域为( )A .(2,+∞)B .(0,2)C .(-∞,2) D.⎝⎛⎭⎫0,12 (2)函数f (x )=12-x+ln(x +1)的定义域为____________________________. (3)函数f (x )=log (2x -1)(-4x +8)的定义域为___________________________. 名师指导求与对数函数有关的函数的定义域问题应遵循的原则为: 1.要保证根式有意义; 2.要保证分母不为0;3.要保证对数式有意义,即若自变量在真数上,则必须保证真数大于0;若自变量在底数上,应保证底数大于0且不等于1. 跟踪训练2.(1)函数f (x )=3-x +lg(x +1)的定义域为( ) A .[-1,3) B .(-1,3) C .(-1,3]D .[-1,3](2)函数y =log 3(2x -1)的定义域为( ) A.[1,+∞) B.(1,+∞) C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫12,1 探究共研型综合类:对数函数的图象及性质探究1 对数函数y =log a x (a >0且a ≠1)的图象过哪一定点? 函数f (x )=log a (2x -1)+2(a >0且a ≠1)的图象又过哪一定点呢?探究2 如图,曲线C 1,C 2,C 3,C 4分别对应y =log a 1x ,y =log a 2x ,y =log a 3x ,y =log a 4x 的图象,你能指出a 1,a 2,a 3,a 4以及1的大小关系吗?例3 (1)已知a >0且a ≠1,函数y =log a x ,y =a x ,y =x +a 在同一坐标系中的图象可能是( )(2)作出函数y =|log 2(x +1)|+2的图象.名师指导函数图象的变换规律(1)一般地,函数y=f(x±a)+b(a,b为实数)的图象是由函数y=f(x)的图象沿x轴向左或向右平移|a|个单位长度,再沿y轴向上或向下平移|b|个单位长度得到的.(2)含有绝对值的函数的图象一般是经过对称变换得到的.一般地,y=f(|x-a|)的图象是关于直线x=a对称的轴对称图形;函数y=|f(x)|的图象与y=f(x)的图象在f(x)≥0的部分相同,在f(x)<0的部分关于x轴对称.跟踪训练3.函数y=a-x与y=log a(-x)的图象可能是()课堂检测1.已知函数f(x)=11-x的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N=()A.{x|x>-1} B.{x|x<1}C.{x|-1<x<1} D.∅2.若f(x)是对数函数,且f(2)=2,则f(x)=________.3.函数f(x)=log a(2x+1)+2(a>0且a≠1)必过定点________.4.已知函数y=f(x)与g(x)=log3x(x>0)互为反函数,则f(-2)=________. 5.已知f(x)=log3x.(1)作出这个函数的图象;(2)当0<a<2时,利用图象判断是否有满足f(a)>f(2)的a值.参考答案基础·初探教材整理1 对数函数的概念y =log a x (a >0,且a ≠1) ;x ;(0,+∞) 练一练1. 【答案】 (1)× (2)× (3)×【解析】 (1)×.对数函数中自变量x 在真数的位置上,且x >0,所以(1)错; (2)×.在解析式y =log a x 中,log a x 的系数必须是1,所以(2)错;(3)×.由x +1>0得x >-1,所以函数的定义域为(-1,+∞),所以(3)错. 教材整理2 对数函数的图象和性质 (0,+∞); (1,0) ;增函数;减函数 练一练2.(1)【答案】 ⎝⎛⎭⎫13,23【解析】 由题意可得0<3a -1<1,解得13<a <23,所以实数a 的取值范围是⎝⎛⎭⎫13,23. (2)【答案】 (2,1)【解析】 当x =2时,y =1,故恒过定点(2,1). 教材整理3 反函数 y =a x练一练3. 【答案】 12log x【解析】 f (x )=⎝⎛⎭⎫12x 的反函数为g (x )=12log x .对数函数的概念例1 【答案】 (1)B (2)-3【解析】 (1)由于①中自变量出现在底数上,∴①不是对数函数;由于②中底数a ∈R 不能保证a >0,且a ≠1,∴②不是对数函数;由于⑤⑦的真数分别为(x +2),(x +1),∴⑤⑦也不是对数函数;由于⑥中log 4x 的系数为2,∴⑥也不是对数函数;只有③④符合对数函数的定义.(2)由题意设f (x )=log a x ,则f (4)=log a 4=-2,所以a -2=4,故a =12,即f (x )=12log x ,所以f (8)=12log 8=-3.跟踪训练1.【答案】 4【解析】 由题意可知⎩⎪⎨⎪⎧a 2-2a -8=0a +1>0a +1≠1,解得a =4.