必修4--三角函数所有知识点归纳总结
高中数学必修四三角函数知识点总结

高中数学必修四三角函数知识点总结三角函数是高中数学考试必考的一个内容, 也是很多同学遇到的一个难点, 下面是给大家带来的高中数学必修四三角函数知识点总结, 希望对你有帮助。
高中数学三角函数找知识点总结(一)高中数学三角函数知识点总结:锐角三角函数公式sin =的对边/ 斜边cos =的邻边/ 斜边tan =的对边/ 的邻边cot =的邻边/ 的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A) )高中数学三角函数知识点总结:三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a = tan a tan(/3+a) tan(/3-a)高中数学三角函数知识点总结:三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina高中数学三角函数知识点总结:辅助角公式Asin+Bcos=(A^2+B^2)^(1/2)sin(+t), 其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsin+Bcos=(A^2+B^2)^(1/2)cos(-t), tant=A/B降幂公式sin^2()=(1-cos(2))/2=versin(2)/2cos^2()=(1+cos(2))/2=covers(2)/2tan^2()=(1-cos(2))/(1+cos(2))高中数学三角函数知识点总结:推导公式tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos^21-cos2=2sin^21+sin=(sin/2+cos/2)^2=2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa高中数学三角函数知识点总结(二)sin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(3/2)2-sin2a]=4sina(sin260-sin2a)=4sina(sin60+sina)(sin60-sina)=4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]cos[(60-a)/2] =4sinasin(60+a)sin(60-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(3/2)2]=4cosa(cos2a-cos230)=4cosa(cosa+cos30)(cosa-cos30)=4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2]sin[(a-30)/2]} =-4cosasin(a+30)sin(a-30)=-4cosasin[90-(60-a)]sin[-90+(60+a)]=-4cosacos(60-a)[-cos(60+a)]=4cosacos(60-a)cos(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)高中数学三角函数知识点总结:半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(++)=sincoscos+cossincos+coscossin-sinsinsincos(++)=coscoscos-cossinsin-sincossin-sinsincostan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)点击下一页分享更多高中数学必修四三角函数知识点总结。
必修4三角函数知识总结

三角函数知识总结一、任意角和弧度制(一)任意角: 角的顶点在原点,始边与x 轴正半轴重合,始边绕原点旋转构成的图形,即构成角1. 从旋转方向可分为: 正角(绕原点逆时针旋转形成) ,负角(绕原点顺时针旋转形成) ,零角(不旋转);注:①角的大小可以是任意大小的;②其中钟表的时针、分针在旋转时所形成的角是负角。
③正确理解角:如“~间的角”、“第一象限角”、“锐角”、“小于角”、“钝角”等。
2. 从终边的位置可分为: 前提是角的顶点与坐标原点重合,角的始边与x 轴的非负半轴重合。
⎩⎨⎧)轴线角(也叫象限界角象限角注: 能熟练表示各象限角、终边在坐标轴上或特殊位置的角的集合; 3. 与α终边相同的角的集合: },2|{Z k k ∈+=απββ ①终边相同的角的集合:②终边在某条直线上的角的集合: ③终边在某一区域内的角的集合:4. α与2α的终边关系:由“两等分各象限、一二三四”确定. 如若α是第二象限角,则2α是第____象限角。
