高中数学练习十九平面向量基本定理新人教A版必修4

合集下载

高中数学 第二章 平面向量 2.3.1 平面向量基本定理课件 新人教A版必修4

高中数学 第二章 平面向量 2.3.1 平面向量基本定理课件 新人教A版必修4

1.若向量 a,b 不共线,则 c=2a-b,d=3a-2b, 试判断 c,d 能否作为基底. 解:设存在实数 λ,使 c=λd, 则 2a-b=λ(3a-2b), 即(2-3λ)a+(2λ-1)b=0, 由于向量 a,b 不共线, 所以 2-3λ=2λ-1=0,这样的 λ 是不存在的, 从而 c,d 不共线,c,d 能作为基底.
探究点二 用基底表示平面向量
如图所示,在▱ABCD 中,点 E,F
分别为 BC,DC 边上的中点,DE 与 BF 交 于点 G,若A→B=a,A→D=b,试用 a,b 表 示向量D→E,B→F.
[解] D→E=D→A+A→B+B→E =-A→D+A→B+12B→C
=-A→D+A→B+12A→D=a-12b.
4.若 a,b 不共线,且 la+mb=0(l,m∈R),则 l=________, m=________. 答案:0 0 5.若A→D是△ABC 的中线,已知A→B=a,A→C=b,若 a,b 为基底,则A→D=________. 答案:12(a+b)
探究点一 对基底的理解
设 O 是平行四边形 ABCD 两对角线的交点,给出下列向
解:D→E=D→C+C→E=2F→C+C→E=-2C→F+C→E=-2b+a.
B→F=B→C+C→F=2E→C+C→F
=-2C→E+C→F=-2a+b.
用基底表示向量的两种方法 (1基底表示为止. (2)通过列向量方程或方程组的形式,利用基底表示向量的唯一 性求解.
对基底的理解 (1)两个向量能否作为一组基底,关键是看这两个向量是否共 线.若共线,则不能作基底,反之,则可作基底. (2)一个平面的基底若确定,那么平面上任意一个向量都可以由 这组基底唯一线性表示出来,设向量 a 与 b 是平面内两个不共 线的向量,若 x1a+y1b=x2a+y2b,则xy11==yx22.,

最新-高中数学 平面向量基本定理课件 新人教A版必修4 精品

最新-高中数学 平面向量基本定理课件 新人教A版必修4 精品
用 a, b 表示 MA、MB、MC、MD ?
D
C
M
A
B
回顾小结:
1)平面向量基本定理内容
2)对定理的理解与拓展
实数对 1, 2, 的存在性和唯一性
基底的不唯一性 定理的拓展性 3)平面向量基本定理的应用
2.2.1平面向量基本定理
如图,设e1、e2是同一平面内两个不共线的向量,
试用e1、e2表示向量 AB,CD, EF,GH
H
E
D B
e2 A e1
G
C F
AB 2e1 3e2
CD e1 4e2
EF 4e1 - 4e2
GH 2e1 5e2
设e1、e2是同一平面内两个不共线的向量,
可以作出该平面内给定的向量a在e1、e2两个
2)若 e1, e2, 是平面内所有向量的一组基底,
则下面的四组向量中不能作为一组基底的是 (B)
A.e1 e2 , e1 e2 C.e1 3e2, e2 3e1
B.3e1 2e2, 4e2 6e1
D.e2 , e1 e2
4.数学应用
例2.如图所示,平行四边形ABCD的两条对角线
相交与点M,且 AB a, AD b,
无数对
♦ 探究3: 若基底选择不同,则表示同一向量的
实数 1, 2, 是否相同? 可以相同,也可不同
F
C
OC OF OE
OC 2OA OE A
B
a
OC 2OB ON
O
N
EE
(1)平面向量的基底有多少对? (有无数对)
M
CF
M
A
a
a
O
N
B
O
N
C E

(2021年整理)必修四平面向量基本定理(附答案)

(2021年整理)必修四平面向量基本定理(附答案)

必修四平面向量基本定理(附答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(必修四平面向量基本定理(附答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为必修四平面向量基本定理(附答案)的全部内容。

平面向量基本定理[学习目标]1。

理解平面向量基本定理的内容,了解向量一组基底的含义。

2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3。

会应用平面向量基本定理解决有关平面向量的综合问题.知识点一平面向量基本定理(1)定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2。

(2)基底:把不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.思考如图所示,e1,e2是两个不共线的向量,试用e1,e2表示向量错误!,错误!,错误!,错误!,错误!,a.答案通过观察,可得:错误!=2e1+3e2,错误!=-e1+4e2,错误!=4e1-4e2,错误!=-2e1+5e2,错误!=2e1-5e2,a=-2e1.知识点二两向量的夹角与垂直(1)夹角:已知两个非零向量a和b,如图,作错误!=a,错误!=b,则∠AOB=θ(0°≤θ≤180°),叫做向量a与b的夹角.①范围:向量a与b的夹角的范围是[0°,180°].②当θ=0°时,a与b同向.③当θ=180°时,a与b反向.(2)垂直:如果a与b的夹角是90°,则称a与b垂直,记作a⊥b.思考在等边三角形ABC中,试写出下面向量的夹角.①错误!、错误!;②错误!、错误!;③错误!、错误!;④错误!、错误!.答案①错误!与错误!的夹角为60°;②错误!与错误!的夹角为120°;③错误!与错误!的夹角为60°;④错误!与错误!的夹角为180°。

