有理数的乘法法则 教学设计

合集下载

华师大版数学七年级上册《有理数的乘法法则》教学设计3

华师大版数学七年级上册《有理数的乘法法则》教学设计3

华师大版数学七年级上册《有理数的乘法法则》教学设计3一. 教材分析华师大版数学七年级上册《有理数的乘法法则》是学生在掌握了有理数的基本概念和加减法运算的基础上,进一步学习有理数的乘除法运算。

这一章节通过引入乘法法则,使学生能够熟练掌握有理数的乘法运算,并为后续的更大数值运算打下基础。

二. 学情分析学生在学习这一章节时,已经具备了基本的数学运算能力,对于有理数的基本概念和加减法运算也有一定的了解。

但学生在学习乘法法则时,可能会对负数的乘法运算和分数的乘法运算产生困惑。

因此,在教学过程中,需要针对这些难点进行详细的解释和示范。

三. 教学目标通过本节课的学习,学生能够掌握有理数的乘法法则,能够熟练进行有理数的乘法运算,并理解乘法运算的运算律。

四. 教学重难点1.重难点:有理数的乘法法则的掌握和运用。

2.难点:负数的乘法运算和分数的乘法运算。

五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。

通过提出问题,引导学生思考和探索;通过案例教学,让学生直观地理解和掌握乘法法则;通过小组合作,促进学生之间的交流和合作。

六. 教学准备1.教学PPT:制作详细的PPT,包括乘法法则的定义、示例和练习题。

2.教学案例:准备一些典型的负数和分数的乘法案例,用于讲解和示范。

3.练习题:准备一些有理数乘法的练习题,用于巩固和检验学生的学习效果。

七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考和探索有理数的乘法运算。

例如:“你们已经学习了有理数的加减法运算,那么有理数的乘法是如何进行的呢?”2.呈现(10分钟)通过PPT呈现乘法法则的定义和示例,让学生直观地理解和掌握乘法法则。

同时,用案例教学法讲解负数和分数的乘法运算。

3.操练(10分钟)让学生进行有理数乘法的练习,巩固和检验学生的学习效果。

可以使用PPT中的练习题或者自己准备的练习题。

4.巩固(10分钟)通过小组合作,让学生相互讨论和解答练习题。

教师巡回指导,解答学生的问题,并给予反馈。

有理数的乘法(教学设计)

有理数的乘法(教学设计)

2.7有理数的乘法一、教学目标1. 了解有理数乘法的意义.2. 掌握有理数的乘法法则.3. 熟练进行两个有理数乘法的运算.4.理解倒数的概念.5. 在老师的指导下,通过观察若干有理数的乘法的简单运算,从中总结归纳出乘法运算的特点及性质.采用研究式学习的方法,并配以一定量的计算来达到熟练掌握有理数的乘法运算的目的.二、课时安排1课时三、教学重点有理数乘法的运算.四、教学难点有理数乘法中的符号法则五、教学过程(一)新课导入(1)如果甲水库的水位每天上升3cm,那么4天后的水位与今天相比变化多少?(2)如果乙水库的水位每天下降3cm,那么4天后的水位与今天相比变化多少?这些结果,是我们根据实际生活经验获得的.那么能不能把上述问题中的变化结果能用有理数来表示吗?如果用正号表示水位上升,用负号表示水位下降,那么4天后甲、乙水库的水位变化量为:甲水库变化量为:(+3)+(+3)+(+3)+(+3)=(+3)×4=+12(cm)乙水库变化量为:(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(cm)师:大家知道相同的加数相加可以用乘法表示,在有理数中也是适用的,这就是我们今天所要探究的内容:《有理数的乘法》.(二)讲授新课有理数分为三类:正数、0、负数,那么有理数的乘法应该分几种情况?正数×正数正数×0正数×负数0×负数负数×正数负数×负数下面我们再来看这个式子(-3)×4表示4个(-3)相加,那么接下来的式子大家能不能得到?(-3)×4=-12(-3)×3=(-3)×2=(-3)×1=(-3)×0=接下来的你还能得到吗?当然可以观察上面的等式.(-3)×(-1)=(-3)×(-2)=(-3)×(-3)=(-3)×(-4)=学生仔细观察这一列算式的因数与积的变化规律,使他们自己发现:当第二个因数减少1时,积增大3,所以猜想当第二个因数从0减少为-1时,积从0增大为3;第二个因数从-1减少为-2时,积从3增大为6;以此类推.现在我们来说一说你观察到的规律,提示从符合、绝对值的变化等思考。

