141有理数的乘法教案
《1.4.1有理数的乘法》教案

(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数乘法相关的实际问题,如购物时买多个打折商品的计算。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过使用正负数卡片模拟乘法运算,直观展示有理数乘法的原理。
五、教学反思
在今天的《1.4.1有理数的乘法》教学中,我尝试了多种方法来帮助学生理解有理数乘法的概念和规则。从学生的反应来看,我发现以下几个问题值得注意:
首先,有理数乘法法则的同号得正、异号得负这一部分,学生掌握得相对较好。但在具体应用时,仍有一些同学对负数乘以负数的结果感到困惑。在今后的教学中,我需要再次强调这一点,通过更多的生活实例让学生明白负数相乘的规律。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解有理数乘法的基本概念。有理数乘法是指两个有理数相乘的运算,其结果是按照一定的规则得到的。这个规则是:同号得正,异号得负,并将绝对值相乘。这个概念在解决实际问题中非常重要,它帮助我们理解和计算多个相同方向的变化累积后的结果。
2.案例分析:接下来,我们来看一个具体的案例。例如,如果温度每天下降2度,连续下降了3天,我们可以通过有理数乘法计算总的变化量:-2 × 3 = -6(度)。
其次,在教学过程中,我注意到有些学生在进行有理数乘法运算时,容易忽略乘法运算的交换律和结合律。这说明学生在运用运算定律方面还需要加强练习。我打算在下一节课的复习环节中,加入一些相关的练习题,帮助学生巩固这部分知识。
此外,实践活动中的分组讨论环节,学生们的参与度很高,能够积极讨论有理数乘法在实际生活中的应用。但在实验操作环节,我发现部分学生动手能力较弱,操作过程中显得有些吃力。为了提高学生的动手能力,我计划在以后的课堂中多设计一些类似的实践活动,让学生有更多机会动手操作,加深对知识点的理解。
141有理数的乘法1教案

141有理数的乘法1教案教案主题:有理数的乘法教学目标:1.理解有理数乘法的基本概念;2.掌握有理数乘法的运算法则;3.能够运用有理数乘法解决实际问题。
教学重点:1.有理数乘法的基本概念;2.有理数乘法的运算法则。
教学难点:1.掌握有理数乘法的运算法则;2.能够运用有理数乘法解决实际问题。
教学准备:1.教学课件或黑板、白板等教学工具;2.有理数乘法的练习题。
教学过程:Step 1:导入新知识(10分钟)1.复习有理数的定义和加法运算;2.引导学生思考两个整数相乘的结果;3.提问:相乘的两个整数中,同号的整数相乘结果是正数还是负数?异号的整数相乘结果是正数还是负数?Step 2:引入有理数的乘法(10分钟)1.引导学生根据前面的思考,总结同号整数乘法和异号整数乘法的规律;2.引入有理数的乘法,解释同号有理数的乘法和异号有理数的乘法的规律;3.引导学生猜测两个有理数相乘的结果,并进行实际计算验证。
Step 3:推导有理数乘法法则(20分钟)1.将正数与负数的乘法以及负数与正数的乘法进行具体的计算,总结规律;2.引导学生发现同号有理数乘法的结果为正数,异号有理数乘法的结果为负数;3.通过让学生进行推理解释,推导出同号有理数乘法和异号有理数乘法的规律。
Step 4:例题讲解(20分钟)1.根据前面的推导,给出一些简单的例题进行讲解,并引导学生逐步掌握有理数乘法的运算方法;2.重点讲解一些特殊情况下的乘法运算,如整数与0的乘法。
Step 5:让学生练习(30分钟)1.在黑板或白板上出示一些练习题,要求学生自主完成;2.弱势学生可以提供一些简化的乘法练习题;3.对学生进行适当的辅导,及时纠正错误。
Step 6:拓展训练(15分钟)1.针对有能力的学生,提供一些拓展训练题,加深对有理数乘法的理解;2.引导学生应用有理数乘法解决实际问题。