高中数学(人教A版必修4)课件2.3.1平面向量的基本定理

高中数学(人教A版必修4)课件2.3.1平面向量的基本定理

类型三
平面向量基本定理的应用
→ → → 例 3 证明:向量OA,OB,OC终点 A,B,C 共线,则 → → → 存在实数 λ,μ,且 λ+μ=1,使得OC=λOA+μOB;反之, 也成立.
分析 明.
本例可用向量的线性运算及共线向量基本定理证
→ → → → → 证明 ∵OA, OB, OC的终点 A, B, C 共线, 则AB∥BC, → → 故存在实数 m,使得BC=mAB. → → → → → → 又BC=OC-OB,AB=OB-OA, → → → → 故OC-OB=m(OB-OA), → → → OC=-mOA+(1+m)OB. 令 λ=-m,μ=1+m,则存在 λ,μ 且 λ+μ=1, → → → 使得OC=λOA+μOB.
误区警示 基底不同,同一向量的分解式也不同,要注 意这之间的区别.
变式训练1 如图所示,已知ABCD为矩形,且AD= → 2AB,又△ADE为等腰直角三角形,F为ED的中点, EA = → → → → → e1,EF=e2,以e1,e2为基底,表示向量AF,AB,AD及BD.
→ → → 解 ∵EA=e1,EF=e2,∴AF=e2-e1. 依题意有:AD=2AB=DE,且F为DE的中点, ∴四边形ABDF为平行四边形. → → → → → ∴BD=AF=e2-e1,AB=FD=EF=e2. → → → ∴AD=AF+AB=e2-e1+e2=2e2-e1.
∵|a|=|b|=2,∴△OAB为正三角形. ∴∠OAB=60° =∠ABC, 即a-b与a的夹角为60° . ∵|a|=|b|,∴▱OACB为菱形. ∴OC⊥AB,∴∠COA=90° -60° =30° . 即a+b与a的夹角为30° .
规律技巧
求两个向量的夹角,关键是利用平移的方法

人教A版必修四 2.3.1 平面向量基本定理 课件(34张)

人教A版必修四  2.3.1  平面向量基本定理    课件(34张)

其中正确的说法是( B )
A.①②
B.②③
C.①③
D.②
【解析】因为不共线的两个向量都可以作为一组基 底,所以一个平面内有无数多个基底,又零向量和 任何向量共线,所以基底中不含有零向量.因此本 题中,①错,②、③正确,故选 B.
2.在等边三角形 ABC 中,A→B与B→C的夹角等于( C )
A.60°
r ur uur 即 a 1e1 +2 e2.
e1
e2
a
N A
B
C O
uuur uuuur uuur
如图, OC OM ON,
M
uuuur uuur ur uuur uuur uur
因为OM 1OA 1e1,
uuur ur uur
ON 2 OB 2 e2,
所以OC 1e1 2 e2,
数λ1,λ2 ,使
a 1e1 2 e2
说明:① ②
areur1是,e平uur2 面是内两的个任不意共向线量的;向量;
③ λ1,λ2为实数,且唯一确定.
我们把不共线的向量
ur e1
,euur2
叫做这一平面内所有向量
的一组基底.
不共线向量有不同方向,它们的位置关系可用夹角
来表示.关于向量的夹角,我们规定:
那么对于这一平面内的任意向量 有且只有
一对实数
使
.
不共线的向量 叫做表示这一平面内 所有向量的一组基底.
r ur uur
即 a 1e1 +2 e2.
r ur uur
a 1e1 +2e2
这就是说平面内任 r
一向量a都可以表示 ur uur ur uur
成1e1 2 e2 (e1, e2 不共线)的形式.

