第八章 习题解答

合集下载

教材第八章习题解答

教材第八章习题解答

第八章氧化还原反应和电化学习题解答1.回答下列问题。

(1)怎样利用电极电势来确定原电池的正负极,并计算原电池的电动势?(2)怎样理解介质的酸性增强,KMnO 4的电极电势代数值增大、氧化性增强?(3)Nernst 方程式中有哪些影响因素?它与氧化态及还原态中的离子浓度、气体分压和介质的关系如何?(4)区别概念:一次电池与二次电池、可逆电池与不可逆电池。

(5)介绍几种不同原电池的性能和使用范围。

(6)什么是电化学腐蚀,它与化学腐蚀有何不同? (7)防止金属腐蚀的方法主要有哪些?各根据什么原理? 【解答】(1)电极电势值高的电极做正极,电极电势值低的电极做负极。

原电池的电动势等于正极的电动电势减去负极的电极电势。

(2)根据电极反应:-+-2+42M nO +8H +5e =M n +4H O2442284c(M n)0.0592M nO M nO c ()()lg M nM nc(M nO )5c(H )()cc+--ΘΘ++-ΘΘϕ=ϕ-+⋅由电极电势的能斯特公式可知,介质酸性增强时,H +浓度增大,42M nO ()M n-+ϕ代数值增大,电对中MnO 4-的氧化性增强。

(3)对于电极反应 -a(O x)+ze b(R ed) 电极电势的Nernst 方程为:bR e d aO x (c /c )R T (O x /R e d )(O x /R e d )lnzF(c /c )ΘΘΘϕ=ϕ-影响电极电势大小的因素:a )浓度对电极电势的影响 电对中氧化态的离子浓度(或气体分压)增大时,电极电势增加;还原态的离子浓度(或气体分压)增大时,电极电势降低。

b )酸度对电极电势的影响 对于有H +或OH -参加的电极反应,溶液酸度的变化会对电极电势产生影响,对于没有H +或OH -参加的电极反应,溶液酸度的变化对电极电势的影响很小。

(4)一次电池是指电池放电到活性物质耗尽只能废弃而不能再生和重复使用的电池。

物理学第3版习题解答_第8章光的波动性

物理学第3版习题解答_第8章光的波动性

. B
解: (1) 以 A 为原点
x1
B
. A
x
A
图 8-35 习题 8-5 用图
-1
本题需补充一平面简谐波以速度 u = 20 m ⋅ s 沿直线传播
t x y = A cos[ 2 π( − ) + ϕ ] λ = uT = 10 m ,根据 T λ , 有
y = A cos[2π(
t x π − )− ] 0.5 10 2
x1 = 0.04 cos(2t + π 6) x 2 = 0.03 cos(2t − π 6)
试写出合振动的表达式。
解 合振动的振幅为
2 A = A12 + A2 + 2 A1 A2 cos(ϕ 2 − ϕ1 )
⎛ π π⎞ = 0.04 2 + 0.03 2 + 2 × 0.03 × 0.04 × cos⎜ − − ⎟ ⎝ 6 6⎠ = 0.06m
第八章习题解答
8-1 一物体沿 x 轴作简谐振动,振幅为 0.12m,周期为 2s。当 t = 0 时,位移为 0.06m,且 向 x 轴正方向运动。求:(1)初相;(2) t = 0.5s 时,物体的位置;(3)在 x = -0.06m 处, 且向 x 轴负向方向运动。物体从这一状态回到平衡位置的最短时间。 解:
−1
8-8 波长为 589.3nm 的钠光照在一双缝上,在距双缝 200cm 的观察屏幕上测量 10 个条纹的 宽度为 2.2cm,试计算双缝之间的距离。
解:根据 ∆x =
D λ 有 d = 0.536 mm d
8-9 在杨氏干涉实验中,若双缝间距为 0.40mm,在距双缝 100cm 的光屏上出现干涉条纹。 现测得相邻两条明纹中心的间距为 1.5mm,求入射光的波长。

