空间向量及其坐标的运算(精讲) 讲义
空间向量及其运算讲义

空间向量及其运算讲义一、知识梳理1.空间向量的有关概念2.(1)共线向量定理空间两个向量a 与b (b ≠0)共线的充要条件是存在实数λ,使得a =λb . (2)共面向量定理共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量. (3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉.(2)空间向量数量积的运算律 ①(λa )·b =λ(a ·b ); ②交换律:a ·b =b ·a ; ③分配律:a ·(b +c )=a ·b +a ·c . 4.空间向量的坐标表示及其应用设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示 坐标表示 数量积 a·ba 1b 1+a 2b 2+a 3b 3 共线 a =λb (b ≠0,λ∈R ) a 1=λb 1,a 2=λb 2,a 3=λb 3 垂直 a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模 |a |a 21+a 22+a 23夹角〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23注意:1.向量三点共线定理在平面中A ,B ,C 三点共线的充要条件是:OA →=xOB →+yOC →(其中x +y =1),O 为平面内任意一点. 2.向量四点共面定理在空间中P ,A ,B ,C 四点共面的充要条件是:OP →=xOA →+yOB →+zOC →(其中x +y +z =1),O 为空间中任意一点.二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)空间中任意两个非零向量a ,b 共面.( ) (2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( ) (3)对于非零向量b ,由a ·b =b ·c ,则a =c .( )(4)两向量夹角的范围与两异面直线所成角的范围相同.( )(5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.( ) (6)若a·b <0,则〈a ,b 〉是钝角.( ) 题组二:教材改编2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( )A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c3.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________. 题组三:易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( ) A .垂直 B .平行C .异面D .相交但不垂直5.与向量(-3,-4,5)共线的单位向量是__________________________________.6.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C 四点共面,则实数t =______.三、典型例题题型一:空间向量的线性运算1.如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=______.2.如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于( )A.12(-a +b +c ) B.12(a +b -c ) C.12(a -b +c ) D.12(-a -b +c ) 思维升华:用已知向量表示某一向量的方法用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量.在立体几何中三角形法则、平行四边形法则仍然成立. 题型二:共线定理、共面定理的应用典例:如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面? (2)直线MN 是否与平面ABB 1A 1平行?思维升华:(1)证明空间三点P ,A ,B 共线的方法 ①P A →=λPB →(λ∈R );②对空间任一点O ,OP →=OA →+tAB →(t ∈R ); ③对空间任一点O ,OP →=xOA →+yOB →(x +y =1). (2)证明空间四点P ,M ,A ,B 共面的方法 ①MP →=xMA →+yMB →;②对空间任一点O ,OP →=OM →+xMA →+yMB →;③对空间任一点O ,OP →=xOM →+yOA →+zOB →(x +y +z =1); ④PM →∥AB →(或P A →∥MB →或PB →∥AM →).跟踪训练 如图,在四棱柱ABCD —A 1B 1C 1D 1中,底面ABCD 是平行四边形,E ,F ,G 分别是A 1D 1,D 1D ,D 1C 1的中点.(1)试用向量AB →,AD →,AA 1→表示AG →; (2)用向量方法证明平面EFG ∥平面AB 1C . 题型三:空间向量数量积的应用典例 如图,已知平行六面体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为1的正方形,AA 1=2,∠A 1AB =∠A 1AD =120°.(1)求线段AC 1的长;(2)求异面直线AC 1与A 1D 所成角的余弦值; (3)求证:AA 1⊥BD .思维升华:(1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角. (3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练 如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值. 注意:坐标法在立体几何中的应用典例 (12分)如图,已知直三棱柱ABC -A 1B 1C 1,在底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是A 1B 1,A 1A 的中点.(1)求BN →的模;(2)求cos 〈BA 1→,CB 1→〉的值; (3)求证:A 1B ⊥C 1M .四、反馈练习1.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c . 其中正确命题的个数是( )A .0B .1C .2D .32.已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于( ) A.32 B .-2 C .0D.32或-2 3.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( ) A .l ∥α B .l ⊥α C .l ⊂αD .l 与α斜交4.已知a =(1,0,1),b =(x,1,2),且a·b =3,则向量a 与b 的夹角为( ) A.5π6 B.2π3 C.π3D.π65.已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a ,b ,c 三向量共面,则λ等于( ) A .9 B .-9 C .-3 D .36.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )A. 3B. 2 C .1 D.3-27.已知2a +b =(0,-5,10),c =(1,-2,-2),a·c =4,|b |=12,则以b ,c 为方向向量的两直线的夹角为________.8.如图所示,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x ,y ,z 的值分别为______.9.A ,B ,C ,D 是空间不共面四点,且AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,则△BCD 的形状是________三角形.(填锐角、直角、钝角中的一个) 10.已知ABCD -A 1B 1C 1D 1为正方体, ①(A 1A →+A 1D 1—→+A 1B 1—→)2=3A 1B 1—→2; ②A 1C →·(A 1B 1—→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|. 其中正确的序号是________.11.已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)若|c |=3,且c ∥BC →,求向量c ; (2)求向量a 与向量b 的夹角的余弦值.12.如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1)EF →·BA →; (2)EG 的长;(3)异面直线AG 与CE 所成角的余弦值.13.在空间四边形ABCD 中,AB →·CD →+AC →·DB →+AD →·BC →等于( ) A .-1 B .0 C .1D .不确定14.若{a ,b ,c }是空间的一个基底,且向量p =x a +y b +z c ,则(x ,y ,z )叫向量p 在基底{a ,b ,c }下的坐标,已知{a ,b ,c }是空间的一个基底,{a +b ,a -b ,c }是空间的另一个基底,一向量p 在基底{a ,b ,c }下的坐标为(4,2,3),则向量p 在基底{a +b ,a -b ,c }下的坐标是( ) A .(4,0,3) B .(3,1,3) C .(1,2,3)D .(2,1,3)15.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB →>0,则该四边形为( ) A .平行四边形 B .梯形 C .长方形D .空间四边形16.已知O 点为空间直角坐标系的原点,向量OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),且点Q 在直线OP 上运动,当QA →·QB →取得最小值时,OQ →的坐标是____________.。
2024年高考数学一轮总复习讲义 第五讲 空间向量及其运算

直线 l⊥平面α,取直线 l 的方向向量,则这个向量叫做平面α的法向量.显
然一个平面的法向量有 无数 个,它们是共线向量.