2019-2020学年同步人教A版高中数学必修4_第二章2.3.1 平面向量基本定理

2019-2020学年同步人教A版高中数学必修4_第二章2.3.1 平面向量基本定理

A.13a+23b
B.23a+13b
C.35a+45b
D.45a+35b
解析:选 B.因为B→D=12D→A,C→B=a,C→A=b,所以C→D=a+B→D
=a+13B→A=a+13(b-a)=23a+13b.
栏目 导引
第二章 平面向量
2.如图,已知在梯形 ABCD 中,AD∥BC,E,F 分别是 AD, BC 边上的中点,且 BC=3AD,B→A=a,B→C=b.试以 a,b 为基 底表示E→F,D→F.
第二章 平面向量
因为|a|=|b|,所以平行四边形 OACB 为菱形. 所以O→C与O→A的夹角∠AOC=60°, B→A与O→A的夹角即为B→A与B→C的夹角∠ABC=30°. 所以 a+b 与 a 的夹角为 60°,a-b 与 a 的夹角为 30°.
栏目 导引
第二章 平面向量
两个向量夹角的实质及求解的关键 (1)实质:两个向量的夹角,实质上是从同一起点出发的两个非 零向量构成的角. (2)关键:求两个向量的夹角,关键是利用平移的方法使两个向 量的起点重合,然后按照“一作二证三算”的步骤,并结合平 面几何知识求出两个向量的夹角.
栏目 导引
第二章 平面向量
1.在锐角三角形 ABC 中,下列说法正确的是( ) A.A→B与B→C的夹角是锐角 B.A→B与A→C的夹角是锐角 C.A→C与B→C的夹角是钝角 D.A→C与C→B的夹角是锐角 解析:选 B.由两向量的夹角定义知,A→B与B→C的夹角是 180° -∠B,A→B与A→C的夹角是∠A,A→C与B→C的夹角是∠C,A→C与C→B 的夹角是 180°-∠C,只有 B 正确.
栏目 导引
第二章 平面向量
【解析】 ①设 e1+e2=λe1,则λ1==10,,无解, 所以 e1+e2 与 e1 不共线,即 e1 与 e1+e2 能作为一组基底. ②设 e1-2e2=λ(e2-2e1),则(1+2λ)e1-(2+λ)e2=0, 则12++2λ=λ=00,,无解,所以 e1-2e2 与 e2-2e1 不共线,即 e1-2e2 与 e2-2e1 能作为一组基底.

2021秋高中数学第二章平面向量2.3.1平面向量基本定理练习(含解析)新人教A版必修4

2.3.1 平面向量根本定理A 级 根底稳固一、选择题1.设e 1,e 2是平面内所有向量的一组基底,那么以下四组向量中,不能作为基底的是( )A .e 1+e 2和e 1-e 2B .3e 1-4e 2和6e 1-8e 2C .e 1+2e 2和2e 1+e 2D .e 1和e 1+e 2解析:B 中,因为6e 1-8e 2=2(3e 1-4e 2), 所以(6e 1-8e 2)∥(3e 1-4e 2),所以3e 1-4e 2和6e 1-8e 2不能作为基底. 答案:B2.在菱形ABCD 中,∠A =π3,那么AB →与AC →的夹角为( )A.π6B.π3C.5π6D.2π3解析:由题意知AC 平分∠BAD ,所以AB →与AC →的夹角为π6.答案:A3.在△ABC 中,点D 在BC 边上,且BD →=2DC →,设AB →=a ,AC →=b ,那么AD →可用基底a ,b 表示为( )A.12(a +b ) B.23a +13b C.13a +23b D.13(a +b ) 解析:因为BD →=2DC →, 所以BD →=23BC →.所以AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →=13a +23b .答案:C4.如图,在△OAB 中,P 为线段AB 上一点,OP →=xOA →+yOB →,且BP →=3PA →,那么( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14解析:由BP →=3PA →,得OP →-OB →=3(OA →-OP →),整理,得OP →=34OA →+14OB →,故x =34,y =14.答案:D5.(2021·全国卷Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,那么EB →=( ) A.34AB →-14AC → B.14AB →-34AC → C.34AB →+14AC → D.14AB →+34AC → 答案:A 二、填空题6.假设OP 1→=a ,OP 2→=b ,P 1P →=λPP 2→(λ≠-1),那么OP →=________.解析:因为OP →=OP 1→+P 1P →=OP 1+λPP 2→=OP 1→+λ(OP 2→-OP →)=OP 1→+λOP 2→-λOP →, 所以(1+λ)OP →=OP 1→+λOP 2→.所以OP →=11+λOP 1→+λ1+λOP 2→=11+λa +λ1+λb .答案:11+λa +λ1+λb 7.|a |=1,|b |=2,且a -b 与a 垂直,那么a 与b 的夹角为________.解析:如图,作向量OA →=a ,OB →=b ,那么BA →=a -b .由,得OA =1,OB =2,OA ⊥AB ,所以△OAB 为等腰直角三角形,所以∠AOB =45°,所以a 与b 的夹角为45°.答案:45°8.如果3e 1+4e 2=a ,2e 1+3e 2=b ,其中a ,b 为向量,那么e 1=________,e 2=________. 解析:由⎩⎪⎨⎪⎧a =3e 1+4e 2,b =2e 1+3e 2,解得⎩⎪⎨⎪⎧e 1=3a -4b ,e 2=3b -2a .答案:3a -4b 3b -2a 三、解答题9.如下图,平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,假设OC →=λOA →+μOB →(λ,μ∈R).求λ+μ的值.解:如下图,以OA ,OB 所在射线为邻边,OC 为对角线作平行四边形ODCE ,那么OC →=OD →+OE →.在直角△OCD 中,因为|OC →|=23,∠COD =30°,∠OCD =90°,所以|OD →|=4,|CD →|=2,故OD →=4OA →,OE →=2OB →,即λ=4,μ=2,所以λ+μ=6.10.如下图,▱ABCD 中,E ,F 分别是BC ,DC 的中点,G 为DE ,BF 的交点,假设AB →=a ,AD →=b ,试以a ,b 为基底表示DE →,BF →,CG →.解:DE →=AE →-AD →=AB →+BE →-AD →=a +12b -b =a -12b .BF →=AF →-AB →=AD →+DF →-AB →=b +12a -a =b -12a .如下图,连接DB ,延长CG ,交BD 于点O ,点G 是△CBD 的重心,故CG →=CE →+EG →=12CB →+EG →=12CB →+13ED →=-12b -13⎝ ⎛⎭⎪⎫a -12b =-13a -13b .B 级 能力提升1.如果e 1,e 2是平面α内两个不共线的向量,那么以下说法中不正确的选项是( ) ①λe 1+μe 2(λ,μ∈R)可以表示平面α内的所有向量;②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个;③假设向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,那么有且只有一个实数λ,使得λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2);④假设存在实数λ,μ使得λe 1+μe 2=0,那么λ=μ=0.A .①②B .②③C .③④D .②解析:由平面向量根本定理可知,①④是正确的;对于②,由平面向量根本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的;对于③,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,这样的λ有无数个.答案:B2.如图,向量BP →=14BA →,假设OP →=xOA →+yOB →,那么x -y =________.解析:因为OP →=OB →+BP →=OB →+14BA →=OB →+14(BO →+OA →)=14OA →+34OB →,所以x =14,y =34.所以x -y =-12.答案:-123.设e 1,e 2是不共线的非零向量,且a =e 1-2e 2,b =e 1+3e 2. (1)证明:a ,b 可以作为一组基底;(2)以a ,b 为基底,求向量c =3e 1-e 2的分解式; (3)假设4e 1-3e 2=λa +μb ,求λ,μ的值.(1)证明:假设a ,b 共线,那么存在λ∈R ,使a =λb , 那么e 1-2e 2=λ(e 1+3e 2).由e 1,e 2不共线得,⎩⎪⎨⎪⎧λ=1,3λ=-2,⇒⎩⎪⎨⎪⎧λ=1,λ=-23. 所以λ不存在,故a 与b 不共线,可以作为一组基底.(2)解:设c =ma +nb (m ,n ∈R),得3e 1-e 2=m (e 1-2e 2)+n (e 1+3e 2)=(m +n )e 1+(-2m +3n )e 2.所以⎩⎪⎨⎪⎧m +n =3,-2m +3n =-1,⇒⎩⎪⎨⎪⎧m =2,n =1.所以c =2a +b .(3)解:由4e 1-3e 2=λa +μb ,得4e 1-3e 2=λ(e 1-2e 2)+μ(e 1+3e 2)=(λ+μ)e 1+(-2λ+3μ)e 2.所以⎩⎪⎨⎪⎧λ+μ=4,-2λ+3μ=-3,⇒⎩⎪⎨⎪⎧λ=3,μ=1.故所求λ,μ的值分别为3和1.。