华师版《有理数的乘法法则》教案教案(完美版)

华师版《有理数的乘法法则》教案教案(完美版)

过程与方法:经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力.情感态度与价值观:通过学生自主探索出法则,让学生获得成功的喜悦.【教学重难点】重点:运用有理数乘法法则正确进行计算.难点:有理数乘法法则的探索过程、符号法则及对法则的理解.【教学过程】一、创设问题情境,导入新课设计意图:通过问题引入课题,引起学生的探索欲望和学习兴趣,激发学生的学习热情.师:由于长期干旱,水库放水抗旱,每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?生:26米.师:能写出算式吗?学生完成算式的写法.师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题.二、小组探索,归纳法则设计意图:通过对法则的探究,培养学生的创新能力和总结归纳能力,同时加深学生对乘法法则的理解.(1)教师出示以下问题,学生以组为单位探索.以原点为起点,规定向东的方向为正方向,向西的方向为负方向.a.2×32看作向东运动2米,×3看作向原方向运动3次.结果:向运动米.2×3= .b.-2×3-2看作向西运动2米,×3看作向原方向运动3次.网友可以在线阅读和下载这些文档让每个人平等地提升自我By :麦群超结果:向 运动 米.2×(-3)= .d.(-2)×(-3)-2看作向西运动2米,×(-3)看作向反方向运动3次.结果:向 运动 米.(-2)×(-3)= .e.被乘数是零或乘数是零,结果是人仍在原处. (2)学生归纳法则.a.符号:在上述4个式子中,我们只看符号,有什么规律?(+)×(+)=( ),同号得 ;(-)×(+)=( ),异号得 ;(+)×(-)=( ),异号得 ;(-)×(-)=( ),同号得 ;b.积的绝对值等于 .c.任何数与零相乘,积仍为 . (3)师生共同用文字叙述有理数乘法法则. (4)运用法则计算,巩固法则.教师出示教材例1:师生共同完成,学生口述,教师板书,要求学生能说出每一步依据.练习:教材课后练习第1、2题. 学生完成后,集中反馈,学生自主纠错. 三、讨论小结,使学生知识系统化 设计意图:通过表格,使学生对本节课的内容形成一个清晰的脉络,有助于学生对法则的理解与掌握.有理数乘法 有理数加法 同号得正 取相同的符号 绝对值相乘 (-2)×(-3)=6把绝对值相加 (-2)+(-3)=-5 异号得负取绝对值大的加数符号 绝对值相乘 (-2)×3=-6(-2)+3=1用较大的绝对值减较小的绝对值四、课后作业1.若ab>0,a+b<0,则a,b符号情况为.【答案】a,b均为负数2.两个有理数的和为零,积为零,那么这两个有理数( )A.至少有一个为零,不必都为零B.两数都为零C.不必都为零,但一定是互为相反数D.以上都不对【答案】B【板书设计】一、创设问题情境,导入新课二、小组探索,归纳法则三、讨论小结,使学生知识系统化四、课后作业。