Step 7:小结复习(10分钟)1.引导学生总结有理数乘法的规律和要点;2.进行课堂小结,梳理重要知识点;3.布置相关习题作业。
教学设计4:1.4.1有理数的乘法(3)

1.4.1有理数的乘法课程目标:一、知识与技能目标掌握有理数乘法的运算律,能应用运算律使运算简便.二、过程与方法目标归纳有理数乘法法则得出乘法交换律、结合律和乘法对加法的分配律在有理数范围内也使用.三、情感态度与价值观目标1、鼓励学生积极参与课堂各个教学环节,探究有理数乘法法则,并从中获得成就感,获得学习数学的经验.2、培养学生有创意的想法,鼓励学生独立思考、实践,再与他人交流的学习方法,并从中产生对数学的兴趣和战胜困难的勇气.教学重点:简便运算.教学难点:能灵活运用运算律简便运算.设计思路:灵活运用乘法的运算律简化运算教学准备:投影片、三角板、小黑板、计算器教学过程:一、创设情境,导入新课1、有理数的乘法法则是什么?根据乘法法则计算:(1)5×(-6)(-6)× 5(2)[3×(-4)]×(-5)3×[(-4)×(-5)]2、小学学过哪些运算律(五种)小学学过的加法交换律、结合律,前面我们在有理数的加法中已知道在有理数的范围内也适用,那么小学学过的乘法交换律、乘法结合律、分配律在有理数的范围内是否仍然适用呢?这就是我们这节课探究的问题.板书:有理数乘法的运算律.二、师生互动,课堂探究(一)提出问题,引发讨论(1)5×(-6)=(-6)× 5(2)[3×(-4)]×(-5)=3×[(-4)×(-5)]根据上式探究有理数乘法的运算律(二)导入知识,解释疑难1、乘法交换律:ab=ba乘法结合律:(ab )c =a (bc )2、分配律在有理数范围内是否仍然适用:计算 5×[3+(-7)] 5×3+5×(-7)而5×[3+(-7)] =5×3+5×(-7)分配律:a (b+c )=ab+ac3、例题分析:例1:用两种方法计算 (41+61-121)×12解法1:(41+61-121)×12=(123+122-121)×12=-121×12=1解法2:(41+61-121)×12=41×12+61×12-121×12=3+2-6=1思考:比较上面两种解法,它们在运算顺序上有什么区别?解法2运用了什么运算律?哪种解法运算量小?例2:计算:19189×(-15) 解:19189×(-15)=(10-191)×(-15)=10×(-15)-191×(-15) =-150+1915=-194149 (三)、归纳总结,知识回顾本节课主要学习了有理数乘法的交换律、乘法结合律、分配律,在计算过程中,灵活运用运算律可使运算简便.(四)作业:习题1.4 7(3)(4)(五)板书设计1.4.1 有理数的乘法有理数乘法的运算律:1、乘法交换律:ab =ba乘法结合律:(ab )c =a (bc )2、分配律:a (b+c )=ab+ac。
1.4.1有理数的乘法1教案

1.4.1 有理数的乘法(第一课时)【教学目标】1.知识与技能掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2.过程与方法经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3.情感、态度与价值观通过学生自己探索出法则,让学生获得成功的喜悦。
【教学重点难点】重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
【教与学互动设计】(一) 创设情境,导入新课(1)2+2+2= 2╳3=6(2)(-2)+(-2)+(-2)= (-2)╳3=--6你能将以上两个算式写成乘法公式吗?例1:如图,有一只蜗牛沿直线 L 爬行,它现在的位置恰好在L 上的一点O 。
问题一:如果蜗牛一直以每分2cm 的速度从O 点向右爬行,3分钟后它在点O的 右 边 6 cm 处?(PPT )每分钟2cm 的速度向右记为 2 ;3分钟以后记为 3 。