知识点四 空间位置关系的向量表示
位置关系
向量表示
直线 l1,l2 的方向向量分别为 n1,n2
l1∥l2 l1⊥l2
n1∥n2⇒n1=λn2 n1⊥n2⇔n1·n2=0
l∥α 直线 l 的方向向量为 n,平面α的法向量为 m
空 间 两 点 P1(x1 , y1 , z1) 、 P2(x2 , y2 , z2) 之 间 的 距 离 为 |P1P2| =
x1-x22+y1-y22+z1-z22.
知识点三 两个重要的向量
1.直线的方向向量
直线的方向向量是指和这条直线平行(或重合)的非零向量,一条直线的方向
向量有 无数 个.
2.平面的法向量
l⊥α
n⊥m⇔m·n=0 n∥m⇔n=λm
平面α、β的法向量分别为 n、m
α∥β α⊥β
n∥m⇔n=λm n⊥m⇔n·m=0
归纳拓展
1.向量三点共线定理
在平面中 A,B,C 三点共线的充要条件是:O→A=xO→B+yO→C(其中 x+y=1),
O 为平面内任意一点.
2.向量四点共面定理
在空间中 P,A,B,C 四点共面的充要条件是:O→P=xO→A+yO→B+zO→C(其中
连接 AQ 并延长交 BC 于 H,
则P→Q=P→A+2A→H 3
=P→A+2(P→H-P→A)=1P→A+2P→H
3
33
=1P→A+2×1(P→B+P→C) 3 32
=1P→A+1P→B+1P→C,B 正确; 33 3
因为四面体 P-ABC 各棱长都相等,则|P→B|=|A→B|=|B→C|,∠PBA=∠PBC=
《3.1 空间向量及其运算》 讲义

《3.1 空间向量及其运算》讲义《31 空间向量及其运算》讲义一、空间向量的概念在空间中,具有大小和方向的量称为空间向量。
与平面向量类似,空间向量也用有向线段来表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向。
空间向量的表示方法通常有两种:一种是用有向线段来表示,另一种是用字母表示,如向量\(\overrightarrow{a}\)。
为了研究方便,我们规定了空间向量的零向量和单位向量。
零向量的长度为 0,方向任意;单位向量是长度为 1 的向量。
二、空间向量的加减法1、空间向量的加法空间向量的加法满足三角形法则和平行四边形法则。
三角形法则:已知向量\(\overrightarrow{a}\),\(\overrightarrow{b}\),在空间中任取一点\(O\),作\(\overrightarrow{OA}=\overrightarrow{a}\),\(\overrightarrow{AB}=\overrightarrow{b}\),则向量\(\overrightarrow{OB}=\overrightarrow{a}+\overrightarrow{b}\)。
平行四边形法则:已知向量\(\overrightarrow{a}\),\(\overrightarrow{b}\),在空间中任取一点\(O\),作\(\overrightarrow{OA}=\overrightarrow{a}\),\(\overrightarrow{OB}=\overrightarrow{b}\),以\(\overrightarrow{OA}\),\(\overrightarrow{OB}\)为邻边作平行四边形\(OACB\),则对角线\(\overrightarrow{OC}=\overrightarrow{a}+\overrightarrow{b}\)。
空间向量的加法满足交换律和结合律,即\(\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{b}+\overrightarrow{a}\),\((\overrightarrow{a}+\overrightarrow{b})+\overrightarrow{c}=\overrightarrow{a}+(\overrightarrow{b}+\overrightarrow{c})\)。
1.1空间向量及运算新课讲义-2021-2022高一下学期数学人教B版(2019)选择性必修一

12(AB x =一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
11(x ,y ,z a =22(x ,y b =,则12112(x ,y )a b x z +=++,12112(x ,y )a b x z -=--,111(,,)a x y z R λλλλ=,12a b x x y ⋅=+12//x a b x ⇔=12a b x x ⊥⇔+211||x a y =+222|x b y =++夹角公式:21cos ||||x a ba b a b ⋅⋅==⋅+(3)两点间的距离公式:若111(,,)A x y z ,222121|()()()AB x y y z z =+-+-空间向量的共面定理(1)ABCD ,(OD xOA yOB zOC x y =+++(2)a b c ,,向量共面:a xb yc =+2典例解析考点一:概念的判断例1.若空间向量a 与b 不相等,则与a ,b 一定( )A .有不同的方向B .有不相等的模C .不可能是平行向量D .不可能都是零向量 变式1:下列命题中,不正确的命题的个数是( )①空间向量任意五边形ABCDE ,则0;AB BC CD DE EA ++++=②若//,a b a 则所在的直线与b 所在的直线平行;③空间任意两非零向量a ,b 共面;④空间向量a 平行于平面α,则a 所在的直线平行于平面α.A.1B.2C.3D.4变式2 给出下列命题:①零向量没有方向;②若两个空间向量相等,则它们的起点相同,终点也相同;③若空间向量,a b 满足||||a b =,则a b =;④若空间向量 ,,m n p 满足,m n n p ==,则m p =;⑤空间中任意两个单位向量必相等.其中正确命题的个数为( )A.4B.3C.2D.1考点二:空间向量的线性运算例2.如图在长方体1111D C B A ABCD -中,O 为AC 中点。
高二数学空间向量的坐标运算知识精讲

高二数学空间向量的坐标运算【本讲主要内容】空间向量的坐标运算空间直角坐标系,空间向量的坐标表示,空间向量的坐标运算,空间向量平行,垂直的坐标表示形式。
【知识掌握】 【知识点精析】1. 空间直角坐标系(1)单位正交基底,空间直角坐标系,右手直角坐标系(2)坐标:在空间直角坐标系O-xyz 中,对空间任一点A ,对应一个向量OA →,于是存在唯一的有序实数组x 、y 、z ,使OA xi yj zk =++,则实数组(x ,y ,z )叫做点A 在此空间直角坐标系中的坐标。