人教版高中数学必修4(A版) 平面向量基本定理 PPT课件

2.3.1 平面向量基本定理
问题提出
1. 向量加法与减法有哪几种几何运算 法则? 2.怎样理解向量的数乘运算λa?
(1)|λ a|=|λ ||a|; (2)λ >0时,λa与a方向相同;
λ<0时,λa与a方向相反;
λ=0时,λa=0.
3.平面向量共线定理是什么?
非零向量a与向量b共线 存在唯 一实数λ ,使b=λa. 4.如图,光滑斜面上一个木块受到的重 力为G,下滑力为F1,木块对斜面的压 力为F2,这三个力的方向分别如何? 三者有何相互关系?
理论迁移
例1 如图,已知向量e1、e2,求作向 量-2.5e1+3e2.
C e1 e2 3e2 A -2.5e 1 O B
例2 如图,在平行四边形ABCD中, AB =a, AD =b,E、M分别是AD、DC的中 点,点F在BC上,且BC=3BF,以a,b为 基底分别表示向量 AM 和 EF .
若e1、e2是同一平面内的两个不共线向量, 则对于这一平面内的任意向量a,有且只有 一对实数λ1,λ 2,使a=λ1e1+λ2e2.
思考8:上述定理称为平面向量基本定理, 不共线向量e1,e2叫做表示这一平面内所 有向量的一组基底. 那么同一平面内可 以作基底的向量有多少组?不同基底对 应向量a的表示式是否相同?
a
e2 a
a=λ1e1+0e2
a =0 e1 + λ 2 e2
思考7:根据上述分析,平面内任一向 量a都可以由这个平面内两个不共线的 向量e1,e2表示出来,从而可形成一个 定理.你能完整地描述这个定理的内容 吗?
若e1、e2是同一平面内的两个不共线向量, 则对于这一平面内的任意向量a,有且只有 一对实数λ1,λ 2,使a=λ1e1+λ2e2.