其结果可表为 2╳3=6 。
问题二:如果蜗牛一直以每分2cm 的速度从O 点向左爬行,3分钟后它在点O 的 左 边 6 cm 处每分钟2cm 的速度向左记为 -2 ; 3分钟以后记为 3 。
其结果可表为 (-2)╳3=6 。
问题三:如果蜗牛一直以每分2cm 的速度向右爬行,现在蜗牛在点O 处,3分钟前它在点O 的 左 边 6 cm 处每分钟2cm 的速度向右记为 2 ; 3分钟以前记为 -3 。
其结果可表示为 2╳(-3)=6 。
问题四:如果蜗牛一直以每分2cm 的速度向左爬行,现在蜗牛在点O 处,3分钟前它在点O 的 右 边 6 cm 处每分钟2cm 的速度向左记为 -2 ; 3分钟以前记为 -3 。
其结果可表示为(-2)╳(-3)=6 。
引出课题:有理数的乘法。
(二)交流合作 自主探究1、以例1为基础,观察得出的四个式子,引导学生思考有理数的乘法中四种不同的形式。
完成教材28页-29页的填空。
《1.4.1有理数的乘法》教学设计(第一课时)

1.4.1 有理数的乘法(第一课时)教学目标:1.知识与技能①经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证的能力.②会进行有理数的乘法运算.2.过程与方法:通过对问题的变式探索,培养观察、分析、抽象的能力.3.情感、态度与价值观:通过观察、归纳、类比、推断获得数学猜想,体验数学活动中的探索性和创造性.教学重点、难点:重点:能按有理数乘法法则进行有理数乘法运算.难点:含有负因数的乘法.教学方法:引导探究发现法学习方法:探究发现法教学准备:常规教具课时安排:1课时教学过程:(一)复习1.符号化简原则、有理数加法法则2.计算:(1)(-20)+3-(-5)-(+7)(2)111 1()()()236 +----+(二)新课1.(课本28-29页)计算并观察下列各式,它们因数和积有什么特点,找出它们的规律.(1)3×2=_______; (2)(-3)×2=________3×1=________; (-3)×1=________3×0=________; (-3)×0=________3×(-1)=________; (-3)×(-1)=________3×(-2)=________ (-3)×(-2)=________3×(-3)=________ (-3)×(-3)=________说明:(1)观察发现积的符号与因数的符号之间的关系如何?(2)积的绝对值与两因数的绝对值有什么关系?正数乘正数积为____数,负数乘负数积为____ 数。
正数乘负数积为____数,负数乘正数积为____ 数。
乘积的绝对值等于各乘数绝对值的2.教师引导学生总结法则内容:两数相乘,同号得正,异号得负,并把绝对值相乘。
0与任何数相乘,都得0.3.例1 计算(1)(-3)×9 (2)8×(-1) (3)1()(2) 2-⨯-(4)(-114)×(-45)(5)(-15)×(-13)(6)0×(-4)说明:根据(3)(4),指出:乘积是1的两个数互为倒数(先做完4,在进行)4.完成课本30页练习15.完成课本30页练习36.判断题(1)两数相乘,若积为正数,则这两个因数都是正数.(×)(2)两数相乘,若积为负数,则这两个数异号.(∨)(3)两个数的积为0,则两个数都是0.(×)(4)互为相反的数之积一定是负数.(×)(5)正数的倒数是正数,负数的倒数是负数.(∨)(三)本课小结两数相乘,同号得正,异号得负,并把绝对值相乘。
1.4.1有理数的乘法数学教案

1.4.1有理数的乘法数学教案
**标题:1.4.1 有理数的乘法**
**一、教学目标**
1. 理解并掌握有理数的乘法法则。
2. 能够运用有理数的乘法法则解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
**二、教学重点与难点**
1. 教学重点:理解和掌握有理数的乘法法则。