类型二:对数函数的定义域例2 【答案】 (1)B ;(2)(-1,2) ;(3)⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <2,且x ≠1 【解析】 (1)要使函数f (x )有意义,则12log x +1>0,即12log x >-1,解得0<x <2,即函数f (x )的定义域为(0,2),故选B. (2)函数式若有意义,需满足⎩⎪⎨⎪⎧x +1>02-x ≥02-x ≠0即⎩⎪⎨⎪⎧x >-1x <2,解得-1<x <2,故函数的定义域为(-1,2). (3)由题意得⎩⎪⎨⎪⎧ -4x +8>02x -1>02x -1≠1,解得⎩⎨⎧x <2x >12x ≠1.故函数y =log (2x -1)(-4x +8)的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <2,且x ≠1. 跟踪训练2. (1)【答案】 C【解析】 根据题意,得⎩⎪⎨⎪⎧3-x ≥0x +1>0,解得-1<x ≤3,∴f (x )的定义域为(-1,3].故选C. (2)【答案】 A【解析】 要使函数y =log 3(2x -1)有意义,有⎩⎪⎨⎪⎧2x -1>0log 3(2x -1)≥0,解得x ≥1,所以函数f (x )的定义域是[1,+∞).故选A.探究共研型综合类:对数函数的图象及性质探究1 【答案】 对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0);在f (x )=log a (2x -1)+2中,令2x -1=1,即x =1,则f (x )=2,所以函数f (x )=log a (2x -1)+2(a >0且a ≠1)的图象过定点(1,2).探究2 【答案】 作直线y =1,它与各曲线C 1,C 2,C 3,C 4的交点的横坐标就是各对数的底数,由此可判断出各底数的大小必有a 4>a 3>1>a 2>a 1>0. 例3 (1) 【答案】 C【解析】∵函数y =a x 与y =log a x 互为反函数,∴它们的图象关于直线y =x 对称. 再由函数y =a x 的图象过(0,1),y =log a x 的图象过(1,0),排除选项A ,B ,从C ,D 选项看,y =log a x 递减,即0<a <1,故C 正确.(2) 解:第一步:作y =log 2x 的图象,如图(1)所示.(1) (2)第二步:将y =log 2x 的图象沿x 轴向左平移1个单位长度,得y =log 2(x +1)的图象, 如图(2)所示.第三步:将y =log 2(x +1)的图象在x 轴下方的部分作关于x 轴的对称变换, 得y =|log 2(x +1)|的图象,如图(3)所示.第四步:将y =|log 2(x +1)|的图象沿y 轴向上平移2个单位长度,即得到所求的函数图象,如图(4)所示.(3) (4)跟踪训练3.【答案】 C【解析】 ∵在y =log a (-x )中,-x >0,∴x <0,∴图象只能在y 轴的左侧,故排除A ,D ;当a >1时,y =log a (-x )是减函数,y =a -x =⎝⎛⎭⎫1a x 是减函数,故排除B ;当0<a <1时, y =log a (-x )是增函数,y =a -x =⎝⎛⎭⎫1a x 是增函数,∴C 满足条件,故选C.课堂检测 1.【答案】 C【解析】 由题意得M ={x |x <1},N ={x |x >-1},则M ∩N ={x |-1<x <1}. 2.【答案】x【解析】 设f (x )=log a x (a >0,且a ≠1),则f (2)=log a 2=2,即a =2, 所以f (x )=x .3.【答案】 (0,2)【解析】 令2x +1=1,得x =0,此时f (x )=2,故函数f (x )=log a (2x +1)+2(a >0且a ≠1)必过定点(0,2). 4.【答案】 19【解析】 ∵函数y =f (x )与g (x )=log 3x (x >0)互为反函数,∴f (x )=3x ,则f (-2)=3-2=19.5. 解:(1)作出函数y =log 3x 的图象如图所示:(2)令f (x )=f (2),即log 3x =log 32,解得x =2. 由如图所示的图象知:当0<a <2时,恒有f (a )<f (2). 故当0<a <2时,不存在满足f (a )>f (2)的a 值.。
对数函数及其性质教案设计

对数函数及其性质教案设计一、教学目标1. 知识与技能:(1)理解对数函数的定义,掌握对数函数的性质。
(2)学会运用对数函数解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳对数函数的性质,培养学生的逻辑思维能力。
(2)利用信息技术,展示对数函数的图像,增强学生的直观感受。
3. 情感态度与价值观:(1)激发学生对数学的兴趣,培养学生的探究精神。
(2)培养学生运用数学解决实际问题的能力,提高学生的综合素质。
二、教学重点与难点1. 教学重点:(1)对数函数的定义及其性质。
(2)运用对数函数解决实际问题。
2. 教学难点:(1)对数函数的性质的理解与运用。
(2)对数函数在实际问题中的应用。
三、教学过程1. 导入新课:(1)复习指数函数的性质。
(2)提问:指数函数与对数函数有何关系?2. 自主学习:(1)学生自主探究对数函数的定义。
(2)学生归纳总结对数函数的性质。
3. 课堂讲解:(1)讲解对数函数的定义,解释对数函数的性质。
(2)举例说明对数函数在实际问题中的应用。