理论力学习题解答第八章

理论力学习题解答第八章

8-1. 图示系统由匀质圆盘与匀质细杆铰接而成。

已知:圆盘半径为 r 、质量为M ,杆长为L 、质量为 m 。

在图示位置杆的角速度为ω、角加速度为ε,圆盘的角速度、角加速度均为零,试求系统惯性力系向定轴O 简化的主矢与主矩。

解:∵圆盘作平动,相当一质点作用在A 点。

εττ⋅+==∑)2/(ML mL a m F Ci i gR 2)2/(ω⋅+==∑ML mL a m F n Ci i ngR εε⋅+==)31(2200ML mL J M g8-2. 图示系统位于铅直面内,由鼓轮C 与重物A 组成。

已知鼓轮质量为m ,小半径为r ,大半径R = 2r ,对过C 且垂直于鼓轮平面的轴的回转半径ρ = ,重物A 质量为2m 。

试求(1)鼓轮中心C 的加速度;(2)AB 段绳与DE 段绳的张力。

解:设鼓轮的角加速度为, 在系统上加惯性力如图(a )所示, |则其惯性力分别为:αmr F C =I ;αr m F A ⋅=2I ααρα222I 5.1mr m J M C C === ∑=0)(F D M ;0)2(I I I =+-++C A C M r mg F F mg?AM I CF I Cm g F DE (a )A B 《D E2gF A F I A F AB (b )g g r a C 2145.132=+==α ∑=0y F ;02I I =--+-mg mg F F F A C DE ;mg mr mg F DE 21593=-=α 取重物A 为研究对象,受力如图(b )所示,∑=0y F ;02I =-+mg F F A AB ;mg mg mr mg F AB 2134)2141(222=-=-=α:8-3. 11-15重力的大小为100N 的平板置于水平面上,其间的摩擦因数f = ,板上有一重力的大小为300N ,半径为20cm 的均质圆柱。

圆柱与板之间无相对滑动,滚动摩阻可略去不计。

第八章习题解答

第八章习题解答

第八章 机械波一、选择、填空题:1、若一平面简谐波的波动方程为y=A cos (Bt-Cx )(SI ),式中A 、B 、C 为正值恒量,则( )。

A.波速为C ;B.周期为1/B ;C.波长为2π/C ;D.角频率为B /2π。

答案 C解:)(2cos λ-π=xT t A y 与y =A cos (Bt -Cx )比较即得答案。

2、一平面谐波,沿X 轴正向传播,波速u =100m ·s -1,t =0时的波形图如图8-1所示。

从波形图可知:(1)波长λ= 振幅A = 频率υ= 周期T =(2)波动方程为 (3)在t=0时,判定下列各质点振动速度的方向:x =0.3m 处。

v方向x =0.4m 处,v方向x =0.5m 处,v方向x =0.6m 处,v方向(4)写出x =0.4m 处的质点振动的方程图8-1解答:(1)λ=0.8m A =0.2mυ=125Hz T =0.008s(2)⎪⎭⎫ ⎝⎛-=8.01252cos 2.0x t y π (3) 0.3m 处,振动沿y 正向。

0.4m 处,0=v0.5m 处,振动沿y 负向。

0.6m 处,振动沿y 负向。

(4) ()ππ-=t y 250cos 2.03、如图8-2所示,有一平面简谐波沿x 轴正向传播,某时刻,P 1点的相位为8π,则P 2点的相位为 ,经时间t=T /4,P 1点的相位为_______ , P 2点相位为 ,由此可见,波的传播是 的传播。

图8-2 解答:P 1点和P 2点的相位差: 221πϕϕϕ=-=∆(1)πϕπϕ57 , 821.== (2)πϕπππϕ8 , 8.52821==+=(3)波的传播是相位的传播。