数学教案有理数的乘法

数学教案有理数的乘法

有理数的乘法一、教学目标:1. 让学生理解有理数乘法的基本概念和运算法则。

2. 培养学生运用有理数乘法解决实际问题的能力。

3. 培养学生合作学习、积极思考的良好学习习惯。

二、教学内容:1. 有理数乘法的定义和运算法则。

2. 有理数乘法在实际问题中的应用。

三、教学重点与难点:1. 教学重点:有理数乘法的定义和运算法则。

2. 教学难点:有理数乘法在实际问题中的应用。

四、教学方法:1. 采用讲授法,讲解有理数乘法的定义和运算法则。

2. 采用案例分析法,分析有理数乘法在实际问题中的应用。

3. 采用小组讨论法,培养学生的合作学习和积极思考能力。

五、教学过程:1. 导入:通过复习有理数加法、减法、除法,引出有理数乘法。

2. 新课讲解:讲解有理数乘法的定义和运算法则,举例说明。

3. 案例分析:分析有理数乘法在实际问题中的应用,如计算购物时的折扣、计算面积等。

4. 小组讨论:让学生分组讨论,分享各自找到的有理数乘法应用案例。

5. 课堂练习:布置练习题,让学生独立完成,巩固所学知识。

6. 总结:对本节课内容进行总结,强调有理数乘法的重要性和应用。

7. 作业布置:布置课后作业,巩固所学知识。

六、教学目标:1. 使学生能够正确进行有理数的乘法运算。

2. 培养学生解决实际问题时,运用有理数乘法的能力。

3. 培养学生通过合作、探究的方式,深入理解有理数乘法运算的性质。

七、教学内容:1. 有理数的乘法运算规则。

2. 有理数乘法在实际问题中的应用。

3. 有理数乘法的运算性质。

八、教学重点与难点:1. 教学重点:有理数的乘法运算规则,以及乘法运算的性质。

2. 教学难点:有理数乘法运算在实际问题中的应用。

九、教学方法:1. 采用互动式教学法,引导学生积极参与有理数乘法运算的讨论。

2. 采用情境教学法,让学生在具体的情境中,理解有理数乘法的应用。

3. 采用小组合作学习法,培养学生的团队协作能力。

十、教学过程:1. 复习导入:通过复习上节课的内容,引导学生自然地过渡到本节课的主题。

有理数的乘法教案【6篇】

有理数的乘法教案【6篇】

有理数的乘法教案【6篇】有理数的乘法教案篇1目标:1、学问与技能使同学理解有理数乘法的意义,把握有理数的乘法法则,能娴熟地进行有理数的乘法运算。

2、过程与方法经受探究有理数乘法法则的过程,理解有理数乘法法则,进展观看、探究、合情推理等力量,会进行有理数和乘法运算。

重点、难点:1、重点:有理数乘法法则。

2、难点:有理数乘法意义的理解,确定有理数乘法积的符号。

过程:一、创设情景,导入新1、由前面的学习我们知道,正数的加减法可以扩充到有理数的加减法,那么乘法是可也可以扩充呢?乘法是加法的特别运算,例如5+5+5=5×3,那么请思索:(-5)+(-5)+(-5)与(-5)×3是否有相同的结果呢?本节我们就探究这个问题。

3、在一条由西向东的笔直的公路上,取一点O,以向东的路程为正,则向西的路程为负,假如小玫从点O动身,以5千米的向西行走,那么经过3小时,她走了多远?二、合作沟通,解读探究1、学校学过的乘法的意义是什么?乘法的安排律:a×(b+c)=a×b+a×c假如两个数的和为0,那么这两个数互为相反数。

2、由前面的问题3,依据学校学过的乘法意义,小玫向西一共走了(5×3)千米,即(-5)×3=-(5×3)3、同学活动:计算3×(-5)+3×5,留意运用简便运算通过计算表明3×(-5)与3×5互为相反数,从而有 3×(-5)=-(3×5),由此看出,3×(-5)得负数,并且把肯定值3与5相乘。

类似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0由此看出(-5)×(-3)得正数,并且把肯定值5与3相乘。

4、提出:从以上的运算中,你能总结出有理数的乘法法则吗?鼓舞同学自己归纳,并用自己的语舞衫歌扇,并与同伴沟通。

有理数的乘法。优秀教学设计(教案)

有理数的乘法。优秀教学设计(教案)

