第一章 张量分析初步
张量分析基础

3
3
aklik i
k 1
k 1
i1
i1 k 1
x3
A
P
S P
x2
OO
x2
比较式(d)左端:
x1 x1
3
3
aii akk
i1
k 1
(d)
得到:
3
ai aklik k 1
3
ak ailik i1
33
F
aiji j
i1 j 1
保持不变,则称取决于两个下标 i、j 的9个量 aij 的集合为二阶张量。 aij 中的每一个量被称为此张量(对指定坐标系)的分量。如:
ij —— 应力张量, ij —— 应变张量
二阶张量的变换规律:
由题设条件,当坐标系变换时,有:
3 3
33
i1
k 1
3
将式(b): i likk k 1
代入式(d)等号的左边,有
(d) (b)
设 (1,2 ,3 )、 (a1, a2 , a3 ) 和 (1 ,2 ,3 )、(a1 , a2 , a3 )分别为
两种坐标系中的分量, 根据题设,它们之间应有
x1
x2
x3
x1
l11
l12
l13
x2
l21
l22
l23
x3
l31
l32
l33
1,2 ,3 变换关系 1 ,2 ,3
1 l111 l21 2 l313
2 l121 l22 2 l323 3 l131 l23 2 l333
3
3
aii akk
x3
(d)
张量分析(1)

x2
' x2
e2'
e2 e ' 1
' x1
e1 x1
x1
x2
' x2
' x1
x2
' x2 e2'
e 2 e1'
' x1
e1 x1
x1
令:αi' j cos(ei' ,e j )
( i' , j 1,2 )
则: αi' j
cos(e1' , e1 ) cos(e1' , e2 ) cos sin cos( e , e ) cos( e , e ) ' ' sin cos 1 2 2 2
A B ( Aij Bij )ei e j Tijei e j Τ
符合 φ ijklei e j ek el ,为一新张量
另证:
Ai ' j ' i 'i j ' j Aij Bi ' j ' i 'i j ' j Bij
Ai ' j ' Bi ' j ' i 'i j ' j ( Aij Bij )
xi xi , j ij x j aii jk a jk
三.Ricci 符号
定义:
ei j k
1 1 0
ei j k
即:
e123 e231 e312 1 e213 e132 e321 1 e111 e112 e113 0
第1章 张量分析(清华大学张量分析,你值得拥有)

vvxivyjvzk
物理意义:
uvuxvxuyvyuzvz
计算功(功率)
可交换性: 运算次序的无关性
uv u v
(许瓦兹不等式)
对称性 不变性
矢量及其代数运算
➢矢量的乘法
矢量的外积
定义式(实体形式,几何表达) :wuv
wuv
uv uvsin
u v v u (反交换性)
v
计算式(分量形式,代数表达) :
平面极坐标系
xi' =xi' xi
gi
r xi
g1icosx2jsinx2 g2ix1sinx2jx1cosx2
g1 1 g2 r
曲线坐标系:斜角直线坐标系的延伸
※三维球坐标系
(x,y,z) (x1,x2,x3)
(r,,) (x1,x2,x3)
x 3
r
gr
g
g
x 2
rx1ix2jx3kxigi x 1
量
可证明:
分 析
g ij g ji
gij g ji
的
称 g i j 为度量张量的协变分量
起
称 g i j 为度量张量的逆变分量
点
gi gij g j gi = g ij g j
协变基矢量在逆变基矢量下分解 逆变基矢量在协变基矢量下分解
斜角直线坐标系的基矢量与矢量分量
➢ 三维空间中的斜角直线坐标系和基矢量
P
基于简化的思想,
引入逆变基矢量 g
g1 x1
费马坐标系
存在对偶关系:
gg 10
斜角直线坐标系的基矢量与矢量分量
➢ 平面内斜角直线坐标系下矢量的协变分量与逆变分量
PPg Pg
张量分析——初学者必看精选全文

§ A-1 指标符号 三、Kronecker-符号和置换符号(Ricci符号)
Ricci符号定义
偶次置换
1 若i, j, k 1,2,3, 2,3,1, 3,1,2 eijk 1 若i, j, k 3,2,1, 2,1,3, 1,3,2
0 若有两个或三个指标相等
e123 e231 e312 1 e213 e132 e321 1 e111 e112 e113 0
§A-4 张量的代数运算 三、矢量与张量的叉积
A 张量分析
右叉乘
T a (Tijeie j ) (akek ) Tij akeie jkrer e T jkr ij akeier B
§A-4 张量的代数运算
A 张量分析
四、两个张量的点积
两个张量点积的结果仍为张量。新张量的阶数是 原两个张量的阶数之和减 2
坐标变换式 xi ii xi xi ii xi
ii cos(xi, xi ) ii cos(xi , xi )
§A-3 坐标变换与张量的定义 A 张量分析
[ii ], [ii ]
互逆、正交矩阵
ii ii
ij
1 0