4、有一平面简谐波沿x 轴正向传播,已知t =1s 时刻的波形图线是I ,t =2s 时刻的波形图线为Ⅱ,如图8-3所示,则此波的波动方程为( )。

图8-3A . m )232(cos 20+-=x t y π.B .m )4(cos 20xt y -=π.C .m )214(cos 20+-=x t y π.D .m )234(cos 20+-=x t y π.答案 D解:由图知:1-s m 4124m,20⋅=-==u A . 1-s 2 , s 2ππω===T T 可得; []ϕπ+-=)4(c o s 20xt y .对于波线I 上的O 点:. 0 , 0 , s 1 , 0<===v y t x其振动的相位为:)10( , 22,=+=+k k ππϕπ)2( , 23ππϕ-=∴5、在弦线上有一简谐波,其表达式是()SI x t y ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=32002.02cos 02.01ππ为了在此弦线上形成驻波,并且在x =0处为一波节,此弦线上还应有一简谐波,其表达式为:( )。

运筹学答案第八章

运筹学答案第八章

page 24 8 August 2024
School of Management
运筹学教程
第八章习题解答
8.15 如图8-59,发点S1,S2分别可供应10和15个 单边位上,数收为c点ij。t1,t2可以接收10和25个单位,求最大流,
page 25 8 August 2024
School of Management
运筹学教程
第八章习题解答
8.11 求图8-56中v1到各点的最短路。
page 17 8 August 2024
School of Management
运筹学教程
第八章习题解答
page 18 8 August 2024
School of Management
运筹学教程
第八章习题解答
8.12 求图8-57网络中各顶点间的最短路。
page 31 8 August 2024
School of Management
运筹学教程
第八章习题解答
page 32 8 August 2024
School of Management
运筹学教程
第八章习题解答
心B货1B,中18,B心.22B,的02,运B某3B输每种3。能天货A力需物1,由、求A2单分个2的位别仓库运为库存费9At量,如1,分5表At别,28运—为64t送。每,到天各求31仓运个3t库费配,到最货9t配;省中
20 0 36 14 32
D(4)
0
20
18
0
32
12
48
9
0
V1 V2 V3 V4 V5
V1 0 5 16 19 12
V2 20 0 36 14 32

第八章习题解答

第八章习题解答

习题八答案1. 试比较多谐振荡器、单稳态触发器、施密特触发器的工作特点,并说明每种电路的主要用途。

答:多谐振荡器是一种自激振荡电路,不需要外加输入信号,它没有稳定状态,只有两个暂稳态。

暂稳态间的相互转换完全靠电路本身电容的充电和放电自动完成。

改变外接R 、C 定时元件数值的大小,可调节振荡频率。

施密特触发器具有回差特性,它有两个稳定状态,有两个不同的触发电平。

施密特触发器可将任意波形变换成矩形脉冲,输出脉冲宽度取决于输入信号的波形和回差电压的大小。

单稳态触发器有一个稳定状态和一个暂稳态。

输入信号起到触发电路进入暂稳态的作用,其输出脉冲的宽度取决于电路本身 R 、C 定时元件的数值。

改变 R 、C 定时元件的数值可调节输出脉冲的宽度。

多谐振荡器是常用的矩形脉冲产生电路。

施密特触发器和单稳态触发器是两种常用的整形电路。

施密特触发器可用来进行整形、幅度鉴别、构成多谐振荡器等。

单稳态触发器常用于脉冲的延时、定时和整形等。

2.在图8.2所示555集成定时器中,输出电压uo 为高电平UOH、低电平UOL及保持原来状态不变的输入信号条件各是什么?假定UCO端已通过0.01μF 接地,u D 端悬空。

答:当1=R 时, TR U <3V CC ,则C 2输出低电平, 1=Q ,OH o U u =。

当1=R 时, TH U >32V CC ,TR U >3V CC ,则C 1输出低电平、C 2输出高电平,1=Q 、0=Q ,OL o U u =。

当1=R 时, TH U <32V CC,TR U >3V CC ,则C 1C 2输出均为高电平,基本RS 触发器保持原来状态不变,因此o u 保持原来状态不变。

