对数函数及其性质教学设计及说明

合集下载

4.4.2对数函数图象及性质教学设计-2024-2025学年高一上学期数学人教A版2019必修一

4.4.2对数函数图象及性质教学设计-2024-2025学年高一上学期数学人教A版2019必修一

4.4.2对数函数图象及性质(人教版)一、对数函数图象及性质1.学情分析(1)心理上:高一年级的学生已入校两个月,在学习情绪和学习态度上也相对稳定。

此时学生渴望知识和学习情绪也都很高涨,主动积极。

厌倦教师的单独说教,希望能创设自行思考探索的空间,给他们发表自己见解和表现才华的机会。

(2)知识上:学生已学习了一次函数、反比例函数、二次函数、幂函数、指数函数等初等函数,已对函数的相关概念、研究方法有了一定的了解和掌握,学生已经明白对数函数与指数函数的关系,可以通过类比的方法研究学习。

2.教材分析本节选自人教版高一数学必修第一册(2019A)4.4.2。

主要内容是学习对数函数的图象、性质及初步运用。

本节课是继学习指数函数后,学习的另一重要函数。

对数函数与指数函数有许多相似之处,教材通过类比的方法,利用探究指数函数的模式和方法设计探索对数函数图象与性质的过程。

让学生对建立和研究一个具体的函数的方法有较完整的认识,注重通过数形结合的方法研究函数的性质,深化由特殊到一般的转化思想,培养数学抽象等数学学科核心素养。

二、教学设计(一)教学课题:对数函数图象及性质(二)教学目标1.掌握对数函数图象及其性质;2.会利用对数函数的图象及性质,求对数函数的定义域,能解决实际问题;3.渗透类比应用意识,培养归纳思维和逻辑推理能力。

(三)教学重点与难点1.重点:对数函数的图象与性质;2.难点:对数函数的性质。

(四)学法与教法1.学法:通过类比指数函数图象及性质的研究过程,推导对数函数图象及性质;2.教法:启发式教学与讲授式教学相结合。

(五)选择媒体传统媒体与现代媒体相结合。

(六)课型与教学形式1.课型:综合型。

2.教学形式:启发式教学与讲授式教学相结合。

(七)教学流程1.复习旧知回顾对数函数的概念,指数函数图象与性质的研究方法。

【设计意图:通过已经讲述过的指数函数图象与性质的研究方法,让学生联系、类比已学知识,结合对数函数的概念,推导整理出对数函数的图象与性质,对一个函数的图象与性质研究过程有更深层次的理解,并能从其中观察到对数和指数函数的关系。