2. 教学难点:理解和应用符号规则。
**三、教学过程**
1. 导入新课:
- 复习旧知识:复习整数的乘法法则,引出有理数的乘法。
2. 新课讲解:
- 定义有理数的乘法:两个有理数相乘的结果仍然是一个有理数。
- 有理数的乘法法则:同号两数相乘,结果为正;异号两数相乘,结果为负;零乘以任何数都等于零。
- 符号规则的应用:通过具体的例子让学生理解并掌握符号规则。
3. 练习与反馈:
- 提供一些有理数的乘法练习题,让学生独立完成。
- 针对学生的问题进行反馈和解答。
4. 小结:
- 回顾本节课的内容,强调有理数的乘法法则和符号规则的重要性。
5. 作业:
- 设计一些有理数的乘法题目作为课后作业,进一步巩固学生的学习成果。
**四、教学反思**
在课程结束后,教师需要对整个教学过程进行反思,总结教学中的优点和不足,以便于改进以后的教学工作。
七年级数学1.4.1有理数的乘法(第一课时)优秀教案

1.4.1有理数的乘法(第一课时〕教学目标:1、理解有理数乘法法则,能利用有理数乘法法则计算两个数的乘法.2、 能说出有理数乘法的符号法则,能用例子说明法则的合理性.3、能计算多个有理数相乘。
教学重难点:教学重点:两个有理数相乘的符号法则.教学难点:有理数乘法法则的运用.教学过程一、导入1、复习稳固:〔1〕有理数包括哪些数?〔2〕计算: 3X2= 3X0= 3X = X =2、引入负数后,有理数的乘法有几类?又应该怎么计算?〔揭示课题〕二、探究新知1、在数轴上,向东运动2米,记作+2米;向西运动2米,记作-2米。
例:(1):2x3其中2看作向东运动2米,“x3〞看作沿此方向运动3次,用数轴表示如下:2361230 1 2 3 4 5 6结果怎么样呢?〔向西运动了6米〕所以2x3=6[学生小组合作探究]按照〔1〕的方式完成〔2〕—〔5〕(2)〔-2〕x3(3)2x(-3)(4)(-2)x(-3)(5)(-2)x0 ,0x3 , 0x(-3) , 2x0〔学生小组汇报〕2、从上面一组题中,同学们觉得两个有理数相乘的结果有没有规律可行?建议大家从两个方面进行考虑:(1)积的符号与两个因数的符号有什么关系?(2)积的绝对值与两个因数的绝对值又有怎样的关系?〔学生活动时间〕学生答复,老师完善,得出有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零。
(利用数轴不仅前后知识加以联系,还形象的表达出有理数的乘法,并通过小组合作,加深理解,同时锻炼同学们的观察能力以及合作表达交流的能力。
)活动1:1、确定两个有理数相乘的积的符号。
〔教师任意说出一个算式,让学生口答这个算式的积的符号,最后归纳计算步骤。
〕2、让学生同桌之间互相出题计算,初步熟悉运算法则。
三、稳固练习1、计算6×(-4)= (-8)×(-1 )=(-0.5)× = (-3)×(- )=教师说明:在最后一个运算中我们得到了(-3)×(--)=1.与以前学习过的倒数概念一样。
141 有理数的乘法教案

有理数的乘法一、课题名称:《有理数的乘法》 二、教学目标:1、知识技能目标:掌握有理 数 乘 法 法 则,能利用乘法法则正确进行有理数乘法运算,并初步理 解 有 理 数 乘 法 法 则 的合理性;经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
2、过程与方法:经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、通过教材给出的行程问题,让学生认识到数学来源于实践并反作用于实践 情感态度与价值观:通过教材给出的行程问题,让学生认识到数学来源于实践并反作用于实践三、 重点、难点:有理数乘法法则,积的符号的确定、乘法运算律。
积的符号的确定,用乘法运算律简化计算。