3.在图8.3所示多谐振荡器中,欲降低电路振荡频率,试说明下面列举的各种方法中,哪些是正确的,为什么?1) 加大R 1的阻值; 2) 加大R 2的阻值; 3) 减小C 的容量。

答:根据式(8-2)()ln221121C R R T f +==可知,1)2)两种方法是正确的。

概率论与数理统计习题解答(第8章)

概率论与数理统计习题解答(第8章)

第八章 假 设 检 验三、解答题1. 某种零件的长度服从正态分布,方差σ2 = 1.21,随机抽取6件,记录其长度(毫米)分别为32.46,31.54,30.10,29.76,31.67,31.23在显著性水平α = 0.01下,能否认为这批零件的平均长度为32.50毫米? 解:这是单个正态总体均值比较的问题,若设该种零件的长度),(~2σμN X ,则需要检验的是:00:μμ=H 01:μμ≠H由于2σ已知,选取nX Z σμ0-=为检验统计量,在显著水平α = 0.01下,0H 的拒绝域为:}|{|}|{|005.02Z z Z z ≥=≥α查表得 2.575829005.0=Z ,现由n =6, 31.1266711∑===ni i x n x ,1.1=σ, 50.320=μ计算得:3.0581561.132.5-31.126670==-=nX z σμ005.0Z z >可知,z 落入拒绝域中,故在0.01的显著水平下应拒绝0H ,不能认为这批零件的平均长度为32.50毫米。

EXCEL 实验结果:2. 正常人的脉搏平均每分钟72次,某医生测得10例“四乙基铅中毒”患者的脉搏数如下:54,67,68,78,70,66,67,65,69,70已知人的脉搏次数服从正态分布,问在显著水平α = 0.05下,“四乙基铅中毒”患者的脉搏和正常人的脉搏有无显著差异?解:这是单个正态总体均值比较的问题,若设“四乙基铅中毒”患者的脉搏数),(~2σμN X ,则需要检验的是:0:μμ=H1:μμ≠H由于方差未知,选取ns X T 0μ-=为检验统计量,在显著水平α = 0.05下,0H 的拒绝域为:)}9(|{|)}1(|{|2/05.02t t n t t ≥=-≥α查表得 2.26215716)9(025.0=t ,现由n =10, 67.411∑===n i i x n x , ()35.155555611122∑==--=n i i x x n s , 计算得2.45335761035.1555556724.670=-=-=nsX t μ)9(025.0t t >可知,t 落入拒绝域中,故在0.05的显著水平下应拒绝0H ,“四乙基铅中毒”患者的脉搏和正常人的脉搏有显著差异。

高等数学第八章习题解答

高等数学第八章习题解答

习题8.11. 设有一平面薄板(不计其厚度),占有Oxy 平面上的闭区域D ,薄板上分布着面密度为(,)x y μμ=的电荷,且(,)x y μ在D 上连续,试用二重积分表达该板上的全部电荷Q 。

解:据题意,薄板区域D 是Oxy 平面上的有界闭域,(,)x y μ是定义在D 上的面密度函数,那么用任意曲线把D 分成n 个可求面积的小区域12,,n σσσ ,以i σ∆表示小区域的面积,这些小区域构成了D 的一个分割T ,在每个i σ上任取一点(,)i i εη,那么电荷Q 即为D 上的一个积分和1(,)ni i i i Q u εησ==∆∑。

当d 足够小时,1(,)(,)ni i i i DQ u u x y d εησσ==∆=∑⎰⎰2. 下列二重积分表达怎样的空间立体的体积?试画出下列空间立体的图形:(1)()221Dx y d σ++⎰⎰,其中区域D 是圆域221x y +≤;解:(1)在圆域221x y +≤上以抛物面2221z x y =++为顶的曲顶柱体的体积。