人教A版高中数学必修四课件平面向量基本定理

λ>0时,λ与a方向a 相同; λ<0时,λ与方a 向a
• 已知非零向量a,那么在
同一 平面内的任意向量 是否b 可以由向量的线a性
来表示呢?
a
a
相反; λ=0时,λ=. a 0
b
b
⊙[λ疑>0难时解,λ答与,a你方准向a备好给了吗定?]平[面我探内究两☆个我学不习共] 线向
B
a
A 解向量? 2e2
e1
[⊙相疑λ同>难0;解时答,λ,与你a准方备向a好了吗平?]面向[我量理解基☆本我掌定握理]
λ<0时,λ与方a 向a 相反; λ=0时,λ=. a 0

如果e是1,e同2 一平面内的 两个不共线向量,那么
··· ⊙ B a

a
B
A
a
A
C
a
a
a OB OC 3e1 2e2
00 b 1800 b
e e [⊙疑λ>难0解时答,λ,与你a准方备向a好例了吗1?、] 已[我知掌与握1☆是我两运2 用个] 不共线向
相λ<同0时;,λ与方a 向a
相反; λ=0时,λ=. a 0
量,若a实 3数e1满 4足e2,,b求 、2e的1 值5e2 解:由题设可知a ;b 5e1 e2
[你复习了吗?]
2、向量的数乘运算满足哪些运算律呢?
,是实数,
(1)( a) ( )a;
(2)( )a a a;
(3) (a b) a b.
[疑难解答,你准备好了吗?] [我思考☆我收获]
⊙向量 的数乘.记 作λ,a该向量的长 度与方向与向量 关系a是:
A 对意于一这向个量平有面且a内 只 的 有任 一