0 1
基矢量变换式
ei iiei ei iiei
坐标变换系数
v 任意向量变换式 i vii i vii i
ip iq ir eijk epqr jp jq jr
kp kq kr
pk
eijk ekqr
iq jq
ir jr
iq jr ir jq
a11 a12 a13 A a21 a22 a23 a11a22a33 a12a23a31
a31 a32 a33 a13a21a32 a13a22a31 a12a21a33 a11a23a32 eijk a1ia2 j a3k eijk ai1a j2ak3
张量分析

张量分析张量分析,又称张量微积分,是一门研究多维空间中的向量和张量的数学工具。
它在物理学、工程学、计算机科学等领域有着广泛的应用。
张量分析的核心思想是通过张量的计算和运算,来描述和解释多维空间中的现象和问题。
在数学中,张量是一种广义的向量概念。
它不仅可以表示标量和向量,还可以表示具有更高维度的物理量。
例如,二阶张量可以表示物体的形变和应力分布,三阶张量可以表示电磁场的分布,四阶张量可以表示弹性材料的性质等。
张量分析的基本概念包括张量的定义和表示、张量的变换规律以及张量的运算。
对于二阶张量,可以用一个矩阵来表示。
张量的变换规律与坐标系的选择有关,不同的坐标系下,同一个张量可以表示为不同的矩阵形式。
张量的运算包括加法、数乘、内积和外积等。
这些运算在物理和工程问题中具有重要的意义,可以帮助研究人员推导和解决实际问题。
在物理学中,张量分析被广泛应用于描述和分析物体的运动、形变、应力等问题。
例如,通过分析物体的应力张量,可以判断物体是否会发生破坏或变形。
在工程学中,张量分析可以用于解决弹性力学、流体力学、电磁学等问题。
在计算机科学中,张量分析可以用于图像处理、模式识别等领域。
张量分析的发展离不开数学家们的努力。
早在19世纪,克里斯托弗·亚当斯(Christopher Adams)就提出了张量的概念。
20世纪初,爱因斯坦在相对论的研究中也广泛应用了张量分析。
随着计算机的发展和计算能力的提高,张量分析在科学研究中的应用也越来越广泛。
虽然张量分析在各个领域中都有广泛的应用,但它的理论和方法并不容易掌握。
要学好张量分析,需要对线性代数、微积分和向量分析等数学知识有扎实的掌握。
此外,也需要具备一定的物理学和工程学的基础知识。
对于初学者来说,可以通过学习相关的教材和参考资料,同时结合实际问题进行练习和应用。
总之,张量分析是一门重要的数学工具,对于描述和解决多维空间中的问题具有重要的意义。
它在物理学、工程学、计算机科学等领域有着广泛的应用。
张量初步

§
2.4
克罗内克(Kronecker)符号δij (替换符号)
★ 克罗内克符号δij δij = 1 δij = 0 ★ 对称性:δij = δji ★ 转置不变性:δij = δij ★ 替换性:δij vj = vi (i = j) (i = j)
§
2.4
克罗内克(Kronecker)符号δij (替换符号)
§
2.5
勒维{契维塔(levi{civita)符号εijk (排列符号)
★ 勒维{契维塔符号εijk (三阶反对称张量) εijk = +1 εijk = −1 εijk = 0 ★ 反对称性:εijk = −εjik (ijk = 123, 231, 312) (ijk = 213, 321, 132) (ijk = 112, 233, · · · )
逐
铁 简 单
T
点 ( (
§
2.3
二阶张量
★ 二阶张量:如张力张量、电四极矩、转动惯量、介电张量等; Tij = αil αjm Tlm ★ 二阶张量可以用一个矩阵来表示; ★ 张量的含义:Tij 分量:在j方向分量作用下的i方向的反应效果; ★ 张量的自由度:任何一个张量都可以分解为三个部分: ◆ 迹(标量)Tii 自由度为1 ◆ 无迹对称张量Tij = Tji 且Tii = 0 自由度为5
★ 克罗内克符号δij δij = 1 δij = 0 ★ 对称性:δij = δji (i = j) (i = j)
§
2.4
克罗内克(Kronecker)符号δij (替换符号)
★ 克罗内克符号δij δij = 1 δij = 0 ★ 对称性:δij = δji ★ 转置不变性:δij = δij (i = j) (i = j)
第一章张量分析基础知识

