对数函数教学设计
《对数函数》教学设计完美版

《对数函数》教学设计完美版【教学目标】1. 了解对数函数的定义、性质及其在数学和实际中的作用;2. 能够准确地表示对数函数及其反函数的图像;4. 培养学生逻辑思维能力、分析问题的能力和解决问题的能力。
1. 对数函数的定义及基本性质。
3. 对数函数的反函数的图像、定义域、值域以及单调性。
4. 指数函数与对数函数的关系。
5. 利用对数函数解决实际问题。
2. 对数函数图像的绘制。
1. 前置知识启发法借助生活实例及数学实例,引出对数函数的产生背景和基本意义,使学生从熟悉的生活现象及数学运算中获得对对数函数的初步理解。
2. 形象化教学法通过图像或示例说明对数函数的性质,图像生动形象,有利于学生直观的理解对数函数的性质。
3. 探究式教学法在教学中,通过引导学生对例题进行讨论,探究对数函数的问题,发现问题,解决问题,从而培养学生的分析问题、解决问题的能力。
4. 实践教学法通过解决实际问题,让学生主动参与到教学中,根据所学到的知识解决生活中遇到的实际问题,不仅能够增加学生的学习兴趣和动力,同时还能够让学生了解到对数函数对实际问题的解决具有重要作用。
引导学生了解对数函数的定义,并让学生理解对数函数的基本性质,包括定义域、值域、单调性等。
通过讨论,让学生掌握对数函数图像的特点,并通过绘制对数函数的图像,让学生加深对数函数图像的记忆和了解。
通过引导学生思考,让学生初步理解反函数的概念及性质,并用图像和示例进行说明,让学生了解反函数的图像及性质。
通过对指数函数和对数函数的定义、性质及其在数学和实际中的作用的讨论,让学生理解指数函数与对数函数之间的关系。
6. 总结回顾1. 每节课结束后进行问题的测试,检查学生是否掌握了主要内容。
2. 每节课结束后,通过讨论和笔记的方式,让学生对所学内容进行总结和回顾。
3. 通过布置作业,检查学生是否能够巩固和应用所学知识。
4. 通过考试进行评估,检查学生是否对对数函数的定义、性质、图像及其应用有所了解。
对数函数的教案

对数函数教学目标:1、理解对函数的概念。
2、会用描点发画出对数函数的图像。
3、探索并了解对数函数的性质。
4、会利用对数函数性质解决简单问题。
5、会利用对数函数模型解决具体问题。
教学重点:对数函数的定义、图像及性质及初步运用教学难点:底数对对数值变化的影响。
逐步渗透分类讨论、数形结合、分析解决问题的思想,探索对数函数的性质。
教学方法:使用类比,借助计算机作图,加深学生对对数图像及性质的了解。
教学过程:一 复习及新课引入。
1、复习指数函数的定义及性质。
2、利用指数函数的性质解决下列问题。
已知实数a 、b 满足等式ba ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛3121 。
下列五个关系式:①0<b<a ②a<b<c ③0<a<b④ b<a<0 ⑤ a=b ,其中可能成立的关系式有___________________3、引入一:某种细胞分裂,由1个分裂成2个,2个分裂成4个,……写出细胞分裂次数y 与得到细胞 个数x 之间的函数关系式。
引入二:用清水漂洗衣服,若每次能洗去污垢的43,写出清洗次数y 与污垢存留量x 之间的函数关系式。
二 讲授新课。
1、形如函数)1a 0(log ≠>=且a x y a 的函数叫对数函数。
思考:1log ,5log,log 2),1(log 2122-===+=x y xy x y x y a 是不是对数函数? 2、在同一个坐标系中,作出函数x y 2log =和x y 21log =的图像,并说出这两个函数之间有什么对称关系,能否加以证明。
解:若(x,y )为x y 2log =上任意一点,由y x x -=-=221log log x y x 21log ),(在-∴上而(x,y )与(x,-y )关于x 轴对称轴对称关于与x log log 212x y x y ==∴结论:若轴对称关于与,则且x log log )1a 0(1b a x y x y a b a ==≠>=⋅ 3、 x y x y 212log ,log ==底数变为3,31等时,类比指数函数的性质,从定义域、值域、单调性、奇偶性几个方面探究,得对数函数性质。
对数函数教案

对数函数教案一、教学目标1.理解对数函数的定义和性质。
2.掌握对数函数的图像及其相关概念。
3.理解对数函数在实际问题中的应用。
二、教学内容1.对数函数的定义和性质。
2.对数函数的图像及其相关概念。
3.对数函数的应用实例。
三、教学重点1.对数函数的定义和性质。
2.对数函数的图像及其相关概念。
四、教学难点1.对数函数的应用实例。
五、教学准备1.教师准备:投影仪、电子白板、计算器。
2.学生准备:课本、笔记本、参考书。
六、教学过程第一步:导入1.以一个实际问题引入对数函数的概念,如一个物体的声音强度随距离变化的问题。