有理数的乘法。

优秀教学设计(教案)
教学设计方案
课程名称:有理数的乘法(第一课时)
研究目标:
1.掌握有理数乘法法则,能正确进行有理数乘法运算。

2.经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

3.通过学生自己探索出法则,让学生获得成功的喜悦。

学情分析:
学生已经熟练掌握了两个正数之间、正数与零之间的乘法运算,并对负数参与运算有了一定的认识,明确计算时要先确定和的符号,再确定和的绝对值的基本方法。

教学重点:
运用有理数乘法法则正确进行计算。

教学难点:
有理数乘法运算中积的符号的确定。

教学活动步骤:
一、复回顾,引入新课
1.复研究过的加法和减法的法则,并复两个有理数相加的步骤是先确定符号,再计算绝对值。

2.出示研究目标,让学生明确本节课的研究目标。

3.指导学生自学课本P.28-30的内容,完成相关问题,为总结出有理数的乘法法则做铺垫。

二、探究有理数乘法法则
1.分组讨论,让学生自己探究有理数乘法法则,归纳总结出乘法法则。

2.教师引导学生讨论,帮助学生理解和掌握乘法法则。

三、练运用乘法法则
1.教师出示乘法练题,让学生独立完成。

2.学生互相检查答案,教师纠正错误。

四、课堂小结
1.教师总结本节课的研究内容,让学生明确已经掌握的知识点。

2.学生自我评价,反思本节课的研究情况。

教学媒体选择:PPT
教学类型:教师课堂讲授为主,学生自主研究归纳;分组合作、探究研究。

有理数的乘法教案人教版

有理数的乘法教案人教版

有理数的乘法教案人教版有理数乘法运算是继加法和减法运算后的又一种运算,也是有理数除法运算和乘方运算的基础,学好有理数乘法运算是学好有理数运算的关键,接下来店铺为你整理了有理数的乘法教案人教版,一起来看看吧。

有理数的乘法教案人教版【教学目标】(一)知识技能1.使学生掌握多个有理数相乘的积的符号法则;2.掌握有理数乘法的交换律和结合律,并利用运算律简化乘法运算;(二)过程方法在师生互动、生生互动的系列活动中,学会与老师及与其他同学交流、沟通和合作,准确表达自己的思维过程。

培养学生观察、归纳、概括能力及运算能力.(三)情感态度通过例题与练习,体验“简便运算”带来的愉悦,懂得运算的每一步都必须有依据。

通过新知的导入和运用过程,感受到人们认识事物的一般规律是“实践、认识、再实践、再认识”。

培养学生的观察和分析能力,渗透转化的教学思想。

教学重点乘法的符号法则和乘法的运算律.教学难点几个有理数相乘的积的符号的确定.【复习引入】1.有理数乘法法则是什么?2.计算(五分钟训练):(1)(-2)×3; (2)(-2)×(-3); (3)4×(-1.5); (4)(-5)×(-2.4);(5)-2×3×(-4); (6) 97×0×(-6);(7)1×2×3×4×(-5); (8)1×2×3×(-4)×(-5);(9)1×2×(-3)×(-4)×(-5); (10)1×(-2)×(-3)×(-4)×(-5);(11)(-1)×(-2)×(-3)×(-4)×(-5).有理数的乘法教学过程1.几个有理数相乘的积的符号法则引导学生观察上面各题的计算结果,找一找积的符号与什么有关?(7),(9),(11)等题积为负数,负因数的个数是奇数个;(18),(20)等题积为正数,负因数个数是偶数个.是不是规律?再做几题试试:(1)3× (-5); (2)3×(-5)×(-2); (3)3×(-5)×(-2)×(-4);(4)3×(-5)×(-2)×(-4)×(-3);(5)3×(-5)×(-2)×(-4)×(-3)×(-6).同样的结论:当负因数个数是奇数时,积为负;当负因数个数是偶数时,积为正.再看两题:(1)(-2)×(-3)×0×(-4); (2)2×0×(-3)×(-4).结果都是0.引导学生由以上计算归纳出几个有理数相乘时积的符号法则:几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.几个有理数相乘,有一个因数为0,积就为0.说明:(1)这样以后进行有理数乘法运算时必须先根据负因数个数确定积的符号后,再把绝对值相乘,即先定符号后定值.(2)第一个因数是负数时,可省略括号.2.乘法运算律在做练习时我们看到如果像小学一样能利用乘法的交换律和结合律计算:(1)5×(-6); (2)(-6)×5;(3)[3×(-4)]×(-5); (4)3×[(-4)×(-5)];由上面计算结果,可以说明有理数乘法也同样有交换律,结合律,(1)乘法交换律文字叙述:两个数相乘,交换因数的位置,积不变.代数式表达:ab=ba.(2)乘法结合律文字叙述:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.代数式表达:(ab)c=a(bc).例2,用简便方法计算:(1)(-5)×89.2×(-2)(2)(-8)×(-7.2)×(-2.5)×解:(1)原式=5×2×89.2……交换因数位置,决定积的符号=892………………按顺序依次运算(2)原式=-(8×2.5)×(7.2× )……交换因数位置,决定积的符号=-60………………按顺序依次运算有理数的乘法课堂作业1.确定积的符号:积的符号 ;积的符号 ;积的符号。

