费马大定理的初等证明
费马大定理的证明

费马大定理是数学中的一个经典问题,它由费马提出,至今尚未找到完整的证明。
这一问题是费马在17世纪提出的,他在一本书中写道:“我确实有一种难以置信的简单证明方法,但是这个边长大于2的整数幂的立方数等于两个边长大于2的整数的立方数之和的方程没有整数解。
” 这个问题经过数学家们的努力研究至今未能解决,成为数学界的一大谜题。
费马大定理可以表示为:对于任意给定的大于2的正整数n,方程x^n + y^n = z^n在整数域上无解。
费马大定理的证明一直是数学界的重要课题之一,吸引了许多杰出的数学家。
尽管在过去几百年中,不少数学家们都提出了自己的证明方法,然而,这些方法都被发现存在一定的问题或者漏洞。
因此,费马大定理的证明问题一直未能得到圆满解决。
在过去的几十年里,随着计算机技术的进步,人们通过计算机对于费马大定理进行了大量的计算实验。
这些计算实验表明,在特定的范围内,费马大定理成立。
然而,这些实验并不能说明费马大定理在整个整数域上都成立。
经过多年的探索与努力,研究人员陆续提出了一些重要进展。
1994年,英国数学家安德鲁·怀尔斯提出了“椭圆曲线最后定理”,并在此基础上证明了想要证明的费马大定理的一个特殊情况。
而且,他证明了定理的证明方法与费马之前的假设并不相同。
此后,怀尔斯的证明受到了广泛的关注和认可,被许多数学家认为是费马大定理的最终证明。
然而,仍然有一些数学家对怀尔斯的证明提出了质疑,认为他的方法不够严谨,需要更进一步的完善。
费马大定理的证明问题与黎曼猜想、哥德巴赫猜想等一样,属于数学中的难题。
虽然不少数学家通过工作取得了重要的进展,但在当前的数学知识体系和证明方法下,费马大定理的证明仍然没有得到最终解决。
总之,在当今数学的发展中,费马大定理仍然作为一个重要的课题存在,有许多数学家正致力于找到一个完整而严谨的证明方法。
相信随着数学研究的不断深入和技术的不断进步,费马大定理的证明问题终有一日会被解决。
为什么有很多数学家会认为不能用初等数学方法证明费马大定理?

为什么有很多数学家会认为不能用初等数学方法证明费马大定理?所谓费马大定理,简单的说就是指不定方程x^n+y^n=z^n在n≥3时没有非零整数解。
这个问题从提出至今已经将近四个世纪,其间无数数学家和民间的数学爱好者为之穷竭智慧,费尽脑汁,但迄今为止,仍然没有人能够用初等数学的方法将它给予严格的证明。
本人对费马大定理研究了有15年之久,经过15年的殚精竭虑,苦思冥想后,终于在近日大彻大悟,参透了其中的奥秘,并把它给完整地证明了。
本文并不打算把具体的证明过程呈现给大家,因为那是需要很长时间的,但愿意把解题的一些基本的思路跟大家分享一下。
首先,费马大定理是一个关于非零整数的等式问题,所以我一开始就考虑是不是可以从因子平衡的角度来解决问题,如果等式是成立的,那么等式两边的因子一定是平衡的,如果等式是不成立的,那么或许我们可以找出等式两边某些因子不平衡的证据。
一般来说,考虑等式两边偶因子2的平衡性是最简便的,方法是这样的——如果等式两边是偶数,那就两边同时不断地除以2,直到两边变为奇数,如果等式两边是奇数,那就把两边同时加1或减1再不断地同除以2,直到两边再变为奇数,如果等式是成立的,那么这个过程就可以一直持续下去,直到两边都变成0,如果等式是不成立的,那么终有一刻,等式两边会变成一边是奇数,一边是偶数,偶数当然不会等于奇数,从而证明等式是不成立的。
这就是证明马大定理的最基本的原理和方法,事实证明这种方法是有效的。
其次,要证明费马大定理,找对问题的焦点非常关键。
可以说证明费马大定理就象走迷宫,一千个人有一千个人的思路和方法,但如果不能找对问题的焦点的话,就会走冤枉路,就会事倍功半,徒劳无功。
而如果找对了问题的焦点,就会目标明确,事半功倍,顺风顺水。
那么费马大定理它这个问题的焦点是在哪里呢?从表面上看,问题问的是x^n+y^n可不可以表示为一个n次方数,但实际上当n 为奇数时,x^n+y^n可以分解为(x+y)(x^n–1+……+y^n–1),为方便简记为(x+y)*m, 并且当n为奇质数,x,y互质且x+y不是n的倍数的时候,x+y和m是互质的,也就是说在这种情况下,如果x^n+y^n可表示为一个n次方数,那么x+y和m也必须可同时表示为n次方数,x+y表示为一个n次方数当然是没问题的,所以现在问题的焦点就是——m可不可以表示为一个n次方数?本人通过严格的逻辑推理证明了如果x^n+y^n可表示为一个n次方数,则m不可表示成n次方数,而如果m不是一个n次方数,那么x^n+y^n也显然不会是一个n次方数,正是通过这一对逻辑矛盾证明了原命题。