第⼀章张量分析基础知识晶体物理性能南京⼤学物理系由于近代科学技术的发展,单晶体⼈⼯培养技术的成熟,单晶体的各⽅⾯物理性能(如⼒、声、热、电、磁、光)以及它们之间相互作⽤的物理效应,在各尖端科学技术领域⾥,都得到了某些应⽤.特别是⽯英⼀类压电晶体作为换能器、稳定频率的晶体谐振器、晶体滤波器等在电⼦技术中,⽐较早地在⼯业规模上进⾏⼤批⽣产和⼴泛应⽤.激光问世的四⼗多年来,单晶体在激光的调制、调Q、锁模、倍频、参量转换等光电技术应⽤中,已成单晶体应⽤中极为活跃的领域.《晶体物理性能》是我系晶体物理专业的专业课程之⼀,⽬的就是希望对晶体特别是光电技术中使⽤的晶体(包括基质晶体与⾮线性光学晶体)的有关物理性能及其应⽤⽅⾯的基本知识,有⼀个了解.对今后从事光电晶体的⽣长、检测和应⽤的⼯作,在分析问题、解决问题⽅⾯有所帮助,同时要在今后⼯作中不断从实践和理论两个⽅⾯扩⼤知识领域,有⼀个基础.考虑到本专业属于晶体材料性质的专业特点,本课程不仅对晶体物理性能的各个⽅⾯作深⼊全⾯的介绍,也将侧重于激光晶体有关的⼀些性能及其应⽤.鉴于以上考虑,《晶体物理性能》讲义将以离⼦晶体为主要对象,以光电技术上应⽤为线索组织内容,共分为⼋章.着重于从宏观⾓度结合微观机制介绍晶体基本物理性能以及各种交互作⽤过程的物理效应和它们在光电技术中的某些应⽤,包括弹性与弹性波(第⼆章),晶体光学中的各向异性(第五章),压电与铁电现象(第四章),电光效应(第七章),光学参量过程(第六章),声光效应(第⼋章).由于晶体物理性能的各向异性的特点和晶体对称性有密切关系,通常正确、⽅便地描述这些物理性能必须使⽤张量来表⽰.因此,在第⼀章,我们介绍了关于张量分析基础知识⽅⾯的内容.由于⽔平有限,实践经验缺乏,时间仓促,因⽽内容安排不妥、取舍不当、错误之处⼀定很多,希望同学们提出宝贵意见,批评指正.第⼀章张量的基础知识§1.1标量、⽮量和⼆阶张量…………………………………………………………………2§1.2坐标变换和变换矩阵……………………………………………………………………§1.3正交变换矩阵的性质……………………………………………………………………§1.4晶体对称操作的变换矩阵……………………………………………………………§1.5⼆阶张量的变换与张量的定义………………………………………………………§1.6张量的⾜符互换对称…………………………………………………………………§1.7张量的矩阵表⽰和矩阵的代数运算…………………………………………………§1.8⼆阶对称张量的⼏何表⽰和⼆阶张量的主轴………………………………………§1.9⼆阶对称张量主轴的确定……………………………………………………………§1.10晶体张量与晶体对称性的关系………………………………………………………第⼆章晶体的弹性与弹性波§2.1弹性性质与原⼦间⼒…………………………………………………………………§2.2应变……………………………………………………………………………………§2.3应⼒……………………………………………………………………………………§2.4推⼴的虎克定律、弹性系数…………………………………………………………§2.5⽴⽅晶体的弹性系数…………………………………………………………………§2.6各向同性材料的弹性系数……………………………………………………………§2.7弹性扰动的传播――弹性波…………………………………………………………§2.8简谐振动和驻波……………………………………………………………………§2.9弹性常数及振动衰减因⼦的测量⽅法……………………………………………第三章晶体的介电性质§3.1介质中的宏观电场强度与极化强度………………………………………………§3.2晶体中的有效场……………………………………………………………………§3.3⾼频电场的介电极化(光的⾊散与吸收)………………………………………§3.4介电常数的测量……………………………………………………………………§3.5离⼦晶体的静电击穿………………………………………………………………§3.6激光的电击穿(激光的电击穿损伤)……………………………………………第四章铁电与压电物理§4.1铁电体的⼀般性质…………………………………………………………………§4.2常⽤铁电体的实验规律……………………………………………………………§4.3铁电体的相变热⼒学………………………………………………………………§4.4铁电体相变的微观机制……………………………………………………………§4.5晶体的压电效应……………………………………………………………………§4.6压电⽅程和机电耦合系数…………………………………………………………§4.7压电晶体的应⽤实例――⽯英……………………………………………………第五章晶体光学§5.1光学各向异性晶体…………………………………………………………………§5.2各向异性介质中光的传播…………………………………………………………§5.3折射椭球与折射率曲⾯……………………………………………………………§5.4晶体表⾯上的折射…………………………………………………………………§5.5晶体偏光⼲涉及其应⽤……………………………………………………………第六章倍频与参量频率转换§6.1⾮线性极化…………………………………………………………………………§6.2⾮线性极化系数……………………………………………………………………§6.3⾮线性介质中电磁场耦合⽅程……………………………………………………§6.4光倍频………………………………………………………………………………§6.5光倍频的相匹配……………………………………………………………………§6.6第II类相匹配………………………………………………………………………§6.7⾓度匹配和温度匹配