有理数的乘法数学教案(优秀8篇)

有理数的乘法数学教案(优秀8篇)

有理数的乘法数学教案(优秀8篇)有理数的乘法数学教案篇一教材分析“数的运算”是“数与代数”学习领域的重要内容。

有理数的乘法运算是加法运算的另一种运算形式,它也是今后学习有理数的除法、乘方及混合运算的基础。

因此本节内容具有承前启后的重要作用。

学情分析1.让学生亲身经历将实际问题抽象成数学问题的过程,增加他们对问题的感性认识。

2.通过观察、归纳,提高学生的理性认识。

3.培养学生学会表达、学会倾听的良好品质。

教学目标1.知识技能:(1)经历探索有理数乘法运算的过程,归纳有理数乘法运算法则。

(2)掌握有理数乘法法则,能解决简单的的实际问题。

2.数学思考:通过自主合作探究经历探索有理数运算的过程,发展学生观察、归纳、猜想等能力。

3.问题解决:通过自主探索和合作交流,发展学生逆向思维及化归思想。

4.情感态度价值观:通过经历探索有理数乘法运算的过程感受数学与生活的紧密联系,提高学生对知识的应用能力以及勇于探索、敢于发言的个性品质。

教学重点和难点教学重点是:有理数的乘法法则的理解和运用。

教学难点是:使学生体会有理数乘法法则规定的合理性;探究出确定两个负数相乘和多个有理数相乘的符号符号规律。

七年级数学有理数的乘法教案及教学设计篇二一、内容和内容解析1.内容有理数乘法法则2.内容解析有理数的乘法是继有理数的加减法之后的又一种基本运算。

有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的。

与有理数加法法则类似,有理数乘法法则也是一种规定,给出这种规定要遵循的原则是“使原有的运算律保持不变”。

本节课要在小学已掌握的乘法运算的基础上,通过合情推理的方式,得到“要使正数乘正数(或0)的规律在正数乘负数、负数乘负数时仍然成立,那么运算结果应该是什么”的结论,从而使学生体会乘法法则的合理性。