费马定理证明过程

费马定理证明过程
费马定理是数学中的一个重要定理,被广泛应用于代数、数论等领域。
它的证明过程虽然相对复杂,但我们可以用简单的语言描述来展示其基本思想。
费马定理的表述是:对于任何大于2的整数n,不存在满足a^n + b^n = c^n的正整数解a、b、c。
这个定理最初是由法国数学家费马在17世纪提出的,但他并没有给出具体的证明方法,导致这个定理被称为“费马猜想”。
费马定理的证明历经了几个世纪的努力,直到1994年,英国数学家安德鲁·怀尔斯证明了费马猜想,他的证明方法涉及了许多高深的数学知识,如椭圆曲线和调和分析等。
怀尔斯的证明方法被认为是一次重大的突破,为数学界带来了巨大的震撼。
费马定理的证明过程中需要运用到大量的数学理论和技巧,其中包括数论、代数、解析几何等多个数学分支的知识。
然而,由于本文的要求,我们无法在文章中使用数学公式或计算公式来展示证明过程。
尽管如此,我们还是可以简单地描述一下费马定理的证明思路。
证明的基本思想是通过推理和反证法来证明费马定理的正确性。
假设存在满足费马方程的整数解,然后通过一系列推理和推导来得出矛盾的结论,从而证明费马方程无解。
具体来说,证明过程中可能会涉及到数论中的素数性质、模运算、同余关系等概念,以及代数中的多项式展开、因式分解等技巧。
这些数学知识和方法相互结合,最终构成了费马定理的完整证明。
尽管费马定理的证明过程相对复杂,但它的重要性和影响力不言而喻。
费马定理的证明不仅深化了我们对数学的认识,也为数学研究提供了新的方向和思路。
因此,费马定理的证明过程是数学中的一块宝贵的瑰宝,值得我们细细品味和研究。
费马大定理简明完整版证明

费马大定理证明求证不定方程对于整数n>2n n nX Y Z+=无X,Y ,Z 的整数解这就是费马猜想又称费马大定理,起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。
传言在1994年被安德鲁·怀尔斯攻克,但是我并不知道安德鲁·怀尔斯攻克的证明是否真实可靠。
现在来阐述最新最简易的证明如下:证明:条件:设整数(p ,q)互素,(a,b )互素,并且X,Y 均整数,如果不存在整数Z 使得n n nX Y Z+=成立,那么猜想正确,否则猜想就是错误的由条件设定已知x,y 为整数,将猜想等式左边合并变换为下式1(1())n ny Z X x=+设p y q x =则1(1())nnpu qZ X u=+=假设存在整数Z,则u 一定至少是有理数设1(1())n np au q b =+=则n ()n n n n q p b q a +=(1)()n n n n np b q a b =- 由于(p,q)互素那么q 必然是b 的因子才能使得等式两边成立设b=qt 代入(1)式得(2)()tnnna p q +=()则t 为a 的因子,至此如原条件(a,b )互素相矛盾,所以t 必须等于1得以下等式: (3)n n np q a+=假设等式依然成立得11()=nn p a q q ⎛⎫+ ⎪⎝⎭ 利用牛顿二项式广义定理展开上式得:11knk k k np a q q C q →∞=⎛⎫-= ⎪⎝⎭∑23123111111(.....)knnnnknk k k k n n n n n p p p p p a q q C q C C C C q q q q q →∞=⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-==++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∑展开式曲线簇附图如下23123111111(.....)kn n n n knk kk k nn n n n p p p p p a q q C q C C C C q q q q q →∞=⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-==+++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∑要使得a-q 为整数,至少a-q 的小数部分为有理数,而a-q 的展开式是无限级数,那么只有一个条件下a-q 才可能是有理数,就是级数的系数的绝对值相等,由此只有n 趋近无穷大时才会出现此种情况如下:()()()()()111111lim =1lim 121..