四、教学过程:(一)、导入:我们已经熟悉正数及0的乘法运算,引入负数以后,怎样进行有理数的乘法运算呢?(二)、创设教学情境:1、教材如图( 1 ) 如果蜗牛一直以每分2c m 的速度向右爬行,3分钟后它在什么位置?0 2 4 63分钟蜗牛应在l 上点O 右边6c m,这可以表示为3分钟 蜗 牛应在 l 上点 O 左 边 6c m 处 (2)如果蜗牛一直以每分钟2c m 的速度向左爬行,3分钟后它在什么位置? (+2)×(+3)=+6 ①这可以表示为 (-2)×(+3)=-6 ②2、列式:为区分时间:现在前为负,现在后为正。
(1)(+2)×(+3)=+6(2)(-2)×(+3)=-6(3)(+2)×(-3)=-6(4)(-2)×(-3)=+63、观察上面四个式子,根据你对有理数乘法的思考,填空:正数乘正数积为( )数负数乘正数积为( )数正数乘负数积为( )数负数乘负数积为( )数乘积的绝对值等于各乘数绝对值的( )4、归纳有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘,任何数与0相乘,积仍为0 例如:(-5)×(-3) 两数相乘(-5)×(-3)=+( ) 同号得正5×3=15 把绝对值相乘所以 (-5)×(-3)=1512)()21( )(2)()21(2)()21(=--+异号得负 =--+ 两数相乘-+再如⨯⋯⋯⨯⋯⋯⨯3分钟前蜗牛在l 上点O 左边6c m 处,这可以表示为(-2)×(-3)=-6 ③(4)如果蜗牛一直以每分钟2c m 的速度向左爬行,3分钟前它在什么位置?0 2 463分钟蜗牛应在l 上点O 右边6c m 处,这可以表示为(3)如果蜗牛一直以每分2c m 的速度向右爬行,3分钟前它在什么位置?(-2)×(-3)=+6 ④5、例1:(1)(—3)*(+9) (2)(-15)×(-3) 五、计算:=?--=?--)56(65(2))213()311(1)(⨯⨯ 有理数中仍然有:乘积是1的两个数互为倒数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的乘法教学设计(一)
教学目的:
1.知识与技能
体会有理数乘法的实际意义;
掌握有理数乘法的运算法则和乘法法则,灵活地运用运算律简化运算。
2.过程与方法
经历有理数乘法的推导过程,用分类讨论的思想归纳出两数相乘的法则,感悟中、小学数学中的乘法运算的重要区别。
通过体验有理数的乘法运算,感悟和归纳出进行乘法运算的一般步骤。
3.情感、态度与价值观
通过类比和分类的思想归纳乘法法则,发展举一反三的能力。
教学重点:
应用法则正确地进行有理数乘法运算。
教学难点:
两负数相乘,积的符号为正。
教具准备:
多媒体。
教学过程:
一、引入
前面我们已经学习了有理数的加法运算和减法运算,今天,我们开始研究有理数的乘法运算.问题一:有理数包括哪些数?
回答:有理数包括正整数、正分数、负整数、负分数和零.
问题二:小学已经学过的乘法运算,属于有理数中哪些数的运算?
回答:属于正有理数和零的乘法运算.或答:属于正整数、正分数和零的乘法运算.
计算下列各题;
以上这些题,都是对正有理数与正有理数、正有理数与零、零与零的乘法,方法与小学学过的相同,今天我们要研究的有理数的乘法运算,重点就是要解决引入负有理数之后,怎样进行乘法运算的问题.
二、新课
我们以蜗牛爬行距离为例,为区分方向,我们规定:向左为负,向右为正,为区分时间,我们规定:现在前为负,现在后为正。
.
如图,一只蜗牛沿直线l爬行,它现在的位置恰在l上的点O。
1.正数与正数相乘
问题一:如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?
讲解:3分后蜗牛应在l上点O右边6cm处,这可表示为
(+2)×(+3)=+6
答:结果向东运动了6米.
2.负数与正数相乘
问题二:如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?