与加法法则一样,正数乘负数、负数乘负数的法则,也要从符号和绝对值来分析。

由于绝对值相乘就是非负数相乘,因此,这里关键是要规定好含有负数的两数相乘之积的符号,这是有理数乘法的本质特征,也是乘法法则的核心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.9有理数的乘法
1.有理数的乘法法则
【基本目标】
1.使学生在了解有理数的乘法的意义的基础上,掌握有理数的乘法法则,并初步掌握有理数乘法法则的合理性;
2.培养学生的观察、归纳、概括及运算能力.
【教学重点】有理数乘法的运算.
【教学难点】有理数乘法中的符号法则.
一、情境导入,激发兴趣
1.问题1
一只小虫沿一条东西向的跑道,以每分钟3m的速度向东爬行2分钟,那么它现位于原来位置的哪个方向?相距多少米?
(1)我们知道,这个问题可用乘法来解答,这里我们规定向东为正,向西为负,3×2=6
(2)你能用数轴来表示这一事实吗?请动手画一画.
【教学说明】让学生将算式和数轴结合起来考虑,得出结果.使学生了解运动变化问题中,既要考虑运动的距离,也要考虑运动的方向,为后面的的学习奠定基础. 2.如果上述问题变为问题2:
小虫向西以每分钟3m的速度爬行2分钟,那么结果有何变化?
(1)写成算式就是:
(-3)×2=-6
即小虫位于原来位置的西方6米处.
(2)你能再用数轴表示一下这个事实吗?
【教学说明】先写出算式,学生可能会猜测出结果,然后让学生画数轴验证猜想,使学生初步形成乘法积的符号概念.
二、合作探究,探索新知
1.我们来比较上面两个算式,你有什么发现?
当我们把“3×2=6”中的一个因数“3”换成它的相反数“-3”时,所得的积是原来的积“6”的相反数“-6”,一般地,我们有:
把一个因数换成它的相反数,所得积是原来的积的相反数.
【教学说明】通过实例让学生了解记得符号变化规律,教师及时总结.
2.试一试:
(1)3×(-2)=?
把上式与3×2相比较,则3×(-2)=-6.
(2)(-3)×(-2)=?
把上式与(-3)×2=-6相比较,则(-3)×(-2)=6.
若把上式与(-3)×2=-6相比较,能得出同样结果吗?
【教学说明】学生利用总结的规律得出结果,加深印象.
3.我们知道,一个数与零相乘,结果仍为0.
如5×0=0;0×(-3)=0.
【教学说明】教学时,要注意负数和0的积仍然是0,教师可以多举几个例子来加深印象.
4.概括
综合上面式子
(1)3×2=6;
(2)(-3)×2=-6;
(3)3×(-2)=-6;
(4)(-3)×(-2)=6.
(5)任何数与零相乘,都得零.
请同学们观察(1)~(4)四个式子,思考并回答下列问题:
①积的符号与因数的符号有什么关系?
②积的绝对值与因数绝对值有什么关系?
5.在学生交流后,归纳总结出有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数与零相乘,都得零.
【教学说明】请学生阅读课本内容后,总结出如何正确运用有理数乘法法则.学生交流后指出:有理数的乘法关键在于确定积的符号,当积的符号确定后,有理数的乘法,实质就转化为小学的乘法运算了.
三、示例讲解,掌握新知
例如计算(-5)×(-3)
(-6)×4
【教学说明】例题比较简单,可以让学生先尝试自己完成,教师强调思维过程和解题格式.
四、练习反馈,巩固提高
1.练习(口答)
确定下列两数的积的符号:
(1)5×(-3);(2)(-3)×3;
(3)(-2)×(-7);(4)×.
注意:教学中应强调先确定积的符号,再把绝对值相乘.
2.计算:
(1) 6′(- 9) (2) (- 6)′(- 9)
(3) (- 6)′9 (4) (- 6)′1
(5) (-6)′(-1) (6) 6′(-1)
(7) (- 6)′0 (8) 0′(-6)
(9) (-6)′ 0.25 (10) (-0.5)′(-8)
【教学说明】学生独立完成,通过训练,加强运用法则的熟练性,形成一定的计算能力,教师对出现的问题及时予以纠正和强调.
五、师生互动,课堂小结
1.有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘,任何数与零相乘,都得零.2.进行有理数的乘法运算,先确定积的符号,再把绝对值相乘.
【教学说明】学生回顾本节课所学习的内容,进一步加深印象,教师对出现的问题进行强调,使学生更好的掌握本节课所学知识.
完成本课时对应的练习.
本节课的教学,导入时要结合数轴得到积的结果,再让学生观察积的符号规律,总结得出乘法法则.通过训练,让学生总结进行乘法运算的思维过程,形成一定的经验.。

相关文档
最新文档