(1)1!knknk knk k k kn n x n p p p C n n k n q k n q knq ++→∞→∞-⎛⎫⎛⎫-----=⎪ ⎪⎝⎭⎝⎭只有a-q 才是-()n p q 的等比数列之和才可能是有理数,由上式知道就算是极限状态也不存在系数的绝对值相等 所以在有限整数n>2 的条件下,或n 无穷大时23123111111(......)knnnnknk k k k n n n n n p p p p p a q q C q C C C C q q q q q →∞=⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-==+++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∑均不可能是有限的或无限循环的,那么它只能是无理数,所以a 也只能是无理数,据此整数n>2时,对于互素的p,q ,(q>p )没有整数a 使得(4)等式成立(4)11()nn p a q q ⎛⎫+= ⎪⎝⎭ 结论11()n n p u q ⎛⎫=+ ⎪⎝⎭为无理数(整数n>2, q>p ) 那么Z Xu =同样也是无理数至此对于整数n>2n n nX Y Z+=X,Y,Z 没有同为整数的解 费马猜想证明完毕 后记:11()nn p u q ⎛⎫=+ ⎪⎝⎭为无理数已经写入无理数的百度词条中,便于知识的传播。
费马大定理的证明及其在数学学科中的意义解读

费马大定理的证明及其在数学学科中的意义解读一、费马大定理费马大定理是数学中比较有名的未解之题之一,又称为费马最后的定理。
费马大定理的具体内容是,在自然数n≥3情况下,对于x^n + y^n = z^n,没有正整数x、y、z能够同时满足该等式。
所以,费马大定理可以简单地表述为:对于自然数n≥3,方程x^n + y^n = z^n没有正整数解。
二、费马大定理的证明费马大定理的证明经历了漫长的400多年。
1640年,数学家费马提出了这个问题,但他只在文献中留下了一行字:我真的找到了一个美妙的证明,但这个框子太小,放不下。
这使得后来人们长期以来都在为找到证明而努力。
直到1994年,安德鲁·怀尔斯在通过数学软件的计算得到了证明。
为了证明费马大定理,怀尔斯使用了一个名为“倒推追溯”的方法。
该方法在本质上是利用了特殊情况中间存在的对称性和期望的一些性质,将问题大大简化。
为此,怀尔斯被授予了菲尔兹奖(Fields Medal),这是数学界最高的奖项之一。
三、费马大定理的意义和启示费马大定理在数学中拥有重要的地位和意义。
它不仅是一个数学难题,更是数学领域的一个经典问题。
一方面,费马大定理的证明为数学界提供了一个重要的思考方法和解题思路。
另一方面,费马大定理的证明也预示着数学的发展方向和潜力。
在此基础上,我们可以深入思考费马大定理的意义和启示,以及它推动数学学科发展的重要作用。
1. 建立了数学理论的基石费马大定理作为一道典型的数学难题,它的证明历程充分表明了数学理论的建立和发展是需要千锤百炼的。
过程中,数学家使用了不同的思考和研究方法,提出了各种可能的证明方案,从而建立了一系列数学理论基础和推动数学学科的进步。
这一点在数学中具有重要的意义,表示着数学建立领域的数学理论的牢固基础。
2. 推动数学学科的发展费马大定理的证明推动了数学学科的发展。
在证明费马大定理过程中,怀尔斯不仅提出了“倒推追溯”这一思路,更为后来的数学研究提供了很多启示和思路。
费马大定理的初等巧妙证明(完全版)

费马大定理的初等巧妙证明(完全版)李联忠(营山中学 四川 营山 637700)费马大定理:一个正整数的三次以上的幂不能分为两正整数的同次幂之和。
即不定方程n n n y x z +=当n ≥3时无正整数解。