(二)弧度制1. 弧度角2. 弧度与角度的换算①角度制,角度制单位为“度”,符号是“°”,弧度制,单位为“弧度”,符号是“rad ”(一般省略)②换算关系: 180180()1()()5718rad rad ππ'==≈1°= 180π(rad )3. 扇形的弧长和面积公式: 弧长公式:l =α·R ;面积公式:S= 21l ·R = 21α·2R ;二、任意角的三角函数(一)任意角的三角函数1. 任意角的三角函数的定义:已知角α的终边上任意一点P (x , y ),它与原点的距离是r=OP =22y x +,那么正弦、余弦、正切分别为 sin α=y r , cos α=x r , tan α=y x。
2. 三角函数的象限符号图: 由于0r >,故sin α的符号只与y 有关,cos α的符号只与x 有关,正(余)切的符号取决于x ,y 是否同号,分布图如下: 一全二正弦,三切四余弦。
(word完整版)高中数学必修4三角函数知识点总结归纳,文档

高中数学必修 4 知识点总结第一章三角函数正角 : 按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角2、象限角:角的极点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,那么称为第几象限角.第一象限角的会集为k 360o k 360o90o , k第二象限角的会集为k 360o90o k360o180o, k第三象限角的会集为k 360o 180o k360o270o , k第四象限角的会集为k 360o270o k360o360o, k终边在 x 轴上的角的会集为k 180o , k终边在 y 轴上的角的会集为k180o90o , k终边在坐标轴上的角的会集为k 90o, k3、终边相等的角:与角终边相同的角的会集为k 360o, k4、是第几象限角,确定n*所在象限的方法:先把各象限均分 n 等n份,再从 x 轴的正半轴的上方起,依次将各地域标上一、二、三、四,那么原来是第几象限对应的标号即为终边所落在的地域.n例 4.设角属于第二象限,且cos2cos2,那么角属于〔〕2A .第一象限B.第二象限C.第三象限D.第四象限解.C 2k22k,( k Z ), k4k,( k Z ),22当 k2n,( n Z)时,在第一象限;当 k2n1,(n Z ) 时,在第三象限;22而 cos cos cos20,在第三象限;2225、1 弧度:长度等于半径长的弧所对的圆心角叫做1弧度.- 1 -6、半径为 r 的圆的圆心角所对弧的长为 l ,那么角的弧度数的绝对值是l .ro7、弧度制与角度制的换算公式:2360o , 1o, 1180o.1808、假设扇形的圆心角为为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S , 那么弧长l r ,周长 C 2r l ,面积 S 1 lr 1 r 2 .2 2 9、设是一个任意大小的角,的终边上任意一点的坐标是 x, y ,它与原点的距离是 r r x 2y 20 ,那么 siny, cosx, tany x 0 . r r x10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线: sin , cos , tan . y例 7.设 MP 和 OM 分别是角17的正弦线和余弦线,那么给出的以下P T18不等式: ① MP OM 0;②OM 0 MP ; ③OMMP 0 ;OM Ax④ MP0 OM ,其中正确的选项是_____________________________ 。
高中数学必修4《三角函数》知识点与易错点归纳

高中数学必修4《三角函数》知识点与易错点归纳知识点(一)任意角和弧度制1.与θ终边相同的角的集合是 ;第一或第三象限角的集合是 ;x 轴上的角的集合是 ;2.若α是锐角,则πα-是第 象限角;πα+是第 象限角;2πα-是第 象限角;α-是第 象限角;32πα-是第 象限角;2πα+是第 象限角。
3.180°=π;1°= 弧度; 1弧度= ;圆心角α弧度数的绝对值||α= ;扇形面积公式S = 。
4.角ααcos 2=-,则2α角是 象限角。
知识点二.任意角的三角函数1.任意角的三角函数的定义:设α是任意一个角,(,)P x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin α= ,cos α= ,tan α= 。
2.如图,三角函数线:正弦线是 、余弦线是 、正切线是 ;4.已知角α的终边经过点(3,4)P -,则sin tan αα+的值为 ; 5.函数sin cos tan |sin ||cos ||tan |y αααααα=++的值域是 ; 6.sin cos θθ<⇔ ;sin cos θθ>⇔ 。