高中数学第二章平面向量2.3.1平面向量基本定理学案(含解析)新人教A版必修4

2.3.1 平面向量基本定理考试标准学法指导1.平面向量基本定理既是本节的重点,也是本节的难点.2.为了更好地理解平面向量基本定理,可以通过改变向量的方向及模的大小作图观察λ1,λ2取不同值时的图形特征,得到平面上任一向量都可以由这个平面内两个不共线的向量e 1,e 2表示出来.3.在△ABC 中,明确AC →与AB →的夹角与CA →与AB →的夹角互补.1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫作表示这一平面内所有向量的一组基底.状元随笔 平面向量基本定理的理解(1)e →1,e →2是同一平面内的两个不共线的向量,e →1,e →2的选取不唯一,即一个平面可以有多组的基底.(2)平面内的任一向量a →都可以沿基底进行分解. (3)基底e →1,e →2确定后,实数λ1、λ2是唯一确定的. 2.关于两向量的夹角(1)两向量夹角的概念:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ,叫作向量a 与b 的夹角.①范围:向量a 与b 的夹角的范围是[0°,180°]. ②当θ=0°时,a 与b 同向. ③当θ=180°时,a 与b 反向.(2)垂直:如果a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b . 状元随笔 两向量夹角概念的正确理解(1)由于零向量的方向是任意的,因此,零向量可以与任一向量平行,零向量也可以与任一向量垂直.(2)按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC 不是向量CA →与向量AB →的夹角,∠BAD 才是向量CA →与向量AB →的夹角.[小试身手]1.判断下列命题是否正确. (正确的打“√”,错误的打“×”)(1)一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底.( ) (2)若e 1,e 2是同一平面内两个不共线向量,则λ1e 1+λ2e 2(λ1,λ2为实数)可以表示该平面内所有向量.( )(3) 若a e 1+b e 2=c e 1+d e 2(a ,b ,c ,d ∈R ),则a =c ,b =d .( ) 答案:(1)× (2)√ (3)×2.设O 是平行四边形ABCD 两对角线的交点,给出下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →,其中可作为这个平行四边形所在平面的一组基底的是( )A .①②B .①③C .①④ D.③④解析:①AD →与AB →不共线;②DA →=-BC →,则DA →与BC →共线;③CA →与DC →不共线;④OD →=-OB →,则OD →与OB →共线.由平面向量基底的概念知,只有不共线的两个向量才能构成一组基底,故①③满足题意.答案:B3.在△ABC 中,向量AB →,BC →的夹角是指( )A .∠CAB B .∠ABC C .∠BCAD .以上都不是解析:由两向量夹角的定义知,AB →与BC →的夹角应是∠ABC 的补角,故选D. 答案:D4.如图所示,向量OA →可用向量e 1,e 2表示为________.解析:由图可知,OA →=4e 1+3e 2. 答案:OA →=4e 1+3e 2类型一 平面向量基本定理的理解例1 设e 1,e 2是不共线的两个向量,给出下列四组向量: ①e 1与e 1+e 2; ②e 1-2e 2与e 2-2e 1; ③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中,不能作为平面内所有向量的一组基底的是________(写出满足条件的序号).【解析】 ①设e 1+e 2=λe 1,则⎩⎪⎨⎪⎧λ=1,1=0,无解,∴e 1+e 2与e 1不共线,即e 1与e 1+e 2能作为一组基底. ②设e 1-2e 2=λ(e 2-2e 1),则(1+2λ)e 1-(2+λ)e 2=0,则⎩⎪⎨⎪⎧1+2λ=0,2+λ=0,无解,∴e 1-2e 2与e 2-2e 1不共线,即e 1-2e 2与e 2-2e 1能作为一组基底. ③∵e 1-2e 2=-12(4e 2-2e 1),∴e 1-2e 2与4e 2-2e 1共线,即e 1-2e 2与4e 2-2e 1不能作为一组基底.④设e 1+e 2=λ(e 1-e 2),则(1-λ)e 1+(1+λ)e 2=0,则⎩⎪⎨⎪⎧1-λ=0,1+λ=0,无解,∴e 1+e 2与e 1-e 2不共线,即e 1+e 2与e 1-e 2能作为一组基底.【答案】 ③由基底的定义知,平面α内两个不共线的向量e →1、e →2叫做表示这一平面内所有向量的一组基底,要判断所给的两个向量能否构成基底,只要看这两个向量是否共线即可.方法归纳对基底的理解(1)两个向量能否作为一组基底,关键是看这两个向量是否共线.若共线,则不能作基底,反之,则可作基底.(2)一个平面的基底一旦确定,那么平面上任意一个向量都可以由这组基底唯一线性表示出来.设向量a 与b 是平面内两个不共线的向量,若x 1a +y 1b =x 2a +y 2b ,则{ x 1=x 2,y 1=y 2.提醒:一个平面的基底不是唯一的,同一个向量用不同的基底表示,表达式不一样.跟踪训练1 下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底; ②一个平面内有无数多对不共线向量可作为该平面所有向量的基底; ③零向量不可以作为基底中的向量.其中正确的说法是( )A.①② B .②③ C .①③ D .①②③解析:平面内向量的基底是不唯一的,在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;零向量可看成与任何向量平行,故零向量不可以作为基底中的向量,故B 项正确.答案:B平面内任意一对不共线的向量都可以作为该平面内所有向量的基底,一定要注意“不共线”这一条件,在做题时容易忽略此条件而导致错误,同时还要注意零向量不能作基底.类型二 用基底表示平面向量例2 如图所示,在▱ABCD 中,点E ,F 分别为BC ,DC 边上的中点,DE 与BF 交于点G ,若AB →=a ,AD →=b ,试用a ,b 表示向量DE →,BF →.【解析】 DE →=DA →+AB →+BE →=-AD →+AB →+12BC →=-AD →+AB →+12AD →=a -12b .BF →=BA →+AD →+DF →=-AB →+AD →+12AB →=b -12a .解决此类问题的关键在于以一组不共线的向量为基底,通过向量的加、减、数乘以及向量共线的结论,把其他相关的向量用这一组基底表示出来.方法归纳用基底表示向量的两种方法(1)运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止. (2)通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解.跟踪训练2 (1)本例条件不变,试用基底a ,b 表示AG →;(2)若本例中的基向量“AB →,AD →”换为“CE →,CF →”即若CE →=a ,CF →=b ,试用a ,b 表示向量DE →,BF →.解析:(1)由平面几何知识知BG =23BF ,故AG →=AB →+BG →=AB →+23BF →=a +23⎝ ⎛⎭⎪⎫b -12a =a +23b-13a =23a +23b . (2)DE →=DC →+CE →=2FC →+CE →=-2CF →+CE →=-2b +a . BF →=BC →+CF →=2EC →+CF →=-2CE →+CF →=-2a +b .用基底表示平面向量,要充分利用向量加法、减法的三角形法则或平行四边形法则. 类型三 向量的夹角例3 已知|a |=|b |,且a 与b 的夹角为120°,求a +b 与a 的夹角及a -b 与a 的夹角.【解析】 如图,作OA →=a ,OB →=b ,∠AOB =120°,以OA →,OB →为邻边作平行四边形OACB ,则OC →=a +b ,BA →=a -b .因为|a |=|b |,所以平行四边形OACB 为菱形. 所以OC →与OA →的夹角∠AOC =60°,BA →与OA →的夹角即为BA →与BC →的夹角∠ABC =30°.所以a +b 与a 的夹角为60°,a -b 与a 的夹角为30°.作图,由图中找到a →-b →与a →的夹角,利用三角形、四边形的知识求角. 方法归纳两个向量夹角的实质及求解的关键(1)实质:两个向量的夹角,实质上是从同一起点出发的两个非零向量构成的角. (2)关键:求两个向量的夹角,关键是利用平移的方法使两个向量的起点重合,然后按照“一作二证三算”的步骤,并结合平面几何知识求出两个向量的夹角.跟踪训练3 已知|a |=|b |=2,且a 与b 的夹角为60°,求a +b 与a 的夹角,a -b 与a 的夹角.解析:如图,作OA →=a ,OB →=b ,且∠AOB =60°,以OA ,OB 为邻边作▱OACB , 则OC →=OA →+OB →=a +b ,BA →=OA →-OB →=a -b ,BC →=OA →=a . 因为|a |=|b |=2,所以△OAB 为正三角形. 所以∠OAB =60°=∠ABC . 即a -b 与a 的夹角为60°. 因为|a |=|b |,所以▱OACB 为菱形.所以OC ⊥AB ,所以∠COA =90°-60°=30°. 即a +b 与a 的夹角为30°.作出向量a →,b →,a →+b →,a →-b →,利用平面几何知识求解. 