证明: 当n=2时,有 222y x z +=∴ ))((222y z y z y z x +-=-= (1)设 22)(m y z =- 则 22m y z += 代入(1)得222222222222)(2)22(2l m m y m m y m y z x =+=+=-=∴ ml x 2= 22m l y -= 22m l z +=当n=3时,有 333y x z +=∴ ))((22333y zy z y z y z x ++-=-= (2)设 323)(m y z =- 则 323m y z +=代入(2)得][23223232333)3()3(3y y m y m y m y z x ++++=-= )3333(36432232m y m y m +⨯+=)33(36332233m y m y m ++=设 363322)33(l m y m y =++ (3)则 ml x 3= (4)323m y z += (5)若z,y 的公约数为k,即 (z,y)=k ,k>1时,方程333y z x -=两边可以除以3k ,下面分析k=1 即(z,y )=1 , 方程333y z x -=的正整数解因为(z,y )=1,分析(2),(3),(4),(5)式,只有m,l 为正整数时,x,y,z 可能有正整数解,由(3)得)33)(3(3)3(4222263332m l m l m l m l m y y ++-=-=+ (6)∵ y, m, l 都取正整数,∴)3(32m y y +< )33()3(42222m l m l m l ++<-∴ )33(4222m l m l y ++≠∴ y 没有形如y )33(4222m l m l ++=的正整数解。
用初等数学方法证明费马大定理
U"qM1" ' %' V' J '!"q'"" È É !1&* @'' '% J ' ! O* 'L* '1%$ '& % J ' ' ) ! ä O!L j%c$"ý # 'D!äWbcòW" ý & '* & ? $ ' !L 3'1&* @'' !0'1&* @'' !# '1* !D'1&* @'' ) & 1* *%' @'* " L 1* @' V& 1* *% ' 3 ' 1* *1&* @'' *' V$ ! ä 1&* @'' '&% J %" ' @)!D'1* @)" ä #' %D' 'E' 3 O* %L* 'P*
,ö÷Zl £##' %D' 'E' !L E'D%3!3'%!'!(!) $!ä ~ #' % D' '& D%3' ' " <cº##' '3&'D%3' !L # '30!ä D'3& 0' *%' @'" [ ## '& O' & !D'& L' & !E'& P' & " ä #' %D' 'E' 3 O& %L& 'P& " I®Ì#O! L! Pj = ] % © > $! ) & ''' ' ! /& '(' ' !%!& ')' ' !'*& '*' ' !$ " h#[ & '(!O ')!ä # ') ) * ' ''( '#" I # '& O ' & ! L O '1' ! ä # '1& ! # '30! [ 3' 0'1& & @'' " 6@AJK];2qrLM %"# 'D& O& 'L& ' * ; É ä D'1& & @'' ) 1& *% * @' ! L 1& & @'' ') 1& *% * @' ! ä D'1& ! E'& D%3' ') 1& %1& & @'' * " % 1& & @'' ') 1& *% * @' !ä ~ 1& *' 1& & @'' *% V$ ! U 1& & @'' '% J ' & \ $ ò ; ' " ä ~ O& %L& 'P& 3 1'& %1'& ') 1& %1& & @'' * ' 3 ' 1'& ' 1& ) 1& & @'' %% * ' " M 1 - r 1& !º ' 1& ') 1& & @'' %% * ' ! M 1 / Z © > º # ' 1& & @'' '1& & @'' %% " w 1& & @'' '% J ' # 2 " q 5 !º ' &% J ' ' '% J ' %%" U ' %' V' J ' " q M 1 ' " ! U 1& & @'' Ä c $ ! O '
数学中的重要定理费马定理的证明与应用