知识点三.同角三角函数的基本关系式及诱导公式1.平方关系:22sin cos αα+= ;商数关系:tan α= ;2.已知tan 2α=,则ααααcos sin cos 3sin +-= ;sin cos αα⋅= ;4.1419costan()34ππ+-的值为 ; 5.化简23sin (180)cos(360)sin(270)cos (180)cos(90)tan(180)αααααα+⋅-⋅-=--⋅+⋅+ 。
yTA xα B SO M P知识点四.正弦、余弦、正切公式及倍角公式1.基本公式及变式()()22222sin sin cos cos sin sin 22sin cos 1sin 2(sin cos )cos cos cos sin sin cos2cos sin 2cos 112sin t αβαβαβαβαβαααααααβαβαβααααα==±=±−−−→=⇒±=±±=−−−→=-=-=-↓↓令令 ()222tan tan 2tan 1+cos21cos2an tan 2cos sin 1tan tan 1tan 22αβααααβααααβα±-±=→=- = ,=变式:1tantan tan tan()(1tan tan),tan()1tan4απαβαβαβαα++=+⋅-⋅=+-;sin cos ),sin 2sin(cos 2sin()436πππθθθθθθθθθ±=±±=±±=±2.4411111212cos sin ππ-= ;sin163sin 223sin 253sin313+= ; 3.在ABC ∆中,53sin ,cos 135A B ==,则cos C = ; 4.在直角ABC ∆中,sin sin A B ⋅的最大值为 ;5.已知等腰三角形的一个底角的正弦值为13,则这个三角形的顶角的余弦值是 。
(完整)高中必修四三角函数知识点总结,推荐文档

o
x
5、三角函数在各象限的符号:(一全二正弦,三切四余弦)
高三数学总复习—三角函数
y
++
o -
-x
、、 、、、
y
-+
o -
+
x
、、 、、、
y
-+
o +
-
x
、、 、、、
6、三角函数线 正弦线:MP; 余弦线:OM;
正切线: AT.
7. 三角函数的定义域:
三角函数 f (x) sinx f (x) cosx f (x) tanx
cot( x) cot x cot(2 x) cot x
公式组二 sin(2k x) sin x cos(2k x) cos x tan(2k x) tan x cot(2k x) cot x
公式组六 sin( x) sin x cos( x) cos x tan( x) tan x cot( x) cot x
定义域
x | x R x | x R
x
|
x
R且x
k
1
,
k
Z
2
x | x R且x k , k Z
x
|
x
R且x
k
1
,
k
Z
2
x | x R且x k , k Z
8、同角三角函数的基本关系式: sin tan cos
cos sin
cot
tan cot 1 csc sin 1
sin( ) sin cos cos sin sin( ) sin cos cos sin
tan 2 2 tan 1 tan 2
sin
(完整版)高中三角函数知识点总结

(完整版)高中三角函数知识点总结高中三角函数知识点总结1. 基本三角函数概念- 三角函数是以单位圆为基础的函数,包括正弦函数、余弦函数和正切函数。
- 正弦函数(sin):在直角三角形中,对于一个锐角,其对边与斜边的比值称为正弦值。
即:sinA = 对边/斜边。
- 余弦函数(cos):在直角三角形中,对于一个锐角,其邻边与斜边的比值称为余弦值。
即:cosA = 邻边/斜边。
- 正切函数(tan):在直角三角形中,对于一个锐角,其对边与邻边的比值称为正切值。
即:tanA = 对边/邻边。
2. 基本三角函数性质和公式- 三角函数的周期性:正弦函数和余弦函数的周期都是2π;正切函数的周期是π.- 三角函数的奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。
- 三角函数的同角关系:sinA/cosA = tanA。
- 三角函数的和差化积公式和积化和差公式:具体公式可根据需要进行查阅。
3. 三角函数图像和性质- 正弦函数图像:在0到2π的区间内,正弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于零值。
- 余弦函数图像:在0到2π的区间内,余弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于最大值。