第二步:讲解对数函数的定义和性质1.简要介绍对数函数的定义:对数函数y=log_a(x)表示以a为底的对数函数,其中a为正实数且不等于1,x 为正实数。
2.介绍对数函数的常用性质:–对数函数的定义域和值域。
–对数函数的单调性。
–对数函数的奇偶性。
–对数函数与指数函数的关系。
–对数函数的性质和运算规则。
第三步:演示对数函数的图像及其相关概念1.使用投影仪和电子白板演示不同底数的对数函数图像,比较它们的差异和特点。
2.介绍对数函数图像的常用特点:–对数函数的渐近线。
–对数函数的极限。
–对数函数的对称轴。
第四步:应用实例讲解1.选择几个实际问题,如pH值、震级等,展示对数函数在解决这些问题中的应用。
2.分析应用实例中的对数函数的特点和意义。
第五步:练习与讨论1.提供一些练习题,帮助学生巩固对对数函数的理解和运用能力。
2.鼓励学生在课堂上进行互动讨论,分享解题思路和经验。
第六步:总结与展望1.对本节课的内容进行总结,强调对数函数的重要性和实际应用。
2.展望下节课的内容,为学生提供学习的方向和目标。
七、作业布置1.布置课后作业,要求学生完成一定数量的对数函数习题。
2.鼓励学生自主拓展对数函数的应用领域,并撰写一篇简短的论文或报告。
八、教学反思本节课通过引入实际问题、讲解对数函数的定义和性质、演示图像及其相关概念、应用实例讲解等教学方法,帮助学生掌握了对数函数的基本概念和运用能力。
对数及对数函数教案8篇

写教案能帮助教师更好地安排课堂教学时间,教案要结合实际的教学进度和学生的学习能力,才能更好地帮助学生提高学习效果,下面是范文社小编为您分享的对数及对数函数教案8篇,感谢您的参阅。
对数及对数函数教案篇1【学习目标】一、过程目标1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。
2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。
3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。
二、识技能目标1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。
2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。
三、情感目标1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的.学习兴趣。
2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。
教学重点难点:1对数函数的定义、图象和性质。
2对数函数性质的初步应用。
教学工具:多媒体学前准备】对照指数函数试研究对数函数的定义、图象和性质。
对数及对数函数教案篇2对数函数及其性质教学设计1.教学方法建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。
它既强调学习者的认知主体作用,又不忽视教师的指导作用。
高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟.在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式”教学方法。
将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。
其理论依据为建构主义学习理论。
它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。
2.学法指导新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。
《对数函数》教学设计

对数函数教学设计知识目标1.学生理解对数函数的定义;2.学生掌握对数函数的性质、特点和图像;3.学生能够应用对数函数解决实际问题;4.学生提高数学思维和解决问题的能力。
教学内容第一节:对数函数的定义1.引入对数函数的概念;2.介绍对数函数的定义和性质;3.给出许多实际问题,让学生了解对数函数的意义。
第二节:对数函数的特点和图像1.讲解对数函数的图像特点;2.教学对数函数的反函数的图像特点;3.比较对数函数和指数函数图像。
第三节:对数函数的应用1.应用对数函数解决实际问题;2.教学对数函数运用在生活、科学和工程中的技术;3.补充许多实际问题的解决方法。
教学方法1.演讲法:引领学生入门,提供新知识给学生认识和理解;2.询问题:针对不同学生需要的信息而产生的对话修改;3.小组讨论:激发学生的合作意识和实际操作能力;4.集体探究:选取与对数函数教学相应的问题,鼓励学生在自愿的情况下查阅信息、发表观点、对问题进行探讨;5.实验教学:在本节课中使用实验设备,让学生实际操作,以便更好地了解对数函数的图像特点。