对数函数及其性质教案设计

对数函数及其性质教案设计

对数函数及其性质教案设计一、教学目标1. 知识与技能:(1)理解对数函数的定义,掌握对数函数的性质。

(2)学会运用对数函数解决实际问题。

2. 过程与方法:(1)通过观察、分析、归纳对数函数的性质,培养学生的逻辑思维能力。

(2)利用信息技术,展示对数函数的图像,增强学生的直观感受。

3. 情感态度与价值观:(1)激发学生对数学的兴趣,培养学生的探究精神。

(2)培养学生运用数学解决实际问题的能力,提高学生的综合素质。

二、教学重点与难点1. 教学重点:(1)对数函数的定义及其性质。

(2)运用对数函数解决实际问题。

2. 教学难点:(1)对数函数的性质的理解与运用。

(2)对数函数在实际问题中的应用。

三、教学过程1. 导入新课:(1)复习指数函数的性质。

(2)提问:指数函数与对数函数有何关系?2. 自主学习:(1)学生自主探究对数函数的定义。

(2)学生归纳总结对数函数的性质。

3. 课堂讲解:(1)讲解对数函数的定义,解释对数函数的性质。

(2)举例说明对数函数在实际问题中的应用。

4. 课堂练习:(1)巩固对数函数的基本性质。

(2)运用对数函数解决实际问题。

5. 课堂小结:(1)回顾本节课所学内容,总结对数函数的性质。

(2)强调对数函数在实际问题中的应用。

四、课后作业1. 完成课后练习题,巩固对数函数的基本性质。

2. 选择一个实际问题,运用对数函数解决。

五、教学反思1. 反思教学过程,检查教学目标是否达成。

2. 针对学生的反馈,调整教学方法,提高教学效果。

3. 关注学生的学习兴趣,激发学生的探究精神。

六、教学活动设计1. 课堂互动:通过提问、讨论等方式,让学生积极参与课堂,提高课堂氛围。

2. 小组合作:学生分组探讨对数函数在实际问题中的应用,分享解题心得。

3. 案例分析:分析实际问题,引导学生运用对数函数解决问题。

七、教学评价1. 课堂练习:评价学生对对数函数基本性质的掌握程度。

2. 课后作业:评价学生运用对数函数解决实际问题的能力。

对数及对数函数教案8篇

对数及对数函数教案8篇

写教案能帮助教师更好地安排课堂教学时间,教案要结合实际的教学进度和学生的学习能力,才能更好地帮助学生提高学习效果,下面是范文社小编为您分享的对数及对数函数教案8篇,感谢您的参阅。

对数及对数函数教案篇1【学习目标】一、过程目标1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。

2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。

3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。

二、识技能目标1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。

2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。

三、情感目标1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的.学习兴趣。

2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。

教学重点难点:1对数函数的定义、图象和性质。

2对数函数性质的初步应用。

教学工具:多媒体学前准备】对照指数函数试研究对数函数的定义、图象和性质。

对数及对数函数教案篇2对数函数及其性质教学设计1.教学方法建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。

它既强调学习者的认知主体作用,又不忽视教师的指导作用。

高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟.在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式”教学方法。

将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。

其理论依据为建构主义学习理论。

它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。

2.学法指导新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。

对数函数及其性质教案

对数函数及其性质教案

教学目标:1. 理解对数函数的定义和性质。

2. 学会如何求解对数函数的值。

3. 能够应用对数函数解决实际问题。

教学内容:1. 对数函数的定义与性质2. 对数函数的图像与性质3. 对数函数的求解方法4. 对数函数的实际应用5. 对数函数的进一步研究教学准备:1. 教学PPT或黑板2. 教学教材或参考资料3. 练习题和答案教学过程:第一章:对数函数的定义与性质1.1 对数函数的定义1.2 对数函数的性质1.3 对数函数的图像第二章:对数函数的图像与性质2.1 对数函数的图像特点2.3 对数函数的图像与应用第三章:对数函数的求解方法3.1 对数函数的求解步骤3.2 对数函数的求解实例3.3 对数函数的求解练习第四章:对数函数的实际应用4.1 对数函数在科学研究中的应用4.2 对数函数在日常生活中的应用4.3 对数函数在其他领域的应用第五章:对数函数的进一步研究5.1 对数函数的扩展知识5.2 对数函数的相关问题5.3 对数函数的研究方向教学评价:1. 课堂参与度与提问2. 练习题的完成情况3. 小组讨论与合作4. 课后作业的完成情况教学反思:本教案旨在帮助学生理解和掌握对数函数的定义、性质、图像以及求解方法,并能够将所学知识应用于实际问题中。

在教学过程中,应注重引导学生通过观察、思考和练习来深入理解对数函数的概念和性质。

通过实际应用的例子,让学生感受到对数函数在科学研究和日常生活中的重要性。

在教学评价方面,应综合考虑学生的课堂参与度、练习题完成情况和小组讨论等情况,以全面评估学生对对数函数的理解和掌握程度。

在教学反思中,可以根据学生的反馈和教学情况进行调整和改进,以提高教学效果。

第六章:对数函数的求解实例6.1 对数函数的求解示例一6.2 对数函数的求解示例二6.3 对数函数的求解示例三第七章:对数函数的求解练习7.1 对数函数的求解练习题一7.2 对数函数的求解练习题二7.3 对数函数的求解练习题三第八章:对数函数在科学研究中的应用8.1 对数函数在生物学中的应用8.2 对数函数在物理学中的应用8.3 对数函数在其他科学领域中的应用第九章:对数函数在日常生活中的应用9.1 对数函数在金融中的应用9.2 对数函数在信息技术中的应用9.3 对数函数在其他日常生活中的应用第十章:对数函数的进一步研究10.1 对数函数的扩展知识10.2 对数函数的相关问题研究10.3 对数函数的研究方向和未来趋势这五个章节的主要内容分别是:第六章通过对数函数的求解实例,让学生更好地理解对数函数的求解方法,巩固所学知识。

对数函数及其性质教学设计及说明

对数函数及其性质教学设计及说明

《2.2对.数2函数及其性质》教学设计一、教材分析<一>地位与作用对数函数是高中数学继指数函数之后的重要初等函数之一,无论从知识角度还是从思想方法角度对数函数都与指数函数有类似之处。