2. 向量的直角坐标运算设a a a ab b b b ==()()123123,,,,,则a b a b a b a b +=+++()112233,,a b a b a b a b -=---()112233,,a b a b a b a b ⋅=++112233a b a b a b a b R //⇔===∈112233λλλλ,,,或a b a b a b 112233==a b a b a b a b ⊥⇔++=11223303. 夹角和距离公式(1)夹角公式:设a a a ab b b b ==()()123123,,,,,则cos <>=++++⋅++a b a b a b a b a a a b b b ,112233122232122232(2)距离公式:设A x y z B x y z ()()111222,,,,, 则d x x y y z z AB =-+-+-()()()122122122(3)平面的法向量:如果表示向量a 的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作a ⊥α。
如果 a ⊥α,那么向量a 叫做平面α的法向量。
【解题方法指导】1. 在证明线线平行时,利用a b a b //⇔=λ即()()a a a b b b 123123,,,,=λλλ,在证明线面平行或面面平行时,需转化为线线平行问题。
空间向量的坐标和运算

空间向量的坐标和运算一、空间向量的坐标和运算1.空间直角坐标系在单位正方体$oabc$-$d$′$a$′$b$′$c$′中,以$o$点为原点,分别以射线$oa$,$oc$,$od$′的方向为正方向,以线段$oa$,$oc$,$od$′的长为单位长,建立三条数轴:$x$轴、$y$轴、$z$轴。
这时我们说建立了一个空间直角坐标系$oxyz$,其中点$o$叫做坐标原点,$x$轴、$y$轴、$z$轴叫做坐标轴。
通过每两个坐标轴的平面叫做坐标平面,分别称为$xoy$平面、$yoz$平面、$xoz$平面。
2.空间矢量的坐标一个向量在空间直角坐标系中的坐标等于表示向量的有向线段的终点坐标减去起点坐标。
如果$a(x_1,y_1,z_1)$,$B(x_2,y_2,z_2)$,那么$\overrightarrow{AB}=\overrightarrow{ob}-\overrightarrow{OA}$=$(x_2-x_1$,$y_2-y_1$,$z_2-z_1)$。
3、空间向量的坐标运算设置$\boldsymbol(x_1,y_1,z_1)$,$\boldsymbol B(x_2,y_2,z_2)$,然后(1)$\boldsymbola+\boldsymbolb$=$(x_1+x_2,y_1+y_2,z_1+z_2)$。
(2) $\boldsymbola-\boldsymbolb$=$(x_1-x_2,y_1-y_2,z_1-z_2)$(3)$\boldsymbola·\boldsymbolb$=$x_1x_2+y_1y_2+z_1z_2$。
(4) $|\boldsymbola |=\sqrt{x^2_1+y^2_1+z^2_1}$(5)$λ\boldsymbola=(λx_1,λy_1,λz_1)$。
4.平行(共线)和垂直空间向量的充要条件设非零向量$\boldsymbola(x_1,y_1,z_1)$,$\boldsymbolb(x_2,y_2,z_2)$,则$\boldsymbola∥\boldsymbolb\leftrightarrow\frac{x_1}{x_2}=\frac{y_1}{y_2}=\frac{z_1}{z_2}=λ(λ∈\mathbf{r})$$\boldsymbola⊥\boldsymbolb\leftrightarrow\boldsymbola·\boldsymbolb=0\leftrig htarrow$$x_1x_2+y_1y_2+z_1z_2=0$。
空间向量的坐标运算
3.1 空间向量及其运算3.1.3 空间向量的正交分解及其坐标表示【基础知识在线】知识点一 空间向量基本定理★★★考点: 寻找合适的基底来表示题目中的向量 知识点二 单位正交基底★★★ 考点: 用坐标表示向量知识点三 空间直角坐标系★★★★ 考点: 选择合适的位置建系知识点四 空间向量的坐标表示★★★★★ 考点: 能在坐标系下用坐标表示空间向量 能够进行坐标运算【解密重点·难点·疑点】 问题一:空间向量基本定理若三个向量a ,b ,c 不共面,则对空间任一向量p ,存在实数组{},,x y z ,使得p xa yb zc =++.若三个向量a ,b ,c 不共面,则所有空间向量组成的集合是{},,,p p xa yb zc x y z R =++∈.这个集合可看作是由向量a ,b ,c 生成的,{},,a b c 称为空间的一个基底,a ,b ,c 称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底.推论:设C B A O ,,,是不共面的四点,则对空间任一点P ,都存在唯一的一个有序实数组(z y x ,,},使OC z OB y OA x OP ++=.注意:(1) 由定理可知,作为基底的三个向量不共面,因此,基底中不存在零向量. (2)一个基底是一组向量,一个基向量是说基底中的某一向量.(3)空间中三个向量只要不共面,即可作为基底,即空间中的基底是不唯一的;当选定一组基底后,空间中任一向量的表示却是唯一的.问题二:空间直角坐标系的建立和坐标表示空间直角坐标系的建立:在空间选定一点O 和一个单位正交基底{i ,j ,k },如图,以点O 为原点,分别以i ,j ,k 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫做坐标轴.O —x y z 为空间直角坐标系,O 为坐标原点,向量i ,j ,k 为单位坐标向量,通过每两个坐标轴的平面叫做坐标平面.设1e ,2e ,3e 为有公共起点O 的三个两两垂直的单位向量(称它们为单位正交基底),以1e ,2e ,3e 的公共起点O 为原点,分别以1e ,2e ,3e 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系xyz O .则对于空间任意一个向量p ,一定可以把它平移,使它的起点与原点O 重合,得到向量p OP =.存在有序实数组{},,x y z ,使得123p xe ye ze =++.把x ,y ,z 称作向量p 在单位正交基底1e ,2e ,3e 下的坐标,记作(),,p x y z =.此时,向量p 的坐标是点P 在空间直角坐标系xyz O 中的坐标(),,x y z .在空间直角坐标系中,坐标平面xOy 上的点的竖坐标为0;坐标平面xOz 上的点的纵坐标为0;坐标平面yOz 上点的横坐标为0.x 轴上的点纵坐标、竖坐标为0,y 轴上的点横坐标、竖坐标为0,z 轴上的点横坐标、竖坐标为0.