4. 课堂练习:(1)巩固对数函数的基本性质。
(2)运用对数函数解决实际问题。
5. 课堂小结:(1)回顾本节课所学内容,总结对数函数的性质。
(2)强调对数函数在实际问题中的应用。
四、课后作业1. 完成课后练习题,巩固对数函数的基本性质。
2. 选择一个实际问题,运用对数函数解决。
五、教学反思1. 反思教学过程,检查教学目标是否达成。
2. 针对学生的反馈,调整教学方法,提高教学效果。
3. 关注学生的学习兴趣,激发学生的探究精神。
六、教学活动设计1. 课堂互动:通过提问、讨论等方式,让学生积极参与课堂,提高课堂氛围。
2. 小组合作:学生分组探讨对数函数在实际问题中的应用,分享解题心得。
3. 案例分析:分析实际问题,引导学生运用对数函数解决问题。
七、教学评价1. 课堂练习:评价学生对对数函数基本性质的掌握程度。
2. 课后作业:评价学生运用对数函数解决实际问题的能力。
对数及对数函数教案8篇

写教案能帮助教师更好地安排课堂教学时间,教案要结合实际的教学进度和学生的学习能力,才能更好地帮助学生提高学习效果,下面是范文社小编为您分享的对数及对数函数教案8篇,感谢您的参阅。
对数及对数函数教案篇1【学习目标】一、过程目标1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。
2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。
3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。
二、识技能目标1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。
2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。
三、情感目标1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的.学习兴趣。
2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。
教学重点难点:1对数函数的定义、图象和性质。
2对数函数性质的初步应用。
教学工具:多媒体学前准备】对照指数函数试研究对数函数的定义、图象和性质。
对数及对数函数教案篇2对数函数及其性质教学设计1.教学方法建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。
它既强调学习者的认知主体作用,又不忽视教师的指导作用。
高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟.在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式”教学方法。
将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。
其理论依据为建构主义学习理论。
它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。
2.学法指导新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。
对数函数及其性质学案一

2.2.4 对数函数及其性质(1)【学习目标】1.能举例说明对数函数的意义,能准确画出对数函数的图象;2.能根据图像的得出函数性质,能体会数形结合思想在函数中的运用.【学习重点】 对数函数的概念、图像与性质.【难点提示】归纳一般对数函数的性质,底数a 对对数函数性质的影响.【学法提示】1.请同学们课前将学案与教材7076P -结合进行自主学习(对教材中的文字、图象、表格、符号、观察、思考、说明与注释、例题及解答、阅读与思考、小结等都要仔细阅读)、小组讨论,积极思考提出更多、更好、更深刻的问题,为课堂学习做好充分的准备;2.在学习过程中用好“十二字学习法”即:“读”、“挖”、“举”、“联”、“用”、“悟”、“听”、“问”、“通”、“总”、“研”、“会”,请在课堂上敢于提问、敢于质疑、敢于讲解与表达.【学习过程】 一、学习准备1.什么叫函数?请准确叙述出函数的概念 ; 函数的性质包括的内容有 ;2.3.(教材P67例6)生物机体内碳14的“半衰期”为5730年,湖南长沙马王堆汉墓女尸出土时,碳14的残余量约占原始含量的76.7%,试推算马王堆古墓的年代. 上节课我们已得到碳的含量P 与生物死亡年数t 的关系:logt P =,请同学们用函数的概念考察一下上面关系式中t 是P 的函数吗? 二、探究新知 1.对数函数的概念●情景问题 用清水漂洗衣服,若每次能去污垢的34,写出存留污垢x 表示的漂洗次数y 的关系式,请根据关系式计算若要使存留的污垢不超过原有的164,则至少要漂洗几次?●观察与思考 根据学习准备2所列关系式,利用计算器完成下表:请观察上面学习准 备3中的log t P =和上面的14log y x =,用函数的概念判断这两个关系式是否是函数关系?