2.3.1[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.已知向量a =e 1-2e 2,b =2e 1+e 2,其中e 1,e 2不共线,则a +b 与c =6e 1-2e 2的关系是( )A .不共线B .共线C .相等D .不确定 解析:∵a +b =3e 1-e 2,∴c =2(a +b ).∴a +b 与c 共线. 答案:B2.当向量a 与b 共线时,则这两个向量的夹角θ为( ) A .0° B.90°C .180°D .0°或180°解析:当向量a 与b 共线,即两向量同向时夹角θ=0°,反向时夹角θ=180°. 答案:D3.已知AD 是△ABC 的中线,AB →=a ,AD →=b ,以a ,b 为基底表示AC →,则AC →=( ) A.12(a -b ) B .2b -a C.12(b -a ) D .2b +a解析:如图,AD 是△ABC 的中线,则D 为线段BC 的中点,从而AD →=12(AB →+AC →),则AC →=2AD →-AB →=2b -a .答案:B4.在正方形ABCD 中,AC →与CD →的夹角等于( ) A .45° B.90° C .120° D.135° 解析:如图所示,将AC →平移到CE →,则CE →与CD →的夹角即为AC →与CD →的夹角,夹角为135°. 答案:D5.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为( )55C.85D.45解析:∵CD →=4DB →=rAB →+sAC →, ∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45.∴3r +s =125-45=85.答案:C二、填空题(每小题5分,共15分)6.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为________.解析:因为a ,b 是一组基底,所以a 与b 不共线, 因为(3x -4y )a +(2x -3y )b =6a +3b ,所以⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,所以x -y =3.答案:37.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,若OA →=a ,OB →=b ,用a ,b 表示向量OC →,则OC →=________.解析:AC →=OC →-OA →,CB →=OB →-OC →,∵2AC →+CB →=0,∴2(OC →-OA →)+(OB →-OC →)=0,∴OC →=2OA →-OB →=2a -b .答案:2a -b8.在正方形ABCD 中,E 是DC 边上的中点,且AB →=a ,AD →=b ,则BE →=________.解析:BE →=BC →+CE →=AD →-12AB →=b -12a .2三、解答题(每小题10分,共20分)9.已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,试用向量a 和b 表示c .解析:因为a ,b 不共线,所以可设c =x a +y b , 则x a +y b =x (3e 1-2e 2)+y (-2e 1+e 2) =(3x -2y )e 1+(-2x +y )e 2=7e 1-4e 2. 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧3x -2y =7,-2x +y =-4,解得⎩⎪⎨⎪⎧x =1,y =-2,所以c =a -2b .10.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB→=a ,AC →=b ,试用a ,b 将MN →、NP →、PM →表示出来.解析:NP →=AP →-AN →=13AB →-23AC →=13a -23b ,MN →=CN →-CM →=-13AC →-23CB →=-13b -23(a -b )=-23a +13b ,PM →=-MP →=-(MN →+NP →)=13(a +b ).[能力提升](20分钟,40分)11.设非零向量a ,b ,c 满足|a |=|b |=|c |,a +b =c ,则向量a ,b 的夹角为( ) A .150° B.120° C .60° D.30°解析:设向量a ,b 的夹角为θ,作BC →=a ,CA →=b ,则c =a +b =BA →(图略),a ,b 的夹角为180°-∠C .∵|a |=|b |=|c |,∴∠C =60°,∴θ=120°.答案:B 12.如图,在△ABC 中,已知AB =2,BC =3,∠ABC =60°,AH ⊥BC 于H ,M 为AH 的中点,若AM →=λAB →+μBC →,则λ+μ=________.解析:因为AB =2,∠ABC =60°,AH ⊥BC ,所以BH =1,又M 为AH 的中点,BC =3,所以AM →=12AH →=12(AB →+BH →)=12(AB →+13BC →)=12AB →+16BC →,所以λ+μ=23. 答案:2313.如图,在△OAB 中,OC →=14OA →,OD →=12OB →,AD 与BC 交于点M ,设OA →=a ,OB →=b ,试以a ,b 为基底表示OM →.解析:根据平面向量基本定理可设OM →=m a +n b (m ,n ∈R ),则AM →=OM →-OA →=(m -1)a +n b ,AD →=OD →-OA →=12b -a =-a +12b , ∵A 、M 、D 三点共线,∴AM →=λAD →(λ为实数),∴AM →=-λa +λ2b , ∴⎩⎪⎨⎪⎧ m -1=-λ,n =12λ,消去λ得m +2n =1.而CM →=OM →-OC →=⎝ ⎛⎭⎪⎫m -14a +n b ,CB →=OB →-OC →=b -14a =-14a +b , ∵C 、M 、B 三点共线,∴CM →=μCB →(μ为实数),∴CM →=-μ4a +μb ,∴⎩⎪⎨⎪⎧ m -14=-14μ,n =μ,消去μ得4m +n =1.由⎩⎪⎨⎪⎧ m +2n =1,4m +n =1解得⎩⎪⎨⎪⎧ m =17,n =37,∴OM →=17a +37b . 14.在△ABC 中,AB =3,BC =1,AC =2,D 是AC 的中点.求:(1)AD →与BD →夹角的大小;(2)DC →与BD →夹角的大小.解析:(1)如图所示,在△ABC 中,AB =3,BC =1,AC =2,所以AB 2+BC 2=(3)2+1=22=AC 2,所以△ABC 为直角三角形.因为tan A =BC AB =13=33, 所以A =30°.又因为D 为AC 的中点,所以∠ABD =∠A =30°,AD →=DC →.在△ABD 中,∠BDA =180°-∠A -∠ABD =180°-30°-30°=120°,所以AD →与BD →的夹角为120°.(2)因为AD →=DC →,所以DC →与BD →的夹角也为120°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时跟踪检测(十九) 平面向量基本定理
层级一 学业水平达标
1.已知▱ABCD 中∠DAB =30°,则AD 与CD 的夹角为( ) A .30° B .60° C .120°
D .150°
解析:选D 如图,AD 与CD 的夹角为∠ABC =150°.
2.设点O 是▱ABCD 两对角线的交点,下列的向量组中可作为这个平行四边形所在平面上表示其他所有向量的基底的是( )
①AD 与AB ;②DA 与BC ;③CA 与DC ;④OD 与OB . A .①② B .①③ C .①④
D .③④
解析:选B 寻找不共线的向量组即可,在▱ABCD 中,AD 与AB 不共线,CA 与DC 不共线;而DA ∥BC ,OD ∥OB ,故①③可作为基底.
3.若AD 是△ABC 的中线,已知AB =a ,AC =b ,则以a ,b 为基底表示AD =( ) A .1
2(a -b ) B .1
2(a +b ) C .1
2
(b -a ) D .1
2
b +a 解析:选B 如图,AD 是△ABC 的中线,则D 为线段BC 的中点,从
而BD =DC ,即AD -AB =AC -AD ,从而AD =1
2(AB +AC )
=1
2
(a +b ). 4.在矩形ABCD 中,O 是对角线的交点,若BC =e 1,DC =e 2,则OC =( ) A .1
2(e 1+e 2) B .1
2(e 1-e 2) C .1
2
(2e 2-e 1) D .1
2
(e 2-e 1) 解析:选A 因为O 是矩形ABCD 对角线的交点,BC =e 1,DC =e 2,所以OC =1
2(BC
+DC )=1
2
(e 1+e 2),故选A.
5.(全国Ⅰ卷)设D 为△ABC 所在平面内一点,BC =3CD ,则( ) A .AD =-13AB +4
3AC
B .AD =13AB -4
3AC
C .A
D =43AB +1
3AC
D .AD =43AB -1
3
AC
解析:选A 由题意得AD =AC +CD =AC +13BC =AC +13AC -13AB =-
1
3
AB +43
AC .
6.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为______.
解析:∵a ,b 是一组基底,∴a 与b 不共线, ∵(3x -4y )a +(2x -3y )b =6a +3b ,
∴⎩⎪⎨⎪