注意:(1)空间直角坐标系的建立,必须寻求两两垂直且交于一点的直线.(2)表示坐标的三个数据的位置是不能改变的.如若顺序变了,则对应的向量也随之改变.【点拨思维·方法技巧】 一.基底的概念例1已知向量{}c b a ,,是空间的一个基底,那么向量,,-+能构成空间的一个基底吗?为什么?【思维分析】解答该题适用反证法.假设不能构成基底,则共面,利用共面基本定理推出矛盾,从而假设不成立.【解析】 能构成空间一个基底.图3-1-28假设,,-+共面,则存在y x ,,使()()y x -++=,()()y x y x -++=∴.从而由共面向量定理知,c 与b a ,共面. 这与向量{},,是空间的一个基底矛盾. ∴c b a b a ,,-+不共面.【评析】 判断三个向量能否作为基底,关键是正确理解概念,只有空间中三个向量不共面才能构成空间向量的一个基底,常用反证法.变式训练1.有以下命题:①如果向量b a ,与任何向量不能构成空间向量的一组基底,那么,a b 的关系是不共线;②,,,O A B C 为空间四点,且向量,,OA OB OC 不构成空间的一个基底,那么点,,,O A B C 一定共面;③已知向量,,a b c 是空间的一个基底,则向量,,a b a b c +-,也是空间的一个基底.其中正确的命题是( ).A.①②B.①③C.②③D.①②③ 答案:C.【解析】对于①“如果向量,与任何向量不能构成空间向量的一组基底,那么,的关系一定共线”;所以①错误.②③正确二.用基底表示向量例2如图,在三棱柱111C B A ABC -中,设===,,1,M 是B A 1的中点,点N 在CM 上,且4:1:=CM CN ,试用基底},,{表示N C 1.【思维分析】结合图形,利用空间向量的加减和数乘运算,把相关的向量均用基底表示. [解析]M 是B A 1的中点,点N 在CM 上,且4:1:=CM CN ,图3-1-29∴)(21)(21)(11AA BA b c BA AB CA BM CB CM +++-=++=+= .2121)(21c b a a b b c -+=+-++-=418187)2121(4141111-+-=+-+-=+=+=∴A C C .c【评析】(1)空间中的一组基底可以表示任意的向量,在选定的基底下,某一向量的表达形式是唯一的.(2)注意结合图形,灵活应用向量的基本运算和三角形、平行四边形法则. (3)用基底表示向量要彻底,不可在有其他向量,只含基底中的向量. 变式训练2.在平行六面体1111D C B A ABCD -中,=a ,=b ,1=c ,P 是1CA 的中点,M 是1CD 的中点,N 是11D C 的中点,点Q 在1CA 上,且1:4:1=QA CQ用基底{、、}表示以下向量:(1),(2),(3).[解析](1)()()c b a AD AB AA AC AA AP ++=++=+=21)(212111; (2)C D AA D D A AA ++=++=++=21211111111; (3))(51511111AA A A AA -+=+=+= AA 545151515151)(511++=-++=-++=三.求点和向量的坐标例3如下图,正方体1111D C B A ABCD -的棱长为2,试建立适当的空间直角坐标系,写出正方体各顶点的坐标.图3-1-30【思维分析】分别以 AB 、AD 、AA 1为x,y,z 轴建立空间直角坐标系,找出各顶点到x,y,z 轴的距离.[解析]分别以 A B 、AD 、AA 1为x,y,z 轴建立空间直角坐标系,找出各顶点到x,y,z 轴的距离,这个距离恰是正方体的棱长,所以各顶点的坐标是:A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),A 1(0,0,2),B 1(2,02,)C 1(2,2,2),D 1(0,2,2).【评析】(1)建立空间直角坐标系的关键是根据几何图形的特征,尽量寻找三条互相垂直且交于一点的直线,如果找不到,要想办法构造.(2)找出各点在坐标轴上的射影,便于得到该点的坐标,但要注意符号. 变式训练3.已知PA 垂直于正方形ABCD 所在的平面,M 、N 分别是AB ,PC 的三等分点且PN =2NC ,AM =2MB ,PA =AB =1,求 MN 的坐标.[解析] ∵PA=AB=AD=1,且PA 垂直于平面ABCD ,AD ⊥AB , ∴可设 ,,,=== 建立如图所示的空间直角坐标系. ∵MN =MA →+AP →+PN =-23 AB +AP →+23PC →图3-1-31图3-1-32=-23AB +AP →+23(-AP →+AD →+AB )=13AP +23AD → 3132+= .31,0,32⎪⎭⎫⎝⎛=∴【课后习题答案】 练习(第94页)1.答案:向量c 一定可以与q p ,一起构成空间的另一个基底. 解析:-=+=, 与,共面,只有c 不与,共面.2. 答案:点,,,O A B C 四点共面.解析:,, 不构成空间的一个基底,,,∴共面,C B A O ,,,∴四点共面.3.(1)答案:C B B O +-='-='++=',,; 解析: (2)答案:1122OG a b c =++ 解析:()B B 212121++='++=+=.【自主探究提升】夯实基础1.若向量{},,是空间的一个基底,则下列各组中不能构成空间一个基底的是( ) A.3,2, B.+++,, C.93,32,2-++ D.,,++ 答案:C.提示:在C 选项中()(),3232393c b b a c a +-+=-由共面定理知,此三个向量共面. 2.以下四个命题中正确的是( )A .空间的任何一个向量都可用其它三个向量表示B .若{}c b a ,,为空间向量的一组基底,则c b a ,,全不是零向量 C .△ABC 为直角三角形的充要条件是0=⋅AC ABD .任何三个不共线的向量都可构成空间向量的一个基底 答案 B提示: 使用排除法.因为空间中的任何一个向量都可用其他三个不共面的向量来表示,故A 不正确;△ABC 为直角三角形并不一定是0=⋅AC AB ,可能是0=⋅BA BC ,也可能是0=⋅CB CA ,故C 不正确;空间向量基底是由三个不共面的向量组成的,故D 不正确,故选B.3.已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别是对边OA 、BC 的中点,点G在线段MN 上,且2=,现用基组{},,表示向量,有=x z y ++,则= .答案 :313161++.提示:313161]21)(21[3221)(32213221++=-++=-+=+=+= 4. 