如果是函数关系,再请观察下列函数有何共同特点: (1)2log y x = ;(2)3log y x = ;(3)12log y x = ;(4)13log y x = ;(5)5log y x =.●归纳概括 一般地,当a >0且a ≠1时,函数log a y x =叫做对数函数(logarithmic function),自变量是x ; 函数的定义域是(0,+∞).●快乐体验 1.判断下列函数哪些是对数函数? ①2log (1)y x =+;②log 3x y =;③ln y x =;④()l g f tt =;⑤3l o g 2y x =;⑥22log y x =;⑦5lo g 2xy =; ⑧4log 1y x =+;⑨2log (0,2)c u x c c =>≠;⑩()lg ()f x x x N *=∈ .解:●挖掘与拓展 (1)对数函数有何特征,函数的自变量位于何处?能改变位置吗?自变量x 能取负数吗,为什么?(2)对数函数中为何限制底数0a >且1a ≠?(3)对数函数也是一个形式定义,只有形如log (0,1,0)ay x a a x =>≠>的函数才叫对数函数.2.对数函数的图像与性质●画图体验 (1)请在平面标系中用列表描点法画出下列对数函数的图象. ○12log y x =; ○23log y x =. (2) 请在平面标系中用列表描点法画出下列对数函数的图象.○10.5log y x =; ○20.25log y x =.●看图思考 (1)观察上面1题中画出的两个函数图像有何共同特征? (2)观察上面2题中画出的两个函数图像有何共同特征?:●快乐体验 1.已知函数()log a y f x x ==,(1)试求:1(1)()()f f a f a,,; (2)结合对数函数的图象,分析上面三个点对函数图象有何影响? 解:2. 求下列函数的定义域与值域(0,1)a a >≠:(1)2log a y x =;(2)log (4)a y x =-;. 解:●挖掘与拓展 1. 对数函数的图象中有三个重要的分界点1(1,0)(,1)(,1)a a-、、,这三个点将图象分为四段,其对应的函数值也分为明显的四段;2. 函数图象都在y 轴右侧,向y 轴正负方向无限延伸,非奇非偶函数(链接1) 三、典例赏析例1 求下列函数的定义域:(1)y ;(2)71log 13y x=- 思路启迪:求函数的定义域的原则是使各表达式有意义,然后建立不等式(组),再通过解不等式而达到解决问题有目的.解:●解后反思 求对数型函数的定义域应注意什么? ●变式练习 求函数3242(4)lg()x y x x -=-的定义域.解:例2 比较下列各式的大小:(1)ln3.4,ln8.5; (2)log 5.1,log 5.9a a ;思路启迪:大小比较问题常通过构造函数,通过讨论函数的单调性而达到解决问题的目的,本题你想到了需要构造的函数了吗?快手试试吧.解:●解后反思 比较大小的方法是什么?在运用函数性质时应注意哪些问题? ●变式练习 比较下列各题中两个数值的大小.(1)22log 3log 3.5和; (2)0.30.3log 4log 0.7和;(3)0.70.7log 1.6log 1.8和.例3.在同一坐标系内作出y =log 2x 与y =log 5x 的图象,并比较两组数的大小. (1)2log 0.7与5log 0.7;(2)32log 3与56log 5.解:●解后反思 这两组数各有何特点,各是如何比较大小的?还有方法吗?●变式练习 设2log a π=,2log b =,log c = 则( ).A .a b c >>;B .a c b >>;C .b a c >>;D .b c a >>.四、学习反思1.本节课我们学习了哪些数学知识、数学思想方法,实现了我们的学习目标吗?如:对数函数的概念、图象和性质你都理解与掌握了吗?求对数型函数的定义域、利用对数函数的单调性比较大小等解题方法都能运用与其题中吗?(链接2)2.通过本节课的学习与课前的预习比较有哪些收获?有哪些要改进和加强的呢?3.对本节课你还有独特的见解吗?本节课的数学知识与生活有怎样的联系?感受到本节课数学知识与方法的美在哪里?五、学习评价 1.已知下列不等式,比较正数m 、n 的大小.(1)3log m <3log n ; (2)0.3log m >0.3log n ; (3)log a m >log a n (a >1). 2.比大小:(1)log 67 log 7 6 ; (2)log 31.5 log 2 0.8. 3..求下列函数的定义域.(1)y (2)y (3)3log (3-)()y x a x =+.4.解下列方程.(1)55log (3)log (21)x x =+; (2)lg(1)x =-.5.解不等式.(1)55log (3)log (21)x x <+; (2)lg(1)1x -<.6.见教材第74页习题2.2A 组的8题,B 组的1、2、4、5.◆承前启后 我们在学习了对数函数的性质、它还有那些重要的运用呢?对数函数在什么条件下函数的值域为全体实数R ?链接2. 两个同底数的对数比较大小的一般步骤:①确定所要考查的对数函数;②根据对数底数判断对数函数增减性; ③比较真数大小,然后利用对数函数的增减性判断两对数值的大小. 底数不确定时,需要对底数分类讨论.继续追思:两个底数不同的对数比较大小的方法又如何?一般步骤呢?。