扫描实验曲线………………………………………………§6.8内腔倍频……………………………………………………………………………§6.9光参量放⼤…………………………………………………………………………§6.10参量振荡器…………………………………………………………………………§6.11参量振荡器的调谐⽅法……………………………………………………………§6.12参量频率上转换……………………………………………………………………§6.13⾮线性材料的性能要求……………………………………………………………第七章电光效应及其应⽤§7.1线性电光效应………………………………………………………………………§7.2两种典型材料的电光效应…………………………………………………………§7.3电光滞后……………………………………………………………………………§7.4电光调制原理………………………………………………………………………§7.5实际调制器的⼏个问题……………………………………………………………§7.6晶体电光开关………………………………………………………………………§7.7电光Q开关…………………………………………………………………………§7.8电光偏转……………………………………………………………………………§7.9电光材料……………………………………………………………………………§7.10晶体均匀性的实验检测……………………………………………………………§7.11晶体的激光损伤……………………………………………………………………§7.12晶体均匀性实验检测………………………………………………………………第⼋章声光效应及其应⽤§8.1弹光效应……………………………………………………………………………§8.2声光交互作⽤产⽣的衍射现象……………………………………………………§8.3声光交互作⽤的理论………………………………………………………………§8.4声光效应在⼀些物理常数测量中的应⽤…………………………………………§8.5声光调制器…………………………………………………………………………§8.6声光偏转器…………………………………………………………………………§8.7声光调Q……………………………………………………………………………§8.8声光材料……………………………………………………………………………附录A.32点群投影图…………………………………………………………………………B.各阶张量在不同点群中的矩阵形式……………………………………………………C.主要常数表………………………………………………………………………………D.单轴晶体中光线离散⾓α的推导………………………………………………………E.双轴晶体中双折射⾯相差Γ的推导……………………………………………………F.贝塞尔函数的基本性质…………………………………………………………………第⼀章张量分析基础知识以前学的课程中,有关⼒学、热学、电学、光学等的性质都是以各向同性介质来表述的或以⼀维问题来说明问题,这对于突出某些物理现象的微观的物理原因⽅⾯是必要的,但晶体物理性能是讲晶体中的⼒学、电学、光学、声学、磁学、热学等物理性能,⽽晶体的各向异性却是⼀种很普遍的特性,特别是很多现象如热电、压电、电光、声光、⾮线性光学效应……等等物理现象则完全因为晶体具有各向异性性质才能表现出来.因此,晶体结构对称性和这些性质之间的关系成为问题的主要⽅⾯。
第一章 张量初步

1
上式两端同时点乘g1得到
所以 同理
g
2
1 g 1 g c g 1 ( g 2 g 3 ) c[ g 1
1
g2
g3 ] c
g
g
1
1 g
( g2 g3 )
1 g
( g 3 g1 ) ( g1 g 2 )
13
g
3
1 g
ppt/102
x
1
e 1
x
2
e 2
x
3
e 3
x
k
ek
16
空间点的局部基矢量
下面证明:空间一点的局部逆变基矢量可表示为坐标面的
ppt/102
梯度,即
g x
i i
x x
i k
ek,
i , k 1, 2 , 3 x x
i k
i i ik ik
det( j ) det( g g kj ) 1
i ik
这再次证明(gij)与 (gij)互为逆矩阵。
12
ppt/102
g g j j,
i i
i , j 1, 2 , 3
由上式可知,逆变基矢量g1与协变基矢量g2 、 g3垂直, 可以用协变基矢量g2 、 g3的叉积表示逆变基g1:
dr
g ij g
i
dx g idx
gi g j ,
i , j 1, 2 , 3
称为度量张量G=(gij)的分量。
9
ppt/102
g ij g i g j ,
i , j 1, 2 , 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
eijk eijk 6
证明见例题
eijk与ij间的关系
由排列符号的性质 : ei e j eijk ek
ei e j • ek eijk
由于ei e j • ek表示的是混合积,其物理意义是单位立方体的体积.