数学中的重要定理费马定理的证明与应用费马定理是数学中的一个重要定理,它在数论和几何学中具有广泛的应用。
费马定理最初由法国数学家皮埃尔·德·费马在17世纪提出,虽然他在当时没有提供证明,但这个定理一直激发着数学家们的研究兴趣。
直到大约350年后,英国数学家安德鲁·怀尔斯在1994年给出了这个定理的一种证明方法。
在本文中,我们将探讨费马定理的证明过程以及它在数学应用中的重要性。
费马定理的表述是:对于任何大于2的整数n,不存在整数解x,y和z使得下式成立:x^n + y^n = z^n这个定理可以在数论和几何学中具有不同的形式和应用。
下面我们将分别从这两个方面来探讨费马定理。
一、费马定理在数论中的证明和应用:费马定理在数论中有广泛的应用,特别是在模运算和素数研究方面。
在费马本人提出这个定理之后,数学家们花费了几个世纪的时间来寻找其证明。
直到1994年,怀尔斯首次给出了费马定理的一个相对较简单的证明。
怀尔斯的证明基于数学中的一个重要定理,即椭圆曲线的费马大定理。
通过将费马大定理应用于特定的椭圆曲线,他成功地证明了费马定理。
这个证明过程非常复杂,涉及到高等数学中的许多概念和技巧,超出了本文的讨论范围。
但这个证明的重要性在于它填补了费马定理的证明空白,为数学家们提供了一种更好的理解和应用费马定理的方法。
在数论中,费马定理的应用非常广泛。
它在密码学、编码理论和随机数生成等领域都起着关键作用。
例如,在密码学中,费马定理被用于构建安全的RSA加密算法,实现了信息的保密性和完整性。
此外,费马定理还在数论研究中提供了许多其他重要结果,例如费马小定理和欧拉定理。
二、费马定理在几何学中的证明和应用:除了数论,费马定理在几何学中也具有重要的应用。
费马定理在几何学中的形式是著名的费马点问题,它提出了一个有趣的几何问题:给定平面上三个点A、B、C,求一个点P,使得AP+BP+CP的总长度最小。
费马点问题在几何学中有许多应用,例如在水资源分配和城市规划中的最佳路径问题。
费马大定理的证明
费马大定理的证明费马大定理,又称费马猜想,是数学领域中一项备受关注的问题。
它由法国数学家皮埃尔·德·费马在17世纪提出,直到1994年才被安德鲁·怀尔斯证明。
费马大定理的证明过程异常复杂,涉及到多个数学分支的知识,其中包括代数几何、模形式等。
本文将尝试以简单易懂的方式,介绍费马大定理的证明思路和一些相关的数学概念。
首先,我们来了解一下费马大定理的内容。
费马大定理的表述是:对于任何大于2的整数n,方程x^n + y^n = z^n没有正整数解。
这个问题在数学界引起了广泛的关注和研究,但长期以来一直没有找到确凿的证明。
为了证明费马大定理,怀尔斯采用了反证法的思路。
他假设存在正整数解(x, y, z)满足方程x^n + y^n = z^n,并且n大于2。
然后,他尝试利用模形式的性质来推导出矛盾,从而证明费马大定理。
为了理解这个证明思路,我们需要了解一些数学概念。
模形式是复变函数论中的一个重要分支,它具有一些特殊的性质。
怀尔斯利用了模形式的一些性质,构造了一个与费马方程相关的模形式,并利用它的性质得出了一个矛盾的结论。
具体来说,怀尔斯构造了一个叫做“椭圆曲线”的对象,它与费马方程有密切的联系。
椭圆曲线是一种特殊的代数曲线,具有一些独特的性质。
怀尔斯利用了椭圆曲线的一些性质,将费马方程转化为一个关于椭圆曲线的问题。
然后,怀尔斯利用模形式的性质,将费马方程与椭圆曲线联系起来。
他构造了一个特殊的模形式,使得该模形式与椭圆曲线的性质完全对应。
通过对这个模形式进行一系列的推导和变换,他得出了一个矛盾的结论,从而证明了费马大定理。
怀尔斯的证明思路非常巧妙,但也非常复杂。
他利用了多个数学分支的知识,包括代数几何、模形式、数论等。
这些数学分支都是非常深奥和复杂的,需要具备较高的数学素养才能理解和运用。
尽管费马大定理已经被证明,但它的证明过程仍然是数学界的一个重要里程碑。
这个证明不仅证明了费马大定理的正确性,也展示了数学的深度和美妙之处。
用初等数学方法证明费马大定理
用初等数学方法证明费马大定理
【摘要】若要证明费马大定理的存在,则从两方面入手:a=b(dn=hn)与a≠b(dn≠hn).如果在这两种情况下费马大定理都成立,则费马大定理成立,否则,如果有一种情况不符合费马大定理的条件,则费马大定理就不可能成立.