设O-ABC 是四面体,1G 是ABC ∆的重心,G 是1OG 上的一点,且13GG OG =,若OG =xOA →+yOB →+zOC →,则()z y x ,,为( ) A .(14,14,14) B .(34,34,34)C .(13,13,13)D .(23,23,23)答案 A 提示:()114343AG OG +==()()()[]-+-+=⎥⎦⎤⎢⎣⎡+⨯+=414321324343OC OB OA 414141++=.=14OA →+14OB →+14OC →.故选A. 5.在平行六面体1111D C B A ABCD -中,设===1,,,F E ,分别是BD AD ,1的中点.(1)用向量 c b a ,,,表示1,D B EF;(2)若c z b y a x F D ++=1,求实数.,,z y x解 (1)1D B =1D D +DB = - 1AA +EF =EA +AF =121D A +12AC ()()()AA +=+++-=2121211.(2) 1D F = 111()2AA AB AD -+-111()2AA AB D D =-+-c b a --=2121,.1,21,21-=-==∴z y x拓展延伸6.在以下3个命题中,真命题的个数是( )①三个非零向量,,不能构成空间的一个基底,则,,共面;②若两个非零向量b a ,与任何一个向量都不能构成空间的一个基底,则b a ,共线; ③若,是两个不共线向量,而()0,≠∈+=λμμλμλ且R ,则{},,构成空间的一个基底.A .0B .1C .2D .3 答案 C 提示:命题①,②是真命题,命题③是假命题.7.若{}c b a ,,是空间的一个基底,则下列各组中不能构成空间一个基底的是( ) A .3,2,a,2b,3c B .+++,, C .93,32,2-++ D .,,++AC1A1C图3-1-33答案 C提示:()()()09332323=-++++-c a c b b a 即三向量c a c b b a 93,32,2-++共面. ∴选C.8. 已知正方体1111D C B A ABCD -中,点O 为1AC 与1BD 的交点,1CC z y x ++=,则x +y +z =________.答案 32,提示:()12121CC ++==. 9. 从空间一点P 引出三条射线PC PB PA ,,,在PC PB PA ,,上分别取,,,===,点G 在PQ 上,且PG =2GQ ,H 为RS 的中点,则GH →=__________________. 答案: ().2132c b a ++-10.(2009.四川卷理)如图,已知正三棱柱111ABC A B C -的各条棱长都相等,M 是侧 棱1CC 的中点,则异面直线1AB BM 和所成的角的大小是 .解析:不妨设棱长为2,选择基向量{},,1,则11121,BB BC BM BA BB AB -=-=()5222111-⎪⎭⎫⎝⎛-⋅-=BB BB05220220=--+-=,故填写o 90.11.已知三棱锥A —BCD.1BAB 1AC1CM图3-1-34(1)化简()AD AC AB -+21并标出化简结果的向量; (2)设G 为△BCD 的重心,试用AD AC AB ,,表示向量.解析:设AB ,AC ,AD 中点为E ,F ,H ,BC 中点为P. (1)1(2AB +AC →-AD →)=AE → +AF = AP -AH →=HP →. (2)AG =AP →+PG → = AP →+13PD →= AP →+13(AD →-AP →)=23AP →+13AD →=()312132++⨯ =13( AB +AC →+AD →).12.在直三棱柱111O B A ABO -中,∠AOB=2π424===|,D 为11B A 的中点,则在如图所示的空间直角坐标系中,求1,DO A B的坐标.解析:∵11(),DO OD OO O D =-=-+11111[()]222OO OA OB OO OA OB =-++=--- 又1||OO = 4,|OA →|=4,|OA →|=4,|OB →|=2, ∴DO →=(-2,-1,-4), ∴1A B = (-4,2,-4).13. 在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,求:异面直线BA 1与AC 所成的角. 解析:因为BC AB AC BB BA BA +=+=,11, 所以)()(11+∙+=∙ =BC BB AB BB BC BA AB BA ∙+∙+∙+∙11ABO1A1OD图3-1-35 图3-1-36因为AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC , 所以BB ∙=∙1,0=0, AB BA BC BB ∙=∙,01=-a 2. 所以AC BA ∙1=-a 2.又,,cos 11><=∙BA .2122,cos 21-=⨯->=<a a a AC BA 所以〈AC BA ,1〉=120°. 所以异面直线BA 1与AC 所成的角为60°.图3-1-37。
高中数学选择性必修一课件:1.3.2空间向量运算的坐标表示
课后提能训练
2.在空间直角坐标系中,已知 A(2,3,5),B(3,1,4),则 A,B 两点间
的距离为
()
A.6
B. 6
C. 30
【答案】B
D. 42
【解析】|AB|= 3-22+1-32+4-52= 6.
|自学导引|
|课堂互动|
|素养达成|
课后提能训练
3.若点 A(1,2,a)到原点的距离为 11,则 a 的值为________. 【答案】± 6 【解析】由已知得 12+22+a2= 11,所以 a2=6,解得 a=± 6.
|自学导引|
|课堂互动|
|素养达成|
课后提能训练
|课堂互动|
|自学导引|
|课堂互动|
|素养达成|
课后提能训练
题型1 空间向量的坐标运算
已知a=(2,-1,-2),b=(0,-1,4),求a+b,2a·(-b),(a+b)·(a-b).
素养点睛:考查逻辑推理、数学运算的核心素养.
【答案】解:a+b=(2,-1,-2)+(0,-1,4)=(2,-2,2),
|自学导引|
|课堂互动|
|素养达成|
课后提能训练
1.向量夹角的计算步骤 (1)建系:结合图形建立适当的空间直角坐标系,建系原则是让尽可能多的点落到坐标轴上. (2)求方向向量:依据点的坐标求出方向向量的坐标. (3)代入公式:利用两向量的夹角公式将方向向量的坐标代入求出夹角. 2.求空间两点间的距离的关键及步骤 (1)求空间两点间的距离问题就是把点的坐标代入距离公式进行计算,其中确定点的坐标或合理设出 点的坐标是关键.
-x1,y2-y1,z2-z1),|P→1P2|=_____x2_-__x_1_2_+___y2_-__y_1_2_+___z2_-__z_1_2____.