教学评估1.平时评估:针对学生的课堂表现和作业;2.综合测评:期末考试等大型考试;3.学生评估:以温馨的声音,收回学生的课后反馈。
教学资源1.《高中数学教育》;2.电子版教材;3.课程讲义;4.PPT幻灯片;5.示范视频。
总结在上述对数函数的教学设计中,我们可以看到选取实例和图像进行教学是非常重要的。
学生从实例中发现问题,从图像中看到模式,从逐渐深化不断理解,这些解决问题的策略和思考方式,都是通过对数函数的学习所获得的知识,也是对现实生活有用的技能。
高一数学教案:对数函数2篇

高一数学教案:对数函数高一数学教案:对数函数精选2篇(一)教学目标:1. 了解对数函数的定义和性质。
2. 掌握对数函数的图像和性质。
3. 能够解决与对数函数相关的问题。
4. 培养学生的数学思维和解决问题的能力。
教学重点:1. 对数函数的定义和性质。
2. 对数函数的图像和性质。
教学难点:1. 对数函数的图像和性质。
2. 解决与对数函数相关的问题。
教学方法:1. 归纳法:通过观察和总结,引出对数函数的定义和性质。
2. 演绎法:通过例题分析,引导学生掌握对数函数的图像和性质。
3. 实例法:通过练习实例,训练学生解决与对数函数相关的问题的能力。
教学过程:Step 1:引入对数函数引导学生回顾指数函数的定义和性质,简要介绍对数函数与指数函数的关系。
Step 2:对数的定义通过观察指数运算的性质,引出对数运算的定义和性质。
例如:a^x = b 等价于 x = log_a bStep 3:对数函数的定义和性质介绍对数函数的定义和性质,包括:- 对数函数的定义:y = log_a x,其中 a > 0 且 a ≠ 1。
- 对数函数的性质:对数函数的定义域为 x > 0,值域为实数集,函数图像在直线 y = x 上,且经过点 (1, 0)。
Step 4:对数函数的图像通过例题和计算,了解对数函数的图像特点,包括:- 当 0 < a < 1 时,对数函数是递减函数,图像从正向下方弯曲。
- 当 a > 1 时,对数函数是递增函数,图像从负向上方弯曲。
- 当 a = 1 时,对数函数是常函数 y = 0。
Step 5:对数函数的性质通过例题和计算,掌握对数函数的性质,包括:- 对数函数与指数函数互为反函数,即 log_a(a^x) = x 和 a^(log_a x) = x。
- 对数函数的性质 log_a(x * y) = log_a x + log_a y,log_a(x / y) = log_a x - log_a y,log_a(x^n) = n * log_a x。
高一数学教案对数5篇

高一数学教案对数5篇高一数学教案对数1教学目标1.使学生掌握的概念,图象和性质.(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象.2.通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.3.通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.教学建议教材分析(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究.(2)本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数在和时,函数值变化情况的区分.(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.教法建议(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是.(2)对底数的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.高一数学教案对数2教学目标1.使学生了解反函数的概念;2.使学生会求一些简单函数的反函数;3.培养学生用辩证的观点观察、分析解决问题的能力。
对数函数教案

Why don't you work hard and want everything.悉心整理助您一臂(页眉可删)对数函数教案对数函数教案1教学目标:1.进一步理解对数函数的性质,能运用对数函数的相关性质解决对数型函数的常见问题.2.培养学生数形结合的思想,以及分析推理的能力.教学重点:对数函数性质的应用.教学难点:对数函数的性质向对数型函数的演变延伸.教学过程:一、问题情境1.复习对数函数的性质.2.回答下列问题.(1)函数y=log2x的值域是 ;(2)函数y=log2x(x1)的值域是 ;(3)函数y=log2x(03.情境问题.函数y=log2(x2+2x+2)的定义域和值域分别如何求呢?二、学生活动探究完成情境问题.三、数学运用例1 求函数y=log2(x2+2x+2)的定义域和值域.四、练习:(1)已知函数y=log2x的值域是[-2,3],则x的范围是________________.