- 正切函数图像:在0到π的区间内,正切函数的图像无法在x=π/2和3π/2时定义,其他点对应的图像为一条连续的射线。
4. 三角函数的应用- 三角函数广泛应用于科学和工程领域中的周期性现象的描述和计算,例如电流的正弦波,声波的波动等。
- 在几何学中,三角函数也应用于测量角度和距离等问题的解决。
以上为高中三角函数的基本知识点总结,更详细的内容和公式可以参考相关教材或资料。
必修四-第一章-三角函数知识点及例题详解

第一章 三角函数 知识点详列一、角的概念及其推广 正角:一条射线绕着端点以逆时针方向旋转形成的角1、任意角 零角:射线不做任何旋转形成的角 负角:一条射线绕着端点以顺时针方向旋转形成的角记忆法则:第一象限全为正,二正三切四余弦.ααcsc sin 为正 全正ααcot tan 为正ααsec cos 为正例1、(1)判断下列各式的符号: ①,265cos 340sin∙ ②,423tan 4sin ⎪⎭⎫⎝⎛-∙π③)cos(sin )sin(cos θθ其中已知)0tan ,cos cos (<-=θθθ且答案:+ — —2、象限角:角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z3、终边相同的角:一般地,所有与α角终边相同的角连同α在内(而且只有这样的角),cot α<0tan α<0cos α>0sin α<0cot α>0tan α>0cos α<0sin α<0cot α<0tan α<0cos α<0sin α>0sin α>0tan α>0cot α>0cos α>0可以表示为.,360Z k k∈+∙α4、特殊角的集合:(1)终边在X 轴非负半轴上的角的集合为{};,2Z k k ∈=παα(2)终边在X 轴非正半轴上的角的集合为(){};,12Z k k ∈+=πα (3)终边在X 轴上的角的集合为{};,Z k k ∈=παα(4)终边在Y 轴非负半轴上的角的集合为;,22⎭⎬⎫⎩⎨⎧∈+=Z k k ππαα (5)终边在Y 轴非正半轴上的角的集合为;,22⎭⎬⎫⎩⎨⎧∈-=Z k k ππαα(6)终边在Y 轴上的角的集合为;,2⎭⎬⎫⎩⎨⎧∈+=Z k k ππαα (7)终边在坐标轴上角的集合为;,2⎭⎬⎫⎩⎨⎧∈=Z k k παα(8)终边在一、三象限角平分线上的角的集合为;,4⎭⎬⎫⎩⎨⎧∈+=Z k k ππαα (9)终边在二、四象限角平分线上的角的集合为.,4⎭⎬⎫⎩⎨⎧∈-=Z k k ππαα 二、弧度1、定义:长度等于半径长的弧所对的圆心角叫做1弧度2、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭. 3、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα= 4、两个公式:若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.三、三角函数1.设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )则P 与原点的距离02222>+=+=y x yx r2.比值r y 叫做α的正弦 记作: r y =αsin 比值r x 叫做α的余弦 记作: r x =αcos比值x y 叫做α的正切 记作: x y =αtan比值y x叫做α的余切 记作: yx =αcot比值x r 叫做α的正割 记作: x r =αsec 比值y r叫做α的余割 记作: yr =αcsc 以上六种函数,统称为三角函数.2.同角三角函数的基本关系式: (1)倒数关系:tan cot 1αα⋅=;(2)商数关系:sin cos tan ,cot cos sin αααααα==; (3)平方关系:22sin cos 1αα+= .3.诱导公式,奇变偶不变,符号看象限.()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.例2.化简(1)sin()cos()44ππαα-++;(2)已知32,cos(9)5παπαπ<<-=-,求11cot()2πα-的值. ry)(x,αP解:(1)原式sin()cos[()]424πππαα=-++-sin()sin()044ππαα=---=.(2)3cos()cos(9)5απαπ-=-=-,∴3cos 5α=,∵2παπ<<,∴4sin 5α=-,sin 4tan cos 3ααα==,∴1134cot()cot()tan 223ππααα-=--=-=.