高中数学 第3章 空间向量与立体几何 3.2 空间向量的坐标讲义(含解析)湘教版选修2-1-湘教版高
3.2空间向量的坐标[读教材·填要点]1.定理1设e1,e2,e3是空间中三个两两垂直的单位向量,则(1)空间中任意一个向量v可以写成这三个向量的线性组合:v=xe1+ye2+ze3.(2)上述表达式中的系数x,y,z由v唯一决定,即:如果v=xe1+ye2+ze3=x′e1+y′e2+z′e3,则x=x′,y=y′,z=z′.2.定理2(空间向量基本定理)设e1,e2,e3是空间中三个不共面的单位向量,则(1)空间中任意一个向量v可以写成这三个向量的线性组合:v=xe1+ye2+ze3.(2)上述表达式中的系数x,y,z由v唯一决定,即:如果v=xe1+ye2+ze3=x′e1+y′e2+z′e3,则x=x′,y=y′,z=z′.3.空间向量运算的坐标公式(1) 向量的加减法:(x1,y1,z1)+(x2,y2,z2)=(x1+x2,y1+y2,z1+z2),(x1,y1,z1)-(x2,y2,z2)=(x1-x2,y1-y2,z1-z2).(2)向量与实数的乘法:a(x,y,z) =(ax,ay,az).(3)向量的数量积:(x1,y1,z1)·(x2,y2,z2)=x1x2+y1y2+z1z2.(4)向量v=(x,y,z)的模的公式:|v|=x2+y2+z2.(5)向量(x1,y1,z1),(x2,y2,z2)所成的角α的公式:cos α=x1x2+y1y2+z1z2x21+y21+z21x22+y22+z22.4.点的坐标与向量坐标(1)一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标.(2)两点A (x 1,y 1,z 1),B (x 2,y 2,z 2)的距离d AB 为:d AB =x 2-x 12+y 2-y 12+z 2-z 12.(3)线段的中点坐标,等于线段两端点坐标的平均值.[小问题·大思维]1.空间向量的基是唯一的吗?提示:由空间向量基本定理可知,任意三个不共面向量都可以组成空间的一组基,所以空间的基有无数个,因此不唯一.2.命题p :{a ,b ,c }为空间的一个基底;命题q :a ,b ,c 是三个非零向量,则命题p 是q 的什么条件?提示:p ⇒q ,但qp ,即p 是q 的充分不必要条件.3.空间向量的坐标运算与坐标原点的位置是否有关系?提示:空间向量的坐标运算与坐标原点的位置选取无关,因为一个确定的几何体,其线线、线面、面面的位置关系是固定的,坐标系的不同,只会影响其计算的繁简.4.平面向量的坐标运算与空间向量的坐标运算有什么联系与区别?提示:平面向量与空间向量的坐标运算均有加减运算,数乘运算,数量积运算,其算理是相同的.但空间向量要比平面向量多一竖坐标,竖坐标的处理方式与横、纵坐标是一样的.空间向量基本定理的应用空间四边形OABC 中,G ,H 分别是△ABC ,△OBC 的重心,设OA ―→=a ,OB ―→=b ,OC ―→=c ,试用向量a ,b ,c 表示向量OG ―→和GH ―→.[自主解答] ∵OG ―→=OA ―→+AG ―→, 而AG ―→=23AD ―→,AD ―→=OD ―→-OA ―→.∵D 为BC 的中点, ∴OD ―→=12(OB ―→+OC ―→)∴OG ―→=OA ―→+23AD ―→=OA ―→+23(OD ―→-OA ―→)=OA ―→+23·12(OB ―→+OC ―→)-23OA ―→=13(OA ―→+OB ―→+OC ―→)=13(a +b +c ). 而GH ―→=OH ―→-OG ―→,又∵OH ―→=23OD ―→=23·12(OB ―→+OC ―→)=13(b +c )∴GH ―→=13(b +c )-13(a +b +c )=-13a .∴OG ―→=13(a +b +c );GH ―→=-13a .本例条件不变,若E 为OA 的中点,试用a ,b ,c 表示DE ―→和EG ―→. 解:如图,DE ―→=OE ―→-OD ―→=12OA ―→-12(OB ―→+OC ―→) =12a -12b -12c . EG ―→=OG ―→-OE ―→=13(OA ―→+OB ―→+OC ―→)-12OA ―→ =-16OA ―→+13OB ―→+13OC ―→=-16a +13b +13c .用基表示向量时:(1)若基确定,要充分利用向量加法、减法的三角形法则和平行四边形法则,以及数乘向量的运算律进行.(2)若没给定基时,首先选择基,选择时,要尽量使所选的基向量能方便地表示其他向量,再就是看基向量的模及其夹角已知或易求.1.如图所示,已知平行六面体ABCD A 1B 1C 1D 1,设AB ―→=a ,AD ―→=b ,AA 1―→=c ,P 是CA 1的中点,M 是CD 1的中点.用基底{a ,b ,c }表示以下向量:(1)AP ―→;(2)AM ―→. 解:连接AC ,AD 1, (1)AP ―→=12(AC ―→+AA 1―→)=12(AB ―→+AD ―→+AA 1―→) =12(a +b +c ). (2)AM ―→=12(AC ―→+AD 1―→)=12(AB ―→+2AD ―→+AA 1―→) =12a +b +12c . 空间向量的坐标运算已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB ―→,b =AC ―→.(1)设|c |=3,c ∥BC ―→,求c .(2)若ka +b 与ka -2b 互相垂直,求k .[自主解答] (1)∵BC ―→=(-2,-1,2)且c ∥BC ―→, ∴设c =λBC ―→=(-2λ,-λ,2λ). ∴|c |=-2λ2+-λ2+2λ2=3|λ|=3.解得λ=±1,∴c =(-2,-1,2)或c =(2,1,-2). (2)∵a =AB ―→=(1,1,0),b =AC ―→=(-1,0,2), ∴ka +b =(k -1,k,2),ka -2b =(k +2,k ,-4). ∵(ka +b )⊥(ka -2b ),∴(ka +b )·(ka -2b )=0.即(k -1,k,2)·(k +2,k ,-4)=2k 2+k -10=0. 解得k =2或k =-52.本例条件不变,若将(2)中“互相垂直”改为“互相平行”,k 为何值? 解:∵ka +b =(k -1,k,2),ka -2b =(k +2,k ,-4),设ka +b =λ(ka -2b ),则⎩⎪⎨⎪⎧k -1=λk +2,k =λk ,2=-4λ,∴k =0.已知两个向量垂直(或平行)时,利用坐标满足的条件可得到方程(组)进而求出参数的值.这是解决已知两向量垂直(或平行)求参数的值的一般方法.在求解过程中一定注意合理应用坐标形式下的向量运算法则,以免出现计算错误.2.