与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。

而且学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际中的应用奠定良好的基础。

<二>教学目标【知识目标】1、理解对数函数的定义,掌握对数函数的图象和性质;2、会求和对数函数有关的函数的定义域;3、会利用对数函数单调性比较两个对数的大小。

【能力目标】1、通过对底的讨论,使学生对分类讨论的思想有进一步的认识,体会由特殊到一般的数学思想;2、通过例题、习题的解决,使学生领悟化归思想在解决问题中的作用。

【情感目标】学生在参与中感受数学,探索数学,提高学习数学的兴趣,增强学好数学的自信心。

<三>教学重难点教学重点:理解对数函数的定义,掌握对数函数图像和性质。

教学难点:底数对函数值变化的影响及对数函数性质的应用。

二、教学方法:探究与小组合作教学法。

三、教学用具:多媒体,三角板,坐标纸。

四、教学过程设计在对教材及学生全面深入了解的基础上,我设计了以下五个教学环节:五、教学评价分析根据本节课的特点我从以下两个方面进行教学评价:1、关注学生在整个探究过程中的的表现,包括学生的投入程度、思维水平的发展,具体体现在:(1)、在对数函数概念形成的过程中,学生的思维发展过程,学生的概括问题的能力;(2)、在对数函数的性质的探究过程中,学生分析和解决问题的能力。

2、在练习中检测学生对本节课定义的理解性质的掌握情况。

通过以上教学评价,学生学习激情更加高涨,老师也可以根据学生的反映情况随时调控教学。

对数函数及其性质的教学设计【2篇】

对数函数及其性质的教学设计【2篇】

对数函数及其性质的教学设计【2篇】篇一:高中数学对数函数教案篇一教学目标1、在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题。

2、通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想。

3、通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性。

教学重点,难点重点是理解对数函数的定义,掌握图像和性质。

难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质。

教学方法启发研讨式教学用具投影仪教学过程一。

引入新课今天我们一起再来研究一种常见函数。

前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数。

反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数。

这个熟悉的函数就是指数函数。

提问:什么是指数函数?指数函数存在反函数吗?由学生说出是指数函数,它是存在反函数的。

并由一个学生口答求反函数的过程:由得。

又的值域为,所求反函数为。

那么我们今天就是研究指数函数的反函数__对数函数。

2.8对数函数(板书)一。

对数函数的概念1、定义:函数的反函数叫做对数函数。

由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发。

如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为,对数函数的值域为,且底数就是指数函数中的,故有着相同的限制条件。

在此基础上,我们将一起来研究对数函数的图像与性质。

二。

对数函数的图像与性质(板书)1、作图方法提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图。

同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图。

【公开课教案】《对数函数及其性质》教学设计

【公开课教案】《对数函数及其性质》教学设计

《对数函数及其性质》教学设计
一、教材分析
本节教材的地位和作用:基本初等函数是函数的核心内容,而对数函数又是重要的基本初等函数之一。

在此之前,学生已经学习了指数函数及对数运算,为本节的学习起着铺垫作用,同时对数函数作为常用数学模型是解决有关自然科学领域中实际问题的重要工具,本节课的学习为学生进一步学习、参加生产和实际生活提供必要的基础知识。

因此本节课具有承前启后的作用。

二、三维目标
1.知识与技能:
(1)理解对数函数的概念;
(2)掌握对数函数的图像和性质,并在探索过程中学会运用数形结合的方法研究问题;
2.过程与方法:
(1)经历对数函数概念的形成过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,由具体到一般,提高学生归纳概括能力;
(2)学生通过自己动手作图,分组讨论对数函数的性质,提高动手能力、合作学习能力以及分析解决问题的能力;
(3)通过类比指数函数性质研究对数函数,培养学生运用类比的思想研究数学问题的素养;
3.情感、态度与价值观:
在知识形成的过程中,体会成功的乐趣,感受数学图形的美,激发学生学习数学的热情与爱国主义热情,培养学生勇于探索敢于创新的精神。

三.教学重难点
重点:本节课是新授课,,因此我把本节课重点定为对数函数的概念、图象,和性质。

难点:学生在探究对数函数性质时可能会遇到障碍,因此我把探究对数函数性质作为本节课的难点。

四、教学过程:
然后由学生讨论完成下表:(空白表,由学生填)函数log a y x =的图象特征 函数log a y x =的性质
3.4<8.5,2log 3.4∴且1.8<2.7,时,
()
11。