另外,由矢量分析知, 平行六面体的体积可以表示成其三个棱的行
i e1, j e2, k e3
X1
X3 P(x1, x2, x3)
O
X2
➢ 再对上述代换结果进行简写P点改写为: P(x1,x2,x3)P(xi, i=1,2,3)P(xi)
➢ 基向量:ei, i=1,2,3 ei ➢ 则称上述字母i为指标,i的取值i=1,2,3为指标i的取值
列式形式.
eeij
(i1, ( j1
i2,i3 , j2,
)
j3
)
ek (k1,k 2 ,k3)
ei,ej,ek为3个单位基向量, i,j,k互不相等。
i1 i2 i3 ei e j • ek j1 j2 j3 eijk
k1 k2 k3
a13 x3 a23 x3
b1 b2
a31x1 a32 x2 a33 x3 b3
如何用一个最简单 的式子来表示?
用矩阵? 还有更简单的表示方法吗? 可总结为:aij x j bi
aij, xj, bi是些什么量?
§1.1 指标记号及两个特殊符号
两种方式:
将左式展开,再给定每一个i值,求左右是否相等;
只有当i=j时ij才不等于“0”,
∴
a j ij ai ii ( ii不求和) ai
e) Akj ik Akj ki Aij 证明同上。
f) ik kj ij
排列符号
➢ 定义:
eijk
1 ,当i, j, k为1,2,3的偶排列时 1 ,当i, j, k为1,2,3的奇排列时
2. 写出a=Aijbicj的展开式。
3. 写出 ti jin j 的展开式。
4. 写出 bik b jk ij 的展开式。
5.
?写出
eij
1 ( ui 2 x j
u j ) xi
的展开式。
6.
?写出
w
1 2
ij
eij
的展开式。
两个特殊符号
两个特殊符号
为书写的方便,可以使用kronecker符号和排列符号简化书 写。
➢ 求和表示为:
2
OP x e , 1,2
O
1
OP x e , 1,2
每次还要书写取值范围,太烦!对取值范围进行 约定:
➢ 用拉丁字母(i, j, k等)书写的指标其取值范围是1,2,3;
➢ 用希腊字母(,b等)书写的指标其取值范围是1,2。
6.证明eijk eimn jm kn jn km;
例6证明
A11 A12 A13 方法一: det(Ast ) A21 A22 A23
A31 A32 A33
通过观察,6项求和,3项为正3 项为负。是否和排列符号有关?
A11 A22 A33 A21 A32 A13 A31 A12 A23 A11 A32 A23 A21 A12 A33 A31 A22 A13
Ai1 Ai2 Ai3 eijk det(Ast ) Aj1 Aj2 Aj3
Ak1 Ak 2 Ak 3
A1l A1m A1n elmn det(Ast ) A2l A2m A2n
A3l A3m A3n
Ail Aim Ain
eijk elmn det(Ast ) Ajl Ajm Ajn
Akl Akm Akn
指标记号
➢ 空间有个坐标系OXYZ,P (x, y, z)是其中的一点,坐
标为:x, y ,z
z P(x, y, z)
➢ 直角坐标系中的基向量:
O
y
并两两正交——垂直
x
➢ 坐标轴代号x, y, z可否用别的符号进行代换呢?