例3 确定下列三角函数值的符号(1)cos250° (2))4sin(π-(3)tan (-672°) (4))311tan(π解:(1)∵250°是第三象限角 ∴cos250°<0(2)∵4π-是第四象限角,∴0)4sin(<-π(3)tan (-672°)=tan (48°-2×360°)=tan48°而48°是第一象限角,∴tan (-672°)>0(4) 35tan)235tan(311tanππππ=+= 而35π是第四象限角,∴0311tan<π. 例4 求值:sin(-1320°)cos1110°+cos(-1020°)sin750°+tan495°. 解:原式=sin(-4×360°+120°)·cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)+tan(360°+135°) =sin120°·cos30°+cos60°·sin30°+tan135°=21212323⨯+⨯-1=0 题型一 象所在象限的判断 例5(1)如果α为第一象限角,试问2α是第几象限角?(2)如果α为第二象限角,试问:απαπα+--,,分别为第几象限角?答案:(1)第一或者第三;(2)第三,第一,第四。
(完整版)高中数学必修4三角函数知识点总结归纳,推荐文档

高中数学必修4知识点总结第一章三角函数正角:按逆时针方向旋转形成的角1、任意角 负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、象限角:角 的顶点与原点重合,角的始边与 x 轴的非负半轴重合,终边落 在第几象限,则称4、已知 是第几象限角,确定一n *所在象限的方法:先把各象限均分n 等n 份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、 三、四,则 原 来是第几象限对应的标号即为 一终边所落在的区域.n为第几象限角. 第一象限角的集合为第二象限角的集合为 第三象限角的集合为第四象限角的集合为 360°90° k 360° 180°, k180°k 360° 270°,k 270° k 360° 360°, k终边在x 轴上的角的集合为 终边在y 轴上的角的集合为 终边在坐标轴上的角的集合为 k 180°,k k 180° 90°,k k 90°, k3、终边相等的角:与角终边相同的角的集合为k 360°,k360°360°360° k 360° 90°,k例4 .设角属于第二象限,且COS—2A .第一象限B .第二象限C.第三象限 D .第四象限解.C 2k 2k,(k Z),k -- k 2/k Z),2n,(n Z)时,一在第一象限;当k 2n 2 1,(n Z)时,一在第三象限;2cos —2 cos2 cos2 0,i在5、1弧度:长度等于半径长的弧所对的圆心角叫做1弧度.平方关系: 2 1 sin cos 2 1, si n 2 1 c 2 2os ,cos 1 2 sin ; 商数关系: 小sin 2 tan , sin tan cos ,cossincostan 13、三角函数的诱导公式:口诀: 奇变偶不变,付号看象限.1 sin 2k sin ,cos 2k cos , tan 2ktan k2 sin sin ,cos cos , tanta n • 3 sin sin , cos cos , tan tan•4 sin sin , coscos , tan ta n• 5 sin - cos ,cos — sin •2 26半径为r 的圆的圆心角 所对弧的长为I ,则角 的弧度数的绝对值是 7、弧度制与角度制的换算公式:2 360° , 1 180,1o 型 57.3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《三角函数》【知识网络】应用弧长公式同角三角函数诱导应用计算与化简的基本关系式公式证明恒等式应用任意角的概念角度制与任意角的三角函数的应用已知三角函图像和性质数值求角弧度制三角函数和角公式应用倍角公式应用差角公式应用一、任意角的概念与弧度制1、将沿x轴正向的射线,围绕原点旋转所形成的图形称作角.逆时针旋转为正角,顺时针旋转为负角,不旋转为零角2、同终边的角可表示为k 360 k Zx 轴上角:k 180 k Zy 轴上角:90k 180k Z3、第一象限角:0 k 36090k 360 k Z第二象限角:90k 360180k 360k Z第三象限角:180k 360270k 360k Z第四象限角:270k 360360k 360k Z4、区分第一象限角、锐角以及小于90 的角第一象限角:0 k 36090 k 360 k Z锐角:090小于90的角:905、若为第二象限角,那么为第几象限角?22k 2kk2k242k 0,4 , k 1,53 ,242所以在第一、三象限26、弧度制:弧长等于半径时,所对的圆心角为 1弧度的圆心角,记作 1rad .7、角度与弧度的转化:10.01745 