对数函数及其性质教案

教学目标:1. 理解对数函数的定义和性质。
2. 学会如何求解对数函数的值。
3. 能够应用对数函数解决实际问题。
教学内容:1. 对数函数的定义与性质2. 对数函数的图像与性质3. 对数函数的求解方法4. 对数函数的实际应用5. 对数函数的进一步研究教学准备:1. 教学PPT或黑板2. 教学教材或参考资料3. 练习题和答案教学过程:第一章:对数函数的定义与性质1.1 对数函数的定义1.2 对数函数的性质1.3 对数函数的图像第二章:对数函数的图像与性质2.1 对数函数的图像特点2.3 对数函数的图像与应用第三章:对数函数的求解方法3.1 对数函数的求解步骤3.2 对数函数的求解实例3.3 对数函数的求解练习第四章:对数函数的实际应用4.1 对数函数在科学研究中的应用4.2 对数函数在日常生活中的应用4.3 对数函数在其他领域的应用第五章:对数函数的进一步研究5.1 对数函数的扩展知识5.2 对数函数的相关问题5.3 对数函数的研究方向教学评价:1. 课堂参与度与提问2. 练习题的完成情况3. 小组讨论与合作4. 课后作业的完成情况教学反思:本教案旨在帮助学生理解和掌握对数函数的定义、性质、图像以及求解方法,并能够将所学知识应用于实际问题中。
在教学过程中,应注重引导学生通过观察、思考和练习来深入理解对数函数的概念和性质。
通过实际应用的例子,让学生感受到对数函数在科学研究和日常生活中的重要性。
在教学评价方面,应综合考虑学生的课堂参与度、练习题完成情况和小组讨论等情况,以全面评估学生对对数函数的理解和掌握程度。
在教学反思中,可以根据学生的反馈和教学情况进行调整和改进,以提高教学效果。
第六章:对数函数的求解实例6.1 对数函数的求解示例一6.2 对数函数的求解示例二6.3 对数函数的求解示例三第七章:对数函数的求解练习7.1 对数函数的求解练习题一7.2 对数函数的求解练习题二7.3 对数函数的求解练习题三第八章:对数函数在科学研究中的应用8.1 对数函数在生物学中的应用8.2 对数函数在物理学中的应用8.3 对数函数在其他科学领域中的应用第九章:对数函数在日常生活中的应用9.1 对数函数在金融中的应用9.2 对数函数在信息技术中的应用9.3 对数函数在其他日常生活中的应用第十章:对数函数的进一步研究10.1 对数函数的扩展知识10.2 对数函数的相关问题研究10.3 对数函数的研究方向和未来趋势这五个章节的主要内容分别是:第六章通过对数函数的求解实例,让学生更好地理解对数函数的求解方法,巩固所学知识。
《对数函数图像及其性质》导学案

《对数函数图像及其性质》导学案对数函数图像及其性质导学案1. 引言本导学案旨在介绍对数函数的图像及其性质。
对数函数是数学中一种重要的函数类型,具有广泛的应用领域。
通过研究对数函数的图像和性质,我们可以更好地理解和应用对数函数。
2. 对数函数的定义对数函数是指以某个正数为底的对数函数,一般表示为 $y = \log_{a}x$,其中 $a>0$ 且 $a \neq 1$。
对数函数的定义域为正实数集合 $x>0$,值域为实数集合。
3. 对数函数的图像对数函数的图像在直角坐标系中呈现一条曲线,具体的图像形状和走势与底数 $a$ 的大小有关。
下面以底数 $a=2$ 和底数$a=\frac{1}{2}$ 为例进行说明。
3.1 底数为2的对数函数图像当底数 $a=2$ 时,对数函数 $y = \log_{2}x$ 的图像如下所示:.png)3.2 底数为1/2的对数函数图像当底数 $a=\frac{1}{2}$ 时,对数函数 $y =\log_{\frac{1}{2}}x$ 的图像如下所示:.png)4. 对数函数的性质对数函数具有以下几个重要的性质:- 对于任意正实数 $x_1$ 和 $x_2$,以及任意实数 $k$,都有$\log_{a}(x_1 \cdot x_2) = \log_{a}x_1 + \log_{a}x_2$ 和$\log_{a}(x_1^k) = k \cdot \log_{a}x_1$。
- 对于任意正实数 $x$ 和 $a > 1$,有 $\lim_{x \to +\infty}\log_{a}x = +\infty$。
换言之,当自变量 $x$ 趋向正无穷时,对数函数的取值趋向正无穷。
- 对于任意正实数 $x$,有 $\lim_{x \to 0^{+}} \log_{a}x = -\infty$。
对数函数及其性质_优质学案

对数函数及其性质【学习目标】1.理解对数函数的概念,体会对数函数是一类很重要的函数模型;2.探索对数函数的单调性与特殊点,掌握对数函数的性质,会进行同底对数和不同底对数大小的比较;3.了解反函数的概念,知道指数函数x y a =与对数函数log a y x =互为反函数()0,1a a >≠.【要点梳理】要点一、对数函数的概念1.函数y=log a x(a>0,a ≠1)叫做对数函数.其中x 是自变量,函数的定义域是()0,+∞,值域为R .2.判断一个函数是对数函数是形如log (0,1)a y x a a =>≠且的形式,即必须满足以下条件:(1)系数为1;(2)底数为大于0且不等于1的常数; (3)对数的真数仅有自变量x . 要点诠释:(1)只有形如y=log a x(a>0,a ≠1)的函数才叫做对数函数,像log (1),2log ,log 3a a a y x y x y x =+==+等函数,它们是由对数函数变化得到的,都不是对数函数。