对数函数及其性质教案

对数函数及其性质教案

对数函数及其性质教案教案标题:对数函数及其性质教案教案目标:1. 了解对数函数的基本概念和性质。

2. 掌握对数函数的图像特点和变换规律。

3. 理解对数函数的应用领域。

教案步骤:引入活动:1. 引导学生回顾指数函数的相关知识,包括指数函数的定义和性质。

2. 提问学生对指数函数的图像和变换规律是否还记得。

知识讲解:1. 介绍对数函数的定义和性质,包括对数函数与指数函数的关系。

2. 解释对数函数的图像特点,如渐近线、单调性和奇偶性等。

3. 分析对数函数的变换规律,如平移、伸缩和翻转等。

示例演练:1. 给出一些对数函数的具体表达式,让学生绘制对应的图像。

2. 引导学生观察图像的特点,如图像的位置、形状和变化趋势等。

3. 鼓励学生对图像进行推理和总结,以加深对对数函数性质的理解。

拓展应用:1. 探讨对数函数在实际问题中的应用,如科学计算、经济增长和物种繁殖等。

2. 给出一些实际问题,让学生运用对数函数的性质进行求解。

3. 鼓励学生思考对数函数在其他学科中的应用,如物理学、化学和生物学等。

总结回顾:1. 对本节课所学内容进行总结,强调对数函数的基本概念和性质。

2. 提问学生对对数函数的理解程度,解答他们可能存在的疑惑。

3. 鼓励学生通过课后练习巩固对对数函数的学习成果。

教案评估:1. 设计一些练习题,检验学生对对数函数的理解和应用能力。

2. 观察学生在课堂上的表现和参与程度。

3. 根据学生的表现评估教学效果,并作出相应的调整。

教学资源:1. 课件或黑板,用于展示对数函数的定义、性质和图像。

2. 练习题,用于课堂练习和巩固学生的学习成果。

3. 实际问题,用于拓展对数函数的应用领域。

教学延伸:1. 鼓励学生自主学习,通过阅读相关教材或网络资源进一步了解对数函数的性质和应用。

2. 提供更多的实际问题,让学生通过解决问题来深化对对数函数的理解。

3. 组织学生进行小组讨论或展示,分享对对数函数的理解和应用案例。

教案反思:1. 教学过程中是否能够引发学生的兴趣和积极参与?2. 对数函数的性质是否被学生充分理解和掌握?3. 是否需要调整教学方法或增加更多的实例来加深学生对对数函数的理解?通过以上教案的设计和实施,学生应该能够全面了解对数函数的基本概念和性质,并能够应用于实际问题中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《2.2.2对数函数及其性质》教学设计
一、教材分析
<一>地位与作用
对数函数是高中数学继指数函数之后的重要初等函数之一,无论从知识角度还是从思想方法角度对数函数都与指数函数有类似之处。

与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。

而且学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际中的应用奠定良好的基础。

<二>教学目标
【知识目标】1、理解对数函数的定义,掌握对数函数的图象和性质;
2、会求和对数函数有关的函数的定义域;
3、会利用对数函数单调性比较两个对数的大小。

【能力目标】1、通过对底的讨论,使学生对分类讨论的思想有进一步的认识,体会由特殊到一般的数学思想;
2、通过例题、习题的解决,使学生领悟化归思想在解决问题
中的作用。

【情感目标】学生在参与中感受数学,探索数学,提高学习数学的兴趣,增强学好数学的自信心。

<三>教学重难点
教学重点:理解对数函数的定义,掌握对数函数图像和性质。

教学难点:底数a对函数值变化的影响及对数函数性质的应用。

二、教学方法:探究与小组合作教学法。

三、教学用具:多媒体,三角板,坐标纸。

四、教学过程设计
在对教材及学生全面深入了解的基础上,我设计了以下五个教学环节:
五、教学评价分析
根据本节课的特点我从以下两个方面进行教学评价:
1、关注学生在整个探究过程中的的表现,包括学生的投入程度、思维水平的发展,具体体现在:
(1)、在对数函数概念形成的过程中,学生的思维发展过程,学生的概括问题的能力;
(2)、在对数函数的性质的探究过程中,学生分析和解决问题的能力。

2、在练习中检测学生对本节课定义的理解性质的掌握情况。

通过以上教学评价,学生学习激情更加高涨,老师也可以根据学生的反映情况随时调控教学。

相关文档
最新文档