118057.3057 181808、角度与弧度对应表:角度 0 30456090120 135 150 180 360弧度2 3 526 4323469、弧长与面积计算公式弧长: lR ;面积: S1l R1 R2 ,注意:这里的均为弧度制 .22二、任意角的三角函数P (x, y)1、正弦: siny xy;余弦 cos;正切 tanxrrr其中 x, y 为角终边上任意点坐标,rx 2y 2 .2、三角函数值对应表:度30456090 120 135 150 180 270 360弧度23 53 26 4 3 2 3 4 62sin1 2 3 13 2 1 0122222 2cos3 2 1 01 2 3 0121122222tan3 13无313 0无333、三角函数在各象限中的符号口诀:一全正,二正弦,三正切,四余弦. (简记为“全s t c”)sin tan cos第一象限: .x0, y0 sin0,cos0,tan0,第二象限: .x0, y0sin0,cos0,tan0,第三象限: .x0, y0sin0,cos0,tan0,第四象限: .x0, y0sin0,cos0,tan0,4、三角函数线设任意角的顶点在原点 O ,始边与x轴非负半轴重合,终边与单位圆相交与P ( x, y) ,过 P 作 x 轴的垂线,垂足为M ;过点A(1,0)作单位圆的切线,它与角的终边或其反向延长线交于点 T.y y TP PM oAA xo M xT(Ⅰ)(Ⅱ)yT yMo A M A x o xP(Ⅲ)P T (Ⅳ)由四个图看出:当角的终边不在坐标轴上时,有向线段OM x, MP y ,于是有sin y yMP , c o sx xx OMryr11,tan y MP ATxAT .OM OA我们就分别称有向线段MP , OM , AT 为正弦线、余弦线、正切线。
5、同角三角函数基本关系式sin 2 cos 2 1tansintancot1cos(sin cos )2 1 2 sin cos(sincos ) 2 1 2 sin cos( sin cos, sincos , sin cos ,三式之间可以互相表示 )6、诱导公式n口诀:奇变偶不变 , 符号看象限 ( 所谓奇偶指的是2中整数 n 的奇偶性,把 看作锐角 )nnsin(n)( 1) 2 sin , n 为偶数( 1) 2 co s , n 为偶数n 1; co s(n)n1.22(1) 2co s , n为奇数( 1) 2 sin , n 为奇数①. 公式(一):与2k , k Zsin(2k) sin; cos( 2k ) cos; tan( 2k ) tan②. 公式(二):与sinsin ; coscos ; tan tan③. 公式(三):与sinsin ; coscos ; tan tan④. 公式(四):与sin sin ; coscos ; tan tan⑤. 公式(五):与2sincos ; cossin ;22⑥. 公式(六):与2sincos ; cossin;22⑦. 公式(七):与323cos ;cos3;sin sin 22⑧. 公式(八):与323cos ;cos3;sin sin22三、三角函数的图像与性质1 、将函数y sin x 的图象上所有的点,向左(右)平移个单位长度,得到函数y sin x的图象;再将函数y sin x的图象上所有点的横坐标伸长(缩短)到原来的1倍(纵坐标不变),得到函数 y sin x的图象;再将函数y sin x的图象上所有点的纵坐标伸长(缩短)到原来的 A倍(横坐标不变),得到函数y A sin x的图象。
2、函数y Asin x A0,0 的性质:①振幅: A ;②周期:21;④相位: x;⑤初相:。
T;③频率: fT23、周期函数:一般地,对于函数f x ,如果存在一个非零常数T ,使得定义域内的每一个 x 值,都满足 f x Tf x ,那么函数 f x就叫做周期函数, T 叫做该函数的周期.4、⑴y Asin(x)k2对称轴:令x k,得 x2对称中心:x kk, (k,0)(k Z) ;,得 x⑵ y A cos(x)对称轴:令x k,得 x k;k2k2对称中心: x k,得 x, (,0)( k Z ) ;2⑶周期公式 :①函数 y A sin( x) 及 y Acos( x2)的周期T(A 、ω、为常数,且A≠0).②函数 y A tan x的周期T(A 、ω、为常数,且A≠0).5、三角函数的图像与性质表格函性数y sin x质图 像定义 R域值 1,1域当 x2kk Z 时,2最 ymax1;值2kk Z 时,当 x2y min1.周期 2性奇偶 奇函数性在2k , 2k22单 k Z 上是增函数;调 性2k , 32k在22k Z 上是减函数.对对称中心 k ,0 k Z称性对称轴 x kk Z2y cos xR 1,1当 x 2k k Z 时,y max 1 ;当 x 2k k Z 时, y min1.2偶函数在2k ,2 kk Z上是增函数;在 2k ,2kk Z上是减函数.对称中心k ,0 k Z 2y tan xx xk ,k Z 2R既无最大值也无最小值奇函数在 k , k2 2k Z 上是增函数.对称中心k ,0 k Z2无对称轴对称轴 x k k Z6. 五点法作y Asin( x) 的简图,设 t x,取0、、、3、 2来求相22应 x 的值以及对应的y 值再描点作图。