(2)Dyd σ⎰⎰,其中区域D 是三角形域0,0,1x y x y ≥≥+≤;解: 在三角形域D 上以平面z y =为顶的柱体的体积。

z 轴x 轴y 轴(1) (2) 3. 设12231()D I x y d σ=+⎰⎰, 其中D 1={(x , y )|-1≤x ≤1, -2≤y ≤2 ;又22232()D I x y d σ=+⎰⎰, 其中D 2={(x , y )|0≤x ≤1, 0≤y ≤2}.试利用二重积分的几何意义说明I 1与I 2的关系.解 I 1表示由曲面z =(x 2+y 2)3与平面x =±1, y =±2以及z =0围成的立体V 的体积.I 2表示由曲面z =(x 2+y 2)3与平面x =0, x =1, y =0, y =2以及z =0围成的立体V 1的体积.显然立体V 关于yOz 面、xOz 面对称, 因此V 1是V 位于第一卦限中的部分, 故 V =4V 1, 即I 1=4I 2. 3. 利用二重积分的定义证明: (1)Dd σσ=⎰⎰ (其中σ为D 的面积;证明 由二重积分的定义可知,1(,)lim (,)ni i i i Df x y d f λσξησ→==∆∑⎰⎰其中∆σi 表示第i 个小闭区域的面积. 此处f (x , y )=1, 因而f (ξ, η)=1, 所以 01lim lim ni i Dd λλσσσσ→→==∆==∑⎰⎰.(2)(,)(,)DDkf x y d k f x y d σσ=⎰⎰⎰⎰ (其中k 为常数);证明 011(,)lim (,)lim (,)n ni i i i i i i i Dkf x y d kf k f λλσξησξησ→→===∆=∆∑∑⎰⎰1lim (,)(,)ni i i i Dk f k f x y d λξησσ→==∆=∑⎰⎰.(3)12(,)(,)(,)DD D f x y d f x y d f x y d σσσ=+⎰⎰⎰⎰⎰⎰,其中D =D 1⋃D 2, D 1、D 2为两个无公共内点的闭区域.证明 将D 1和D 2分别任意分为n 1和n 2个小闭区域1i σ∆和2i σ∆,n 1+n 2=n , 作和1211122212111(,)(,)(,)n n ni i i i i i i i i i i i f f f ξησξησξησ===∆=∆+∆∑∑∑.令各1i σ∆和2i σ∆的直径中最大值分别为λ1和λ2, 又λ=ma x (λ1,λ2), 则有1lim (,)n i i i i f λξησ→=∆∑121112221212011lim (,)lim (,)n n i i i i i i i i f f λλξησξησ→→===∆+∆∑∑,即 12(,)(,)(,)DD D f x y d f x y d f x y d σσσ=+⎰⎰⎰⎰⎰⎰.4. 根据二重积分的性质, 比较下列积分大小:(1)2()Dx y d σ+⎰⎰与, 3()Dx y d σ+⎰⎰ 其中积分区域D 是由x 轴, y 轴与直线x +y =1所围成;解 区域D 为: D ={(x , y )|0≤x , 0≤y , x +y ≤1}, 因此当(x , y )∈D 时, 有(x +y )3≤(x +y )2, 从而3()Dx y d σ+⎰⎰≤2()Dx y d σ+⎰⎰.(2)2()Dx y d σ+⎰⎰与3()Dx y d σ+⎰⎰其中积分区域D 是由圆周(x -2)2+(y -1)2=2所围成;解 区域D 如图所示, 由于直线x +y =1与圆(x -2)2+(y -1)2=2相切,故D 位于直线x +y =1的上方, 所以当(x , y )∈D 时, x +y ≥1, 从而(x +y )3≥(x +y )2, 因而 23()()DDx y d x y d σσ+≤+⎰⎰⎰⎰.