若a =(1,5,-1),b =(-2,3,5).分别求满足下列条件的实数k 的值: (1)(ka +b )∥(a -3b ); (2)(ka +b )⊥(a -3b ).解:ka +b =(k -2,5k +3,-k +5),a -3b =(1+3×2,5-3×3,-1-3×5)=(7,-4,-16). (1)若(ka +b )∥(a -3b ), 则k -27=5k +3-4=-k +5-16,解得k =-13.(2)若(ka +b )⊥(a -3b ),则(k -2)×7+(5k +3)×(-4)+(-k +5)×(-16)=0, 解得k =1063.点的坐标与向量坐标在直三棱柱ABO A 1B 1O 1中,∠AOB =π2,AO =4,BO =2,AA 1=4,D 为A 1B 1的中点,在如图所示的空间直角坐标系中,求DO ―→,A 1B ―→的坐标.[自主解答] (1)∵DO ―→=-OD ―→=-(OO 1―→+O 1D ―→) =-⎣⎢⎡⎦⎥⎤OO 1―→+12(OA ―→+OB ―→)=-OO 1―→-12OA ―→-12OB ―→.又|OO 1―→|=4,|OA ―→|=4,|OB ―→|=2, ∴DO ―→=(-2,-1,-4).(2)∵A 1B ―→=OB ―→-OA 1―→=OB ―→-(OA ―→+AA 1―→) =OB ―→-OA ―→-AA 1―→.又|OB ―→|=2,|OA ―→|=4,|AA 1―→|=4, ∴A 1B ―→=(-4,2,-4).用坐标表示空间向量的方法步骤为:3.如图所示,PA 垂直于正方形ABCD 所在的平面,M ,N 分别是AB ,PC 的中点,并且PA =AB =1.试建立适当的空间直角坐标系,求向量MN ―→的坐标.解:∵PA =AB =AD =1,PA ⊥平面ABCD ,AB ⊥AD , ∴AB ―→,AD ―→,AP ―→是两两垂直的单位向量.设AB ―→=e 1,AD ―→=e 2,AP ―→=e 3,以{e 1,e 2,e 3}为基底建立空间直角坐标系Axyz .法一:∵MN ―→=MA ―→+AP ―→+PN ―→=-12AB ―→+AP ―→+12PC ―→=-12AB ―→+AP ―→+12(PA ―→+AC ―→)=-12AB ―→+AP ―→+12(PA ―→+AB ―→+AD ―→)=12AD ―→+12AP ―→=12e 2+12e 3, ∴MN ―→=⎝ ⎛⎭⎪⎫0,12,12.法二:如图所示,连接AC ,BD 交于点O . 则O 为AC ,BD 的中点,连接MO ,ON , ∴MO ―→=12BC ―→=12AD ―→,ON ―→=12AP ―→,∴MN ―→=MO ―→+ON ―→ =12AD ―→+12AP ―→ =12e 2+12e 3. ∴MN ―→=⎝ ⎛⎭⎪⎫0,12,12.解题高手多解题条条大路通罗马,换一个思路试一试已知矩形ABCD ,P 为平面ABCD 外一点,且PA ⊥平面ABCD ,M ,N 分别为PC ,PD 上的点,且PM ―→=2MC ―→,N 为PD 的中点,求满足MN ―→=x AB ―→+y AD ―→+z AP ―→的实数x ,y ,z 的值.[解] 法一:如图所示,取PC 的中点E ,连接NE ,则MN ―→=EN ―→-EM ―→.∵EN ―→=12CD ―→=12BA ―→=-12AB ―→,EM ―→=PM ―→-PE ―→=23PC ―→-12PC ―→=16PC ―→,连接AC ,则PC ―→=AC ―→-AP ―→=AB ―→+AD ―→-AP ―→, ∴MN ―→=-12AB ―→-16(AB ―→+AD ―→-AP ―→)=-23AB ―→-16AD ―→+16AP ―→,∴x =-23,y =-16,z =16.法二:如图所示,在PD 上取一点F ,使PF ―→=2FD ―→,连接MF , 则MN ―→=MF ―→+FN ―→, 而MF ―→=23CD ―→=-23AB ―→,FN ―→=DN ―→-DF ―→=12DP ―→-13DP ―→=16DP ―→=16(AP ―→-AD ―→), ∴MN ―→=-23AB ―→-16AD ―→+16AP ―→.∴x =-23,y =-16,z =16.法三:MN ―→=PN ―→-PM ―→=12PD ―→-23PC ―→=12(PA ―→+AD ―→)-23(PA ―→+AC ―→) =-12AP ―→+12AD ―→-23(-AP ―→+AB ―→+AD ―→)=-23AB ―→-16AD ―→+16AP ―→,∴x =-23,y =-16,z =16.[点评] 利用基向量表示空间中某一向量的方法步骤为: ①找到含有空间向量的线段为一边的一个封闭图形;②结合平行四边形法则或三角形法则,用基向量表示封闭图形的各边所对应的向量; ③写出结论.1.已知空间四边形OABC ,其对角线为AC ,OB ,M ,N 分别是OA ,BC 的中点,点G 是MN 的中点,则OG ―→等于( )A.16OA ―→+13OB ―→+13OC ―→B.14(OA ―→+OB ―→+OC ―→)C.13(OA ―→+OB ―→+OC ―→)D.16OB ―→+13OA ―→+13OC ―→ 解析:如图,OG ―→=12(OM ―→+ON ―→)=12OM ―→+12×12(OB ―→+OC ―→) =14OA ―→+14OB ―→+14OC ―→ =14(OA ―→+OB ―→+OC ―→). 答案:B2.已知a =(1,-2,1),a +b =(-1,2,-1),则b 等于( ) A .(2,-4,2) B .(-2,4,-2) C .(-2,0,-2) D .(2,1,-3)解析:b =(a +b )-a=(-1,2,-1)-(1,-2,1)=(-2,4,-2). 答案:B3.a =(2x,1,3),b =(1,-2y,9),如果a 与b 为共线向量,则( ) A .x =1,y =1 B .x =12,y =-12C .x =16,y =-32D .x =-16,y =32解析:∵a =(2x,1,3)与b =(1,-2y,9)共线,故有2x 1=1-2y =39,∴x =16,y =-32.答案:C4.已知点A (-1,3,1),B (-1,3,4),D (1,1,1),若AP ―→=2PB ―→,则|PD ―→|的值是________. 解析:设点P (x ,y ,z ),则由AP ―→=2PB ―→, 得(x +1,y -3,z -1)=2(-1-x,3-y,4-z ),则⎩⎪⎨⎪⎧x +1=-2-2x ,y -3=6-2y ,z -1=8-2z ,解得⎩⎪⎨⎪⎧x =-1,y =3,z =3,即P (-1,3,3), 则|PD ―→|=-1-12+3-12+3-12=12=2 3. 答案:2 35.