(2)函数,x(0,8]的值域是 .(3)函数y=log (x2-6x+17)的值域 .(4)函数的值域是_______________.例2 判断下列函数的奇偶性:(1)f (x)=lg (2)f (x)=ln( -x)例3 已知loga 0.751,试求实数a 取值范围.例4 已知函数y=loga(1-ax)(a0,a1).(1)求函数的定义域与值域;(2)求函数的单调区间.练习:1.下列函数(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域为R的有 (请写出所有正确结论的序号).2.函数y=lg( -1)的图象关于对称.3.已知函数 (a0,a1)的图象关于原点对称,那么实数m= .4.求函数,其中x [ ,9]的值域.五、要点归纳与方法小结(1)借助于对数函数的性质研究对数型函数的定义域与值域;(2)换元法;(3)能画出较复杂函数的图象,根据图象研究函数的性质(数形结合).六、作业课本P70~71-4,5,10,11.对数函数教案2一、内容与解析(一)内容:对数函数的概念与图象(二)解析:本节课要学的内容是什么是对数函数,对数函数的图象形状及画法,其核心是对数函数的图象画法,理解它关键就是要理解掌握对数函数的图象特点.学生已经掌握了指数函数的图象画法及特点,函数图象的一般画法,本节课的内容就是在此基础上的发展.由于它是研究对数函数性质的依据,是本学科的核心内容.教学的重点是对数函数的图象特点与画法,解决重点的关键是利用函数图象的一般画法画出具体对数函数的图象,从而归纳出对数函数的图象特点,再根据图象特点确定对数函数的一般画法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对数函数的图像和性质
一、教学内容分析:
1、对数是学生在高一刚刚接触到的新概念,不易理解,计算的形式具有一定的复杂性.
2、以对数作为基础的对数函数是高中函数学生最不易掌握的函数类型。
3、函数是高中十分重要的概念. 其中关于定义域、值域、单调性、奇偶性、对称性等函数的性质应有一个整体的认识,这在学习、解决函数问题的过程中显得十分重要,应在适当的时机对学生这种函数的整体观念加以培养,这节课的学习过程是一个可以把握的机会。
二、学生分析:
1、学生从初中到高一年级接触到了一些函数和研究函数的一些方法。
2、学生对于信息技术的使用有一定的熟练程度(主要指作函数图象)。
3、学生在学习了反函数之后,有了研究新函数的一种新方法,因此,选择这节课让学生自主研究对数函数的性质。
学生可以选择描点作图的方法来研究对数函数的图像与性质,也可以选择使用教学软件来研究函数的图像与性质,还可以通过研究指数函数反函数的方法来研究对数函数的图像和性质等。
三、教学目标:
1、会画对数函数的图像,理解对数函数的性质。
2、对于函数的性质与函数图像的形态之间的关系有一个初步的整体的理解,体会研究函数性质的过程中数形结合、分类讨论归纳的数学思想方法在研究问题过程中的体现。
3、培养学生对问题进行质疑的意识,培养学生在学习的过程中交流的习惯。
四、教学重点:
1、了解对数函数的定义;
2、理解研究函数图像和性质的方法;
3、能准确画对数函数的图像,理解对数函数的性质。
4、利用对数函数的性质初步解决一些有关求函数定义域、比较两个数的大小等。
五、教学难点:
1、对数函数图像的准确作图;
2、准确得到对数函数的性质,并利用对数函数的性质解决一些简单的问题。
六、教学活动:
教学过程
师生活动 设计意图 时间分配 一、回顾对数的定义及有关运算性质
1、定义:一般地,如果a (0,1a a >≠)的b 次幂等于N ,就是b
a N =,那么数
b 叫做以a 为底N 的对数,记作log a N b =,其中a 叫做对数的底数,N 叫做真数.
2、性质:如果0a >,1a ≠,0M >,0N >, (1)log ()log log a a a MN M N =+;
(2)log log log a
a a M
M N N =-; (3)log log ()n
a a M n M n R =∈.
3、计算:(1)2lg 2lg3
111lg 0.36lg823
+++;
(2)2
lg5lg 20(lg 2)⋅+.
4、已知3log 2a =,那么33log 82log 6-用a 表示是( ).
A.2a -
B.52a -
C.2
3(1)a a -- D.2
31a a --
5、提问反函数的概念、求反函数的方法、函数与其反函数的关系.
二、给出对数函数的实际背景、定义,研究对数函数的图像与性质
1、通过实例介绍对数函数的背景、在现实中的意义. 人口增长模型、经济学模型、生物学模型等例子简单介绍对数函数这一具有实际意义的函数模型.
2、定义对数函数.
函数log (0,1)a y x a a =>≠叫做对数函数. 提出问题:
我们可以用什么方法研究对数函数的图像和性质?