讲解:3分后蜗牛应在l上点O右边6cm处,这可表示为
(-2)×(+3)=(-6)
3.正数与负数相乘
问题三:如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?
处,这可以表示为6cm上点O左边讲解:3分后蜗牛应为l6 3)=--(+2)×(
4.负数与负数相乘3分前它在什么位置?的速度向左爬行,问题四:如果蜗牛一直以每分2cm
讲解:3分前蜗牛应为l上点O右边6cm处,这可以表示为
(-2)×(-3)=+6
5.零与任何数相乘或任何数与零相乘
问题五:原地不动或运动了零次,结果是什么?
答:结果都是仍在原处,即结果都是零,若用式子表达:
0×3=0;0×(-3)=0;2×0=0;(-2)×0=0.
综合上述五个问题得出:
(1)(+2)×(+3)=+6;
(2)(-2)×(+3)=-6;
(3)(+2)×(-3)=-6;
(4)(-2)×(-3)=+6.
(5)任何数与零相乘都得零.
观察上述(1)~(4)回答:
1.积的符号与因数的符号有什么关系?
2.积的绝对值与因数的绝对值有什么关系?
答:1.若两个因数的符号相同,则积的符号为正;若两个因数的符号相反,则积的符号为负.2.积的绝对值等于两个因数的绝对值的积.
由此我们可以得到:
两数相乘,同号得正,异号得负,并把绝对值相乘.
(1)~(5)包括了两个有理数相乘的所有情况,综合上述各种情况,得到有理数乘法的法则:
口答:确定下列两数积的符号:
例题:计算下列各题:
解题步骤:.认清题目类型.1
.根据法则确定积的符号.2
3.绝对值相乘.
练习:1.口答下列各题:
9);6)×(-;(1)6×(-9) (2)(-
;-6)×1;(3)(-6)×9 (4)(
;-1);-1) (6)6×((5)(-6)×( 6);(8)0×;(-(7)(-6)×0 ;(-8)0.5)×-6)×0.25;(10)(-(9)(
注意:由(4)(5)(6)得:一个数与1相乘得原数,一个数与-1相乘,得原数的相反数.
2.在表中的各个小方格里,填写所在的横行的第一个数与所在直列的第一个数的积:
3.计算下列各题:
;1.2548×-(2) ;15)-(36)×-
(1)(
4.填空:
5)=____;-1)×(-(1)1×(-5)=____;(
5)=____;-(-;+(-5)=____
a=____;(-1)×(2)1×a=____;
;5|=____1×|-|-5|=____;-(3)1×5|=____
--|
;1)+(-5)=____-5)=____;(-(4)1+( .(-1)+5=____
三、小结指导学生看书,精读乘法法则.(1) 强调运用法则进行有理数乘法的步骤.(2) (3)比较有理数乘法的符号法则与有理数加法的符号法则的区别,以达到进一步巩固有理数乘法法则的目的.
四、作业
1.计算:
(1)(-16)×15;(2)(-9)×(-14);
(3)(-36)×(-1);(4)13×(-11);
(5)(-25)×16;(6)(-10)×(-16).
2.计算:
(1)2.9×(-0.4);(2)-30.5×0.2;
(3)0.72×(-1.25);(4)100×(-0.001);
(5)-4.8×(-1.25);(6)-4.5×(-0.32).
3.计算:
)
”号连接或>”“<用4.填空:(“ab____0,那么,;ba如果<0,>0(1) ;ab____0,那么,0<b,0<a如果(2).
(3)当a>0时,a____2a;
(4)当a<0时,a____2a.
板书设计
1.4有理数的乘
法则练
2.
教学设计思路
本节课是在小学已接触到的乘法、初中刚学习过的有理数的加减法基础上进行的。
通过对实际问题的解决,引入有理初步培养想象能力。
增强了直观性,,“动”变“静”把图形中的在讲解运动的例子时运用现代化教学手段,数的乘法法则。
.。