➢ 用xx1, yx2, zx3 ➢ 则P (x, y, z)P(x1,x2,x3) ➢ 基向量同样可以做如下代换:
则前述方程组也可用求和约定进行表达
a11x1 a12 x2 a13 x3 b1
a21 x1
a22 x2
a23 x3
b2
a31x1 a32 x2 a33 x3 b3
aij x j bi , i, j 1,2,3
上式中i和j有何不同?
在每一项中i只出现了1次,j出现了2次,表示求和的只 有j指标。i?j?
n1 n2 n3
7.?
如果a
aiei
,
b
bi
ei
,
c
ciei
,
证明
:
a
b
c
(a•
c)b
(a•
b)c;
8.简捷证明 :
(1)ij ji 3; (2)eikleljk 2ij; (3)eijkaia j 0
§1.2 坐标变换
什么是坐标变换
i
k
只要旋转的方向相同则取值符号相同,否则取值符号 相反,任两个字母取值相同则取“0”值!
排列符号的几点重要结论:
ei
ej
eijk ek
(a
b) k
ai b j eijk
ek
eijk eimn jm kn jn km
eijk eijn 2 kn
二维坐标变换公式推导
➢ 空间一点P,向径为dx,长度为ds ➢ 在ox1x2坐标系内坐标为(x1,x2);
op xiei
Aij x j bi
op x e
➢ 用希腊字母表示的自由指标的个数决定简写方程代表 的实际方程的个数,可用2n次方来求代表的方程数;
➢ 用希腊字母表示的哑指标的个数决定了该项所代表的 实际求和项的项数,可用2n次方来求代表的项数;
例题
1. Qii, S展开? 步骤:分析i,指标类型?字母类型?再展开
eijk eijk 2 kk 6
i1 i2 i3 方法二:由eimn m1 m2 m3
n1 n2 n3
ii ij ik eijk eimn mi mj mk
ni nj nk
i1 i2 i3 eijk eimn eijk m1 m2 m3
e123 A11 A22 A33 e231A21 A32 A13 e312 A31 A12 A23 e132 A11 A32 A23 e213 A21 A12 A33e321A31 A22 A13
epqr Ap1 Aq2 Ar3 ep中任意两 (行)列,行列式变号 :
➢ 空间中同一个点在不同直角坐标系内的坐标值是不同 的,这些坐标值之间的变换关系就是坐标变换。
➢ 如下图,在ox1x2x3和ox‘1x’2x‘3两个坐标系中,P点的坐 标取值是不同的。
坐标变换类型:坐标旋转、坐标平移、坐标反射 等;本门课中只讨论坐标旋转。
坐标变换在本专业的一般应用:
➢ 三维地震勘探施工设计; ➢ 数字图像处理、三维可视化技术; ➢ 张量计算等;
例题
1.设向量a
ai
ei
,
b
b
j
ej
,
求a
b,
a•
b,
a
2
;
2.设n为单位向量, 证明: nini 1;
3.? 证明ds2 dxidxi ,其中ds为直角坐标系中向量dx的长度;
54..求右向手量坐a标和系b的中,叉试积用;排列符号表达基向量ei间的叉积;
第一章 张量分析初步
第一章 张量分析初步
本章学习目的
引入最基本的张量概念,为今后学习应变张量、
应力张量、广义虎克定律和弹性波方程等专业概
念及运算做准备。是本门课的数学基础。
已学习过的物理量
1
?
➢ 标量?
2
➢ 向量?
有了标量和向量是否足够描述自然现象?
a11 x1 a21 x1
a12 x2 a22 x2
eijk eimn ii jm kn ii jn km in ji km
in jm ki im jn ki im ji kn
jm kn jn km
eijk eijn jj kn jn kj 2 kn
➢ 哑批标:在同一项中重复出现一次(即出现两次)、从 而对其应用求和约定的指标称为哑指标。 如上式中的j 指标。
➢ 自由指标:同一项中不重复出现(即只出现一次),因
而不约定求和的指标称为自由指标。如上式中的i指标。
可否将上式表示成如下形式?
aij x j bk
aij x j b j
指标记号的特点:
➢ 则向量OP在新坐标系内可写为
op
xi ei
,
i 1,2,3
op xiei , i 1,2,3
➢ 提示: 求和约定同样是人为规定,就像“+”两边的数 要相加一样,仅仅是因为创造此记号法的人这么规定 而已 ,没有什么神秘的地方!
➢ 谁创造了求和约定?
Einstein (爱因斯坦)
0 ,当i, j, k中任两取值相同时
e123 e231 e312 1 e132 e321 e213 1