(3)ln()Dx y d σ+⎰⎰与3()Dx y d σ+⎰⎰其中D 是三角形闭区域, 三角顶点分别为(1,0), (1, 1), (2, 0);解 区域D 如图所示, 显然当(x , y )∈D 时, 1≤x +y ≤2, 从而0≤ln(x +y )≤1, 故有 [ln(x +y )]2≤ ln(x +y ),因而 2[ln()]ln()+≤+⎰⎰⎰⎰DDx y d x y d σσ.(4)ln()Dx y d σ+⎰⎰与3()Dx y d σ+⎰⎰其中D ={(x , y )|3≤x ≤5. 0≤y ≤1}.解 区域D 如图所示, 显然D 位于直线x +y =e 的上方, 故当(x , y )∈D 时, x +y ≥e , 从而ln(x +y )≥1,因而 [ln(x +y )]2≥ln(x +y ),故 2ln()[ln()]DDx y d x y d σσ+≤+⎰⎰⎰⎰.5. 利用二重积分的性质估计下列积分的值:(1)()DI xy x y d σ=+⎰⎰, 其中D ={(x , y )| 0≤x ≤1, 0≤y ≤1};解 因为在区域D 上0≤x ≤1, 0≤y ≤1, 所以 0≤xy ≤1, 0≤x +y ≤2, 进一步可得0≤xy (x +y )≤2,于是 0()2DDDd xy x y d d σσσ≤+≤⎰⎰⎰⎰⎰⎰,即 0()2Dxy x y d σ≤+≤⎰⎰.(2)22sin sin DI x yd σ=⎰⎰, 其中D ={(x , y )| 0≤x ≤π, 0≤y ≤π};解 因为0≤sin 2x ≤1, 0≤sin 2y ≤1, 所以0≤sin 2x sin 2y ≤1. 于是可得 220sin sin 1DDDd x yd d σσσ≤≤⎰⎰⎰⎰⎰⎰,即 2220sin sin Dx yd σπ≤≤⎰⎰.(3)(1)DI x y d σ=++⎰⎰, 其中D ={(x , y )| 0≤x ≤1, 0≤y ≤2};解 因为在区域D 上, 0≤x ≤1, 0≤y ≤2, 所以1≤x +y +1≤4, 于是可得 (1)4DDDd x y d d σσσ≤++≤⎰⎰⎰⎰⎰⎰,即 2(1)8Dx y d σ≤++≤⎰⎰.22(49)DI x y d σ=++⎰⎰, 其中D ={(x , y )| x 2+y 2 ≤4}.解 在D 上, 因为0≤x 2+y 2≤4, 所以 9≤x 2+4y 2+9≤4(x 2+y 2)+9≤25.于是 229(49)25DDDd x y d d σσσ≤++≤⎰⎰⎰⎰⎰⎰,222292(49)252Dx y d πσπ≤++≤⋅⋅⎰⎰,即 2236(49)100Dx y d πσπ≤++≤⎰⎰.习题8.21. 化二重积分(,)Df x y dxdy ⎰⎰为二次积分(写出两种积分次序).(1)D ={(x , y )| |x |≤1, |y |≤1}; 解 D 为矩形区域, 所以1111(,)(,)Df x y dxdy dx f x y dy --=⎰⎰⎰⎰,1111(,)(,)Df x y dxdy dy f x y dx --=⎰⎰⎰⎰.(2)D 是由y 轴, y =1及y =x 围成的区域; 解 若将D 表示为0≤x ≤1, x ≤y ≤1, 则 11(,)(,)xDf x y dxdy dx f x y dy =⎰⎰⎰⎰.若将D 表示为0≤y ≤1, 0≤x ≤y , 则 1(,)(,)yDf x y dxdy dy f x y dx =⎰⎰⎰⎰.