【关键词】a=(d)n;b=(h)n;1+2;(1+17)/4
如果想证明费马大定理,就必须从两个方面入手:一是证明a=b(即dn=hn)时等式dn+hn=pn中的d,h与p均为正整数,二是a≠b(即dn≠hn)时等式dn+hn=pn中的d,h与p均为正整数,当以上两种方法都通到了证明后,才能证明费马大定理是真正地成立或不成立.如果缺少任何一部
分的证明,都是不完整且不完全的证明.下面我就从这两个方面进行完整且完全的证明.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
费马大定理的初等证明
倪晓勇
(中国石化仪征化纤短纤生产中心生产管理室,江苏 仪征211900)
E-mail:nxyong.yzhx.@
费马大定理:不定方程n n n y x z +=当n ≥3时无正整数解。
证明:一、当n=2时,有222y x z +=,所以))((222y z y z y z x +-=-=(1)。
令22)(m y z =-,则22m y z +=,代入(1)得222222222222)(2)22(2l m m y m m y m y z x =+=+=-=,所以ml x 2=,
22m l y -=,22m l z +=(x 、y 、z 、l 、m 都是自然数)
,显然x 、y 、z 有正整数解。
二、当n=3时,有333y x z +=,所以 ))((22333y zy z y z y z x ++-=-=(2)。
令323)(m y z =-,
则323m y z +=,代入(2)得]
[23223232333)3()3(3y y m y m y m y z x ++++=-= )3333(36432232m y m y m +⨯+=)33(36332233m y m y m ++=。
若方程333y x z +=有正整数解,则)33(63322m y m y ++为某自然数的三次幂,即 363322)33(l m y m y =++,所以 )33)(3(3)3(4222263332m l m l m l m l m y y ++-=-=+,所以 )33(3)3(4222322m l m l m y m l y ++=+-=和,所以l -3m 2+32m 3=l 2+3m 2l +32m 4,所以l = l 2+3m 2l ,且32m 3=3m 2+32m 4,所以1=l +3m 2,3m=1+3m 2,所以 l +3m=2。
因为l 和m 都是自然数,所以l +3m ≥4,所以l +3m=2不可能,所以当n=3时,333y x z +=无正整数解。
三、当n=4时,有z 4=x 4+y 4,所以x 4= z 4-y 4=(z -y )(z 3+z 2y+zy 2+y 3)(3) 。
令(z -y )=43m 4,则z=y+43m 4,代入 (3) 得x 4= z 4- y 4=43m 4[(y+43m 4)3+(y+43m 4)2+(y+43m 4)y+ y 3]=43m 4 (4y 3+47m 8y+6×43m 4y 2+49m 12)= 44m 4(y 3+46m 8y+6×42m 4y 2+48m 12
) 。
若方程z 4=x 4+y 4有正整数-解,则(y 3+46m 8y+6×42m 4y 2+48m 12)为某自然数的四次幂,即(y 3+46m 8y+6×42m 4y 2+48m 12) =l 4,所以y 3+46m 8y+6×42m 4y 2=l 4-48m 12 =(l 42m 3)(l 3+l 242m 3+l 44m 6+46m 9),所以y =l -42m 3且y 2+46m 8+6×42m 4y =l 3+l 242m 3+l 44m 6+46m 9),所以(l -42m 3)2+46m 8+6×42m 4(l -42m 3)
=l 3+l 242m 3+l 44m 6+46m 9),所以l 2-32m 3 l + 44m 6 + +46m 8+6×42m 4(l -42m 3)=l 3+l 242m 3+l 44m 6+46m 9),所以
44m 6 +46m 8=6×44m 7+46m 9 ,l 2+6×42m 4l =l 3+l 242m 3+l (44m 6+32m 3),所以1+42m 2=6m+42m 3,所以l 2+l (42m 2-6m )+42m 3(42m 2-12m+5)=0。
因为l 和m 都是自然数,所以l 2+l (42m 2-6m )+42m 3(42m 2-12m+5)>0,所
以l 2+l (42m 2-6m )+42m 3(42m 2-12m+5)=0不可能,所以当n=4时,z 4=x 4+y 4无正整数解。
当n>4时,同理可证方程n n n y x z +=无正整数解。
所以定理得证。
参考文献:
[1]李联忠科学网《费马大定理的简单证明》。