(2)求对数函数的定义域时应注意:①对数函数的真数要求大于零,底数大于零且不等于1;②对含有字母的式子要注意分类讨论。
要点二、对数函数的图象与性质要点诠释:关于对数式log a N 的符号问题,既受a 的制约又受N 的制约,两种因素交织在一起,应用时经常出错.下面介绍一种简单记忆方法,供同学们学习时参考.以1为分界点,当a ,N 同侧时,log a N>0;当a ,N 异侧时,log a N<0.要点三、底数对对数函数图象的影响 1.底数制约着图象的升降. 如图要点诠释:由于底数的取值范围制约着对数函数图象的升降(即函数的单调性),因此在解与对数函数单调性有关的问题时,必须考虑底数是大于1还是小于1,不要忽略.2.底数变化与图象变化的规律在同一坐标系内,当a>1时,随a 的增大,对数函数的图像愈靠近x 轴;当0<a<1时,对数函数的图象随a 的增大而远离x 轴.(见下图)要点四、反函数 1.反函数的定义设,A B 分别为函数()y f x =的定义域和值域,如果由函数()y f x =所解得的()x y ϕ=也是一个函数(即对任意的一个y B ∈,都有唯一的x A ∈与之对应),那么就称函数()x y ϕ=是函数()y f x =的反函数,记作1()x f y -=,在1()x f y -=中,y 是自变量,x 是y 的函数,习惯上改写成1()y f x -=(,x B y A ∈∈)的形式.函数1()x f y -=(,y B x A ∈∈)与函数1()y f x -=(,x B y A ∈∈)为同一函数,因为自变量的取值范围即定义域都是B ,对应法则都为1f -.由定义可以看出,函数()y f x =的定义域A 正好是它的反函数1()y f x -=的值域;函数()y f x =的值域B 正好是它的反函数1()y f x -=的定义域.要点诠释:并不是每个函数都有反函数,有些函数没有反函数,如2y x =.一般说来,单调函数有反函数.2.反函数的性质(1)互为反函数的两个函数的图象关于直线y x =对称.(2)若函数()y f x =图象上有一点(),a b ,则(),b a 必在其反函数图象上,反之,若(),b a 在反函数图象上,则(),a b 必在原函数图象上.【典型例题】类型一、对数函数的概念例1.下列函数中,哪些是对数函数? (1)log 0,1)a y a a =>≠; (2)2log 2;y x =+ (3)28log (1)y x =+;(4)log 6(0,1)x y x x =>≠; (5)6log y x =. 【答案】(5) 【解析】(1)中真数不是自变量x ,不是对数函数. (2)中对数式后加2,所以不是对数函数.(3)中真数为1x +,不是x ,系数不为1,故不是对数函数. (4)中底数是自变量x ,二非常数,所以不是对数函数.(5)中底数是6,真数为x ,符合对数函数的定义,故是对数函数.【总结升华】已知所给函数中有些形似对数函数,解答本题需根据对数函数的定义寻找满足的条件.类型二、对数函数的定义域求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用.例2. 求下列函数的定义域:(1)2log a y x =; (2)log (4-)(01)a y x a a =>≠且. 【答案】(1){|0}x x ≠;(2){|4}x x <. 【解析】由对数函数的定义知:20x >,40x ->,解出不等式就可求出定义域. (1)因为20x >,即0x ≠,所以函数2log {|0}a y x x x =≠的定义域为; (2)因为40x ->,即4x <,所以函数log (4-){|4}a y x x x =<的定义域为.【总结升华】与对数函数有关的复合函数的定义域:求定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.一般地,判断类似于log ()a y f x =的定义域时,应首先保证()0f x >.举一反三:【变式1】求下列函数的定义域.(1) y = (2)lg 23y x x =+-.【答案】(1)(1,23) (23,2);(2)(()[),115,32,-∞----+∞.【解析】(1)因为⎪⎪⎪⎩⎪⎪⎪⎨⎧≠->->-1)1(log 0)1(log 012121x x x , 所以101132x x x ⎧⎪>⎪<-<⎨⎪⎪≠⎩,所以函数的定义域为(1,23) (23,2).(2)由22240,230,lg(23)0,x x x x x ⎧-≥⎪+->⎨⎪+-≠⎩得22,31,1x x x x x ⎧≤-≥⎪<->⎨⎪≠-±⎩或或故所求定义域为(()[),115,32,-∞----+∞.类型三、对数函数的单调性及其应用利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念.例3. 比较下列各组数中的两个值大小: (1)33log 3.6,log 8.9; (2)0.20.2log 1.9,log 3.5; (3)2log 5与7log 5; (4) 3log 5与6log 4.(5)log 4.2,log 4.8a a (01a a >≠且).【思路点拨】利用函数的单调性比较函数值大小。