(3)D 是由x 轴, y =ln x 及x =e 围成的区域; 解 若将D 表示为1≤x ≤e , 0≤y ≤ln x , 则 ln 10(,)(,)ex Df x y dxdy dx f x y dy =⎰⎰⎰⎰.若将D 表示为0≤y ≤1, e y ≤x ≤e , 则 1(,)(,)y eeDf x y dxdy dy f x y dx =⎰⎰⎰⎰.(4)D 是由x 轴, 圆x 2+y 2-2x =0在第一象限的部分及直线x +y =2围成的区域; 解 若将D 表示为0≤x ≤1,0y ≤≤1≤x ≤2, 0≤y ≤2-x , 则12201(,)(,)(,)xDf x y dxdy dx f x y dy dx f x y dy -=+⎰⎰⎰⎰⎰.若将D 表示为0≤y ≤1; 12x y ≤≤-, 则 1201(,)(,)yDf x y dxdy dy f x y dx -=⎰⎰⎰⎰(5)D 是由x 轴与抛物线y =4-x 2在第二象限的部分及圆x 2+y 2-4y =0第一象限部分围成的区域. 解 若将D 表示为-2≤x ≤0, 0≤y ≤4-x 2及0≤x ≤2,22y ≤≤ 则242222(,)(,)(,x Df x y dxdy dx f x y dy dx f x y --=+⎰⎰⎰⎰⎰⎰,若将D 表示为0≤y ≤4, x ≤ 则 40(,)(,)Df x y dxdy dy f x y dx =⎰⎰⎰.2. 交换二次积分的次序:(提示: 交换二次积分的次序, 要先根据原积分写出积分区域不等式, 再根据不等式画出积分区域, 然后根据图形写出另一种形式的积分区域不等式, 最后由不等写出二次积分)(1)228812(,)(,)x xxdx f x y dy dx f x y dy +⎰⎰⎰⎰.解 积分区域为D ={(x , y )|1≤x ≤2, x ≤y ≤x 2}⋃{(x , y )|2≤x ≤8, x ≤y ≤8}. 积分区域还可以表示为D ={(x , y )|1≤y ≤4,x ≤y }⋃{(x , y )|4≤y ≤8, 2≤x ≤y }, 于是 原式=48142(,)(,)y ydy f x y dx dy f x y dx +⎰⎰⎰.(2)12201(,)(,)yydy f x y dx dy f x y dx -+⎰⎰⎰⎰.解 积分区域为D ={(x , y )|0≤y ≤1, 0≤x ≤y }⋃{(x , y )|1≤y ≤2, 0≤x ≤2-y }.积分区域还可以表示为xO y281D ={(x , y )|0≤x ≤1, x ≤y ≤2-x }, 于是 原式=120(,)x xdx f x y dy -⎰⎰. (3) 14(4)(,)y dy f x y dx -⎰⎰;解:积分区域{}2442,20|),(x y x x y x D -≤≤+≤≤=,214(4)040224(,)(,)(,);y x Dx f x y d dy f x y dx dx f x y dy σ---+∴==⎰⎰⎰⎰⎰⎰(4) 11(,)dx f x y dy ⎰;解:积分区域{}{212(,)|01,0(,)|12,0D x y y x y D x y y x =≤≤≤≤⋃=≤≤≤≤21212001(,)(,)(,)(,)y D D f x y d f x y d dy f x y dx dy f x y dxσσ=+=+⎰⎰⎰⎰⎰⎰⎰原式(5)224(,)x x f x y dy -⎰⎰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 习题解答
题 8-1 试用相位平衡条件和幅度平衡条件,判断图中各电路是否可能产生正弦波振荡,简述理由。