7.y Asin( x) 的的图像8.函数的变换:(1)函数的平移变换① y f (x)y f ( x a)(a 0) 将y f (x) 图像沿x轴向左(右)平移 a 个单位(左加右减)② y f (x)y f ( x) b(b 0) 将y f (x) 图像沿y轴向上(下)平移 b 个单位(上加下减)(2)函数的伸缩变换:1① y f (x)y f (wx)( w 0) 将 y f ( x) 图像纵坐标不变,横坐标缩到原来的倍( w 1缩短,0 w 1伸长)w② y f (x)y Af ( x)( A 0) 将 y f ( x) 图像横坐标不变,纵坐标伸长到原来的A 倍(A 1伸长,0 A 1缩短)(3)函数的对称变换:①y f ( x)y f ( x) )将y f (x) 图像绕y轴翻折180°(整体翻折)(对三角函数来说:图像关于x 轴对称)②y f ( x)y f (x) 将y f ( x) 图像绕x 轴翻折180°(整体翻折)(对三角函数来说:图像关于y 轴对称)③ y f (x)y f ( x)将 y f ( x)图像在y 轴右侧保留,并把右侧图像绕y 轴翻折到左侧(偶函数局部翻折)④ y f (x)y f ( x) 保留y f (x) 在x轴上方图像,x轴下方图像绕x 轴翻折上去(局部翻动)四、三角恒等变换1.两角和与差的正弦、余弦、正切公式:(1 )sin()sin cos sin cos(2 )sin()sin cos sin cos(3 )cos()cos cos sin sin(4 )cos()cos cos sin sin(5 )tan()tan tant an t a n t a n1t a n t a n 1tan tan(6 )tan()tan tant an t a n t a n1t an t an 1tan tan(7) a sin b cos=a2b2 sin()(其中,辅助角所在象限由点(a, b) 所在的象限决定 , sin b,cos a, tan b,该法也叫合一变形).a2b2a2b2a(8)1tan tan(4)1tan tan()1tan1tan42.二倍角公式(1)sin 2a2sin a cosa(2) cos 2a cos2 a sin 2 a 1 2sin 2 a 2cos2 a 1(3) tan 2a2 tan a 1 tan2 a3.降幂公式:cos2 a 1 cos2a( 2)sin2a 1 cos2a ( 1)22 4.升幂公式(1)1cos 2 cos2(2)1cos 2 sin 222(3)1sin(sin cos) 2( 4)1sin 2cos222(5)sin 2 sin cos225.半角公式(符号的选择由所在的象限确定)2(1)(3)sina1cosa ,cosa 1 cosa2,22( 2)2tana1cosa sin a 1 cosa21cosa 1cosa sin a6. 万能公式 :2 tan1tan2(1)sin 2 ,( 2)cos2,1tan21tan2222 tan(3)tan 2 .1tan 227.三角变换:三角变换是运算化简过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算、化简的方法技能。
(1)角的变换:角之间的和差、倍半、互补、互余等关系对角变换,还可作添加、删除角的恒等变形(2)函数名称变换:三角变形中常常需要变函数名称为同名函数。
采用公式:a sinb cos a2b2sin() 其中cos a,sin ba 2b2a2b2,比y sin x 3 cos x12( 3)2(1sin x3cos x)如:12( 3)212( 3)2132(sin xcos cos x sin) 2 sin( x) 2( sin x cos x)22333( 3)注意“凑角”运用:,,12例如:已知、( 3 ,) , sin()3,sin()12,则 cos() ?454134( 4)常数代换:在三角函数运算、求值、证明中有时候需将常数转化为三角函数,特别是常数“ 1”可转化为“sin2cos2”(5)幂的变换:对次数较高的三角函数式一般采用降幂处理,有时需要升幂例如:1cosa 常用升幂化为有理式。