对数函数及其性质的教学设计【2篇】

对数函数及其性质的教学设计【2篇】篇一:高中数学对数函数教案篇一教学目标1、在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题。
2、通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想。
3、通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性。
教学重点,难点重点是理解对数函数的定义,掌握图像和性质。
难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质。
教学方法启发研讨式教学用具投影仪教学过程一。
引入新课今天我们一起再来研究一种常见函数。
前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数。
反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数。
这个熟悉的函数就是指数函数。
提问:什么是指数函数?指数函数存在反函数吗?由学生说出是指数函数,它是存在反函数的。
并由一个学生口答求反函数的过程:由得。
又的值域为,所求反函数为。
那么我们今天就是研究指数函数的反函数__对数函数。
2.8对数函数(板书)一。
对数函数的概念1、定义:函数的反函数叫做对数函数。
由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发。
如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为,对数函数的值域为,且底数就是指数函数中的,故有着相同的限制条件。
在此基础上,我们将一起来研究对数函数的图像与性质。
二。
对数函数的图像与性质(板书)1、作图方法提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图。
同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.2.2对数函数及其性质学案
一.学习目标
1.知识技能
①了解对数函数的概念,熟悉对数函数的图象与性质规律. ②掌握对数函数的性质,能初步运用性质解决问题. 2.过程与方法
通过观察对数函数的图象,发现并归纳对数函数的性质. 3.情感、态度与价值观
①培养数形结合的思想以及分析推理的能力; ②培养严谨的科学态度. 二.学习重点、难点
1、重点:理解对数函数的定义,掌握对数函数的图象和性质.
2、难点:底数a 对图象的影响及对数函数性质的作用. 三.学法指导
1.复习指数式与对数式的转化各个字母的取值范围和对数运算法则. 2.动手画图并观察、思考、交流、讨论、发现函数的性质; 3.做题时要注意数形结合的思想方法的应用. 四.复习回顾
1.指数式a b =N 中各个字母名称及其取值范围是:
a 叫 取值范围是: ,
b 叫 取值范围是 , N 叫 取值范围是
将指数式a b =N 改写成对数式为 ,其中各个字母名称及其取值范围是:
a 叫 取值范围是: ,
b 叫 取值范围是 , N 叫 取值范围是
2.log 1a = l o g a a = l o g n
a M =
2(1)log 1= 12
(7)log 1=
2(2)log 2= 12
(8)log 2= 2(3)log 4= 12(9)log 4= 2(4)log 8= 12(10)log 8= 2(5)log 16= 12(11)log 16=
2(6)log 0.5= 12(12)l o g 0.
5=
五、课前预习
1.定义: 叫对数函数
(1)对数函数的自变量是 ; (2)对数函数的定义域是 ; (3)对数函数的值域是 ;
(4)对数函数的定义中应注意什么? 2.用描点法画出2y log x =和12
y log x =的图象
两图象间的关系
3. 同一个坐标系中画出4log y x =,3log y x =,13
log y x =和14
log y x =的图象
从以上图象的特征可以得出函数的性质(填入表格中)
4.尝试应用
(一)求下列函数的定义域
(1)2log a y x = (2)log (4)a y x =- (a >0且a ≠1)
(二)比较下列各组数中的两个值大小
(1)22log 3.4,log 8.5 (2)0.30.3log 1.8,log 2.7
(3)log 5.1,log 5.9a a (a >0,且a ≠1)
五、课堂互动
(一)复习回顾①指数式与对数式的互化,各个字母的取值范围;
②对数运算法则.
(二)定义:一般地,我们把函数 (a >0且a ≠1)叫做对数函数. 提问:(1)对数函数的自变量是 ;
(2)对数函数的定义域是 ; (3)对数函数的值域是 ; (4)对数函数的定义中应注意什么?