3x -4y =6,2x -3y =3,
解得⎩⎪⎨


x =6,y =3,
∴x -y =3.
答案:3
7.已知e 1,e 2是两个不共线向量,a =k 2
e 1+⎝
⎛⎭⎪⎫1-5k 2e 2与b =2e 1+3e 2共线,则实数k
=______.
解析:由题设,知k 22=1-
5k
23,∴3k 2
+5k -2=0,
解得k =-2或1
3.
答案:-2或1
3
8.如下图,在正方形ABCD 中,设AB =a ,AD =b ,BD =c ,则在以a ,b 为基底时,AC 可表示为______,在以a ,c 为基底时,AC 可表示为______.
解析:以a ,c 为基底时,将BD 平移,使B 与A 重合,再由三角形法则或平行四边形
法则即得.
答案:a +b 2a +c
9.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM =1
3
BC ,
CN =1
3CA ,AP =13
AB ,若AB =a ,AC =b ,试用a ,b 将MN ,
NP ,PM 表示出来.
解:NP =AP -AN =13AB -23AC =13a -23
b , MN =CN -CM =-13AC -23CB =-13b -23(a -b )=-23a +13
b , PM =-MP =-(MN +NP )=1
3
(a +b ).
10.证明:三角形的三条中线共点.
证明:如图所示,设AD ,BE ,CF 分别为△ABC 的三条中线,令AB
=a ,AC =b .则有BC =b -a .
设G 在AD 上,且AG AD =23,则有AD =AB +BD =a +1
2
(b -a )=
1
2
(a +b ). BE =AE -AB =12
b -a .
∴BG =AG -AB =2
3AD -AB
=13(a +b )-a =13b -23a =23⎝ ⎛⎭⎪⎫12b -a =2
3
BE . ∴G 在BE 上,同理可证CG =2
3CF ,即G 在CF 上.
故AD ,BE ,CF 三线交于同一点.
层级二 应试能力达标
1.在△ABC 中,点D 在BC 边上,且BD =2DC ,设AB =a ,AC =b ,则AD 可用基底a ,b 表示为( )
A .1
2(a +b ) B .23a +1
3b C .13a +23
b D .1
3
(a +b )。

相关文档
最新文档