解:(a)不能振荡,o o
A F 18090~90o ϕϕ==+-因,而,故不能满足相位平衡条件。

(b) 不能振荡,虽然电路能够满足相位平衡条件,但当o F 0ϕ=时,13
F
=&,而电压跟随器的1A
=&,故不能同时满足幅度平衡条件。

(c) 不能振荡,o o o A F F 180RC 0~180180o ϕϕϕ==因,两节电路的,但当接近时,其输
出电压接近于零,故不能同时满足幅度平衡条件。

(d) 不能振荡,放大电路为同相接法,A 0o
ϕ=,选频网络为三节RC 低通电路,
o o F 0~270ϕ=-,但欲达到o F 0ϕ=,只能使频率f=0。

(e)可能振荡,差分放大电路从VT2的集电极输出时A 0o
ϕ=,而选频网络为RC 串并联电路,当f=f0时,o
F 0ϕ=,满足相位平衡条件。

① 判断电路是否满足正弦波振荡的相位平衡条件。

如不满足,修改电路接线使之满足(画在图上)。

② 在图示参数下能否保证起振荡条件?如不能,应调节哪个参数,调到什么值? ③ 起掁以后,振荡频率f o =?
④ 如果希望提高振荡频率f o ,可以改变哪些参数,增大还是减小?
⑤ 如果要求改善输出波形,减小非线性失真,应调节哪个参数,增大还是减小?
本题意图是掌握文氏电桥RC 振荡电路的工作原理及其振荡频率和起振条件的估算方法。

解:①o o
0A F 0f f 0ϕϕ===因,当时,,故满足相位平衡条件。

②因F e 1F F e 1R 2R ,R R >2R =5.4k <Ω故不能满足起振条件,应调整,使。

③038
11
Hz 5300Hz=5.3kHz 2231010f RC ππ-=
=≈⨯⨯⨯
④可减小R 或C 。

⑤可减小R F 。

题 8-7 试用相位平衡条件判断图P8-7所示电路中,哪些可能产生正弦波振荡?哪些不能?简单说明理由。

解:本题的意图是掌握产生正弦振荡的相位平衡条件,并根据上述条件判断具有LC 选频网络的电路能否产生振荡。

(a) 不能振荡,o o
A F 0180ϕϕ==,,不满足相位平衡条件。

(b) 可能振荡,o o
A F 180180ϕϕ==,,满足相位平衡条件。

(c) 不能振荡,o o
A F 1800ϕϕ==,,不满足相位平衡条件。

(d) 可能振荡,o o
A F 00ϕϕ==,,满足相位平衡条件。

(e) 可能振荡,本电路实际上就是一个电容三点式振荡电路。

(f) 可能振荡,o o
A F 00ϕϕ==,,满足相位平衡条件。

① 将图中左右两部分正确连接起来,使之能够产生正弦波振荡。

②估算振荡频率f o 。

③ 如果电容C 3短路,此时 f o
=?
本题的意图是根据相位平衡条件完成(射同基异)完成电容三点式改进型振荡电路的连线,使之能够振荡;分别估算电容三点式及其改进型振荡电路的振荡频率,并进行比较。

解:①J 接M ,K 接P ,H 接N 。

②60311
311Hz 3.5610Hz 3.56MHz 2220.21010f LC LC π--=
≈==⨯=⨯⨯⨯ππ
③60312
12
12
Hz 0.9210Hz 920kHz 20.210150102f C C L C C ππ--=
=
=⨯=⋅⨯⨯⨯⨯+
题 8-16 在图P8-16所示的矩形波发生电路中,假设集成运放和二极管均为理想的,已知电阻R=10kΩ,R 1=12kΩ,R 2=15kΩ,R 3=2kΩ,电位器R W =100kΩ,电容C =0.01μF ,稳压管的稳压值U z =±6V 。

如果电位器的滑动端调在中间位置:
① 画出输出电压u o 的电容上电压 u c 的波形。

② 估算输出电压的振荡周期T 。

③ 分别估算输出电压和电容上的峰值U om 和U cm 。

0U +
c t
U -+U Z
u o 0t -U Z
T
T2
T1
本题意图是理解矩形波发生电路的工作原理和输出波形,并估算其输出电压幅值和振荡周期。

解:①输出电压u o 和电容上电压 u c 的波形如图。

②48
1W 22212T 2(0.5R )ln 1261010ln(1)1.15(ms)15
R R C R -⎛⎫⨯=++
=⨯⨯⨯+= ⎪⎝⎭ ③
om Z 1cm T Z 12U U 6V
R 12
U =U =U 6V 2.7V
R +R 1215
===⨯=+
(资料素材和资料部分来自网络,供参考。

可复制、编制,期待你的好评与关注)。

相关文档
最新文档