同学之间充分讨论、交流,理解对数函数的含义,从而加深对对数函数的理解. (三)动手画图:请你画出2log y x =和12
log y x =的图象.(学生板演)
提问:你能发现这两个图象之间有什么关系吗?答案: (四)探索:用电脑画出
2log y x =,3log y x =,4log y x = 12
log y x =,13
log y x =,14
log y x =
的图象见右图,你能从中发现什么结论?
从图象中探索对数函数的性质 进一步认识对数函数的图象, 加深对对数函数性质的理解.
六、应用1:求定义域 例题1:求下列函数的定义域
(1)2log a y x = (2)log (4)a y x =- (a >0且a ≠1)
(3)y =
(4)1)y =
②开偶次方根时,被开方数≥0 ③注意对数函数的单调性的应用 解:
527
:(1)log (1);1
(2);log 1
(2)log ;13(4)y x y x
y x
y =-=
=-=课堂练习1:求下列函数的定义域
七、应用2:比较大小
例2. 比较下列各组数中两个值的大小: (1) log 23.4 , log 28.5 (2) log 0.31.8 , log 0.32.7
(3) log a 5.1 , log a 5.9 ( a >0 , a ≠1 ) (4)log 0.60.2, log 2.30.7 (5)log 0.83.7 , log 32.6
分析:由数形结合的方法或利用函数的单调性来完成
解:
课堂练习2:比较下列各题中两个值的大小:
⑴ l o g 106 l o g 108 ⑵ l o g 0.56 l o g 0.54 ⑶ l o g 0.10.5 l o g 0.10.6 ⑷ l o g 1.51.6 l o g 1.51.4
(5) l o g 0.50.6 l o g 40.5 (6)l o g a 1.6 l o g a 1.4
(a >0且a ≠1)
八、知识小结:
1.对数函数的定义
2.对数函数的图象和性质
3. 求定义域时要注意真数
4.比较两个对数值的大小的方法 九、布置作业:教科书P 74习题2.2A 组7,8
十、课后巩固练习 (一)选择题
1y =log x a (a 21).函数是减函数,实数的取值范围是-( )
A 0a 1
B a 1
C a a
D a 11a .<<.>.>或<-.-<<-或<<22
22
2.函数x y a log =和)1,0(log 1≠>=a a x y a
的图象关于 对称.( )
A .x 轴
B .y 轴
C .原点
D .直线y=x
3.设2
log 3
a
<1,则实数a 的取值范围( ) A 0a B a 1
C 0a a 1
D a .<<
.<<.<<或>.>
232
3
232
3
0.5log 0.6,a =4.
已知b
=c =则( )
A .a <b <c
B .b <a <c
C .a <c <b
D .c <a <b
5.(09陕西)
函数()f x = ) A.[01],
B.(11)-, C.[11]-, D.(1)(1)--+,,∞∞
6.(2009全国卷Ⅱ文)函数y=2
2log 2x
y x
-=+的图象( ) (A ) 关于原点对称 (B )关于主线y x =-对称 (C ) 关于y 轴对称 (D )关于直线y x =对称
7.函数y=2+log 5x(x ≥1)的值域为( )
A.(2,+∞)
B.(-∞,2)
C.[2,+∞)
D.[3,+∞)
8.(2009江西)函数1()lg
4
x
f x x -=-的定义域为( ) A.(1
4),
B.[1
4),
C.(1)(4)-∞+∞,,
D.(1](4)-∞+∞,
, 9. 函数y=1+log 0.5x 的图象一定经过点( )
A.(1,0)
B.(0,1)
C.(2,0)
D.(1,1)
10.
函数y =( )
A.(5,+∞)
B.(-∞,5)
C.[5,+∞)
D.[6,+∞)
二、填空题
11.(08安徽卷13
)函数2()f x =
的定义域为 .
2y =1
lg(x 1)
.函数的定义域是
.-
13.函数y =log 2(2-x 2)的值域是________.
14.)5(log 34+-=x y 的定义域为___________,值域为___________.
在定义域上,该函数单调递_______.
15.若0log log 22<<n m ,则实数m 、n 的大小关系是 . 三、解答题
16.已知log 7m <log 7n <0,按大小顺序排列m, n, 0, 1
17.已知下列不等式,比较正数m,n 的大小 (1)l o g 3m <l o g 3n (2) l o g 0.3m >l o g 0.3n (3)l o g a m <l o g a n (0<a <1) (4)l o g a m >l o g a n (a >1)
十一、探究:观察右图,对数函数底数 分布规律是
18.根据如图所示的四个对数函数图象,
对0,a,b,c,d,1排序
1。