一般来讲,研究函数的性质指的是要研究哪方面的内容? 对数定义、性质的问答,简单题目的运算.
学生回答,回顾函数和反函数的有关问题
师生讨论
对于对数这一学生不熟希的概念和运算加以复习,为研究对数函数扫除不必要的障碍.
为对数函数的研究作一方面的准备
从整体的角度思考、研究函数的性质
5分 7分 9分
师生共同讨论得出结论: 图像可以通过(1)描点作图;(2)利用函数与反函数的关系作图;(3)利用教学软件作图(几何画
板,Z+Z ,图形计算器等)
研究函数的性质一般研究下面一些内容:定义域;值域;某些具有特殊意义的值;单调性;奇偶性;图像的对称性等等。
学生选择一种研究函数图像的方式研究对数函
数的性质. 研究问题的同时填写下表: 函数解析式 图像 性质
2log y x =
12
log y x =
3log y x = 13
log y x =
填写表格后把对数函数的性质用准确的文字表示出来.
并在一个坐标系中做出这四个函数的图像. 进一步研究对数函数图像之间的关系.
用不同方法研究对数性质的学生将研究的心得进行交流
讨论后,完成对数函数性质的总结:
学生自由组
合选择一种
方法研究对数函数的性质. 在巡视的过程中关注学
生是否注意
到了函数性
质与函数图
像之间的联
系(如定义域确定了函数图像在水平
方向上的范围).
学生之间交
流;对于研究
过程中的问
题师生可以
感受
这是一个非常重要的环节,是全面认识函数性质的不可缺少的辨析阶段.
14分
32分
函数解析式
图像
性质
log a y x = 1a >
log a y x =
01a <<
注:1、准确总结出对数函数的性质,可以不局限于教科书上的几条性质;
2、总结出对数函数图像之间的联系.如1a >的情况下函数增长速度的比较等等。
三、练习、检测部分
1、求函数12
log (2)y x =- 2、利用对数函数的单调性,比较下列各组数的大
小.
(1)22log ,log e π; (2)132
log 0.3,log 0.2; (3)234log 0.4, log 0.4, log 0.4 .
3、已知log 4log 4a b <,比较a 、b 大小.
4、证明:函数lg(1)x
y a =-的图像在x 轴的同一侧.
进行交流、质询.
40分
45分
六、关于教学设计的思考:
1、 “整合”所包含的内容应该是全方位的,应包含教学环节的每一个部分。
包括概念课、习题课、定理教学的课、复习课、问题探究的课等等课型之中。
“整合”作为教学改革的方向应该惠及每一个学生,尤其是学习数学有一定困难的学生。
这样就需要“整合”的思想与设计不仅仅要在复杂的问题中使用,更要在数学最基础的地方使用,尤其要关注在一些基础知识的得出过程之中让学生体会过程,在体会过程之中理
解数学,并逐步掌握学习数学的方法。
2、这节课的在整个函数学习过程中的位置适于结合整合作对函数图像及性质进行探究。
学生在初中以及高中前一段时间学过几种具体的函数,研究过函数的图像和性质。
但是,研究函数的方法不同,函数的性质也由片面逐渐全面,因此,在对数函数一节可以借研究对数函数的图像和性质对于研究函数的方法、函数的性质主要指函数的哪些方面特性做一个总体的回顾,交流。
在涉及的几种研究函数性质的方法中,学生都有可能出现对于函数全面认识的问题。
如:用反函数的方法研究对数函数的图像和性质时,由于无法十分准确的作图,有的学生会把
log a y x =的图像画到y 轴的左侧,再追问函数的定义域,学生知道是{0}x x >,但是并
没有意识把两者联系在一起,这涉及到对于函数全面认识的问题。
检测中的练习4就是检验这方面的掌握情况。
作为这节课的后续,可以研究较为开放的有关函数的问题,比如,可以让学生在网上查找一下生活或有关自然科学中的函数模型,体会一下函数的应用,并且可以对供求函数进行抽象,提炼出函数b
y ax x
=+
,进而研究这个函数的有关性质,作为一个研究性课题巩固对研究函数方法的认识,加深对函数性质的整体认识。
3、在对于某一个问题认识的初期应尽量尊重学生的想法,尤其是对于“函数”这一难于理解的概念。
解决函数问题的切入点是多方位的,如本节课研究函数的不同方法,这些感受要在学习函数的过程中不断的让学生去体会。