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB ―→与CA ―→的夹角θ的大小是________.解析:AB ―→=(-2,-1,3),CA ―→=(-1,3,-2),cos 〈AB ―→,CA ―→〉=-2×-1+-1×3+3×-214·14=-714=-12, ∴θ=〈AB ―→,CA ―→〉=120°. 答案:120°6.已知PA 垂直于正方形ABCD 所在的平面,M ,N 分别是AB ,PC 的三等分点且|PN ―→|=2|NC ―→|,|AM ―→|=2|MB ―→|,PA =AB =1,求MN ―→的坐标.解:法一:∵PA =AB =AD =1,且PA 垂直于平面ABCD ,AD ⊥AB ,∴可设DA ―→=i ,AB ―→=j ,AP ―→=k ,以i ,j ,k为单位正交基底建立如图所示的空间直角坐标系.∵MN ―→=MA ―→+AP ―→+PN ―→ =-23AB ―→+AP ―→+23PC ―→=-23AB ―→+AP ―→+23(-AP ―→+AD ―→+AB ―→)=13AP ―→+23AD ―→=13k +23(-DA ―→) =-23i +13k ,∴MN ―→=⎝ ⎛⎭⎪⎫-23,0,13.法二:设DA ―→=i ,AB ―→=j ,AP ―→=k ,以i ,j ,k 为单位正交基底建立如图所示的空间直角坐标系,过M 作AD 的平行线交CD 于点E ,连接EN .∵MN ―→=ME ―→+EN ―→=AD ―→+13DP ―→=-DA ―→+13(DA ―→+AP ―→)=-i +13(i +k )=-23i +13k ,∴MN ―→=⎝ ⎛⎭⎪⎫-23,0,13.一、选择题1.已知a ,b ,c 是不共面的三个向量,则能构成空间的一个基的一组向量是( ) A .3a ,a -b ,a +2b B .2b ,b -2a ,b +2a C .a,2b ,b -cD .c ,a +c ,a -c解析:对于A ,有3a =2(a -b )+a +2b ,则3a ,a -b ,a +2b 共面,不能作为基;同理可判断B 、D 错误.答案:C2.以正方体ABCD A 1B 1C 1D 1的顶点D 为坐标原点,如图建立空间直角坐标系,则与DB 1―→共线的向量的坐标可以是( )A .(1,2,2)B .(1,1,2)C .(2,2,2)D .(2,2,1)解析:设正方体的棱长为1,则由图可知D (0,0,0),B 1(1,1,1), ∴DB 1―→=(1,1,1),∴与DB 1―→共线的向量的坐标可以是(2,2,2). 答案:C3.空间四边形OABC 中,OA ―→=a ,OB ―→=b ,OC ―→=c ,点M 在OA 上,且OM ―→=2MA ―→,N 为BC 中点,则MN ―→为( )A.12a -23b +12c B .-23a +12b +12cC.12a +12b -23c D.23a +23b -12c 解析:MN ―→=MA ―→+AB ―→+BN ―→ =13OA ―→+OB ―→-OA ―→+12(OC ―→-OB ―→) =-23OA ―→+12OB ―→+12OC ―→=-23a +12b +12c .答案:B4.若a =(1,λ,2),b =(2,-1,2),且a 与b 的夹角的余弦值为89,则λ=( )A .2B .-2C .-2或255D .2或-255解析:因为a ·b =1×2+λ×(-1)+2×2=6-λ,又因为a ·b =|a ||b |·cos〈a ,b 〉=5+λ2·9·89=835+λ2,所以835+λ2=6-λ.解得λ=-2或255.答案:C 二、填空题5.已知a =(2,-1,3),b =(-4,2,x ),c =(1,-x,2),若(a +b )⊥c ,则x =________. 解析:∵a +b =(-2,1,x +3), ∴(a +b )·c =-2-x +2(x +3)=x +4. 又∵(a +b )⊥c , ∴x +4=0,即x =-4. 答案:-46.已知向量a =(2,-1,3),b =(-1,4,-2),c =(7,0,λ),若a ,b ,c 三个向量共面,则实数λ=________.解析:由a ,b ,c 共面可得c =xa +yb , ∴⎩⎪⎨⎪⎧7=2x -y ,0=-x +4y ,λ=3x -2y ,解得λ=10.答案:107.若a =(x,2,2),b =(2,-3,5)的夹角为钝角,则实数x 的取值X 围是________. 解析:a ·b =2x -2×3+2×5=2x +4,设a ,b 的夹角为θ,因为θ为钝角,所以cosθ=a ·b|a ||b |<0,又|a |>0,|b |>0,所以a ·b <0,即2x +4<0,所以x <-2,所以实数x 的取值X 围是(-∞,2).答案:(-∞,-2)8.已知M 1(2,5,-3),M 2(3,-2,-5),设在线段M 1M 2上的一点M 满足M 1M 2―→=4MM 2―→,则向量OM ―→的坐标为________.解析:设M (x ,y ,z ),则M 1M 2―→=(1,-7,-2),MM 2―→=(3-x ,-2-y ,-5-z ).又∵M 1M 2―→=4MM 2―→,∴⎩⎪⎨⎪⎧1=43-x ,-7=4-2-y ,-2=4-5-z ,∴⎩⎪⎨⎪⎧x =114,y =-14,z =-92.答案:⎝⎛⎭⎪⎫114,-14,-92三、解答题9.已知△ABC 三个顶点的坐标分别为A (1,2,3),B (2,-1,5),C (3,2,-5). (1)求△ABC 的面积; (2)求△ABC 中AB 边上的高.解:(1)由已知得AB ―→=(1,-3,2),AC ―→=(2,0,-8), ∴|AB ―→|= 1+9+4=14, |AC ―→|=4+0+64=217,AB ―→·AC ―→=1×2+(-3)×0+2×(-8)=-14,cos 〈AB ―→,AC ―→〉=AB ―→·AC ―→|AB ―→|·|AC ―→|=-1414×217=-14217,sin 〈AB ―→,AC ―→〉=1-1468=2734. ∴S △ABC =12|AB ―→|·|AC ―→|·sin〈AB ―→,AC ―→〉=12×14×217×2734=321. (2)设AB 边上的高为CD , 则|CD ―→|=2S △ABC |AB ―→|=3 6.10.如图,在空间直角坐标系中BC =2,原点O 是BC 的中点,点A 的坐标是⎝⎛⎭⎪⎫32,12,0,点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°.(1)求向量OD ―→的坐标;(2)设向量AD ―→和BC ―→的夹角为θ,求cos θ的值.解:(1)如图所示,过D 作DE ⊥BC ,垂足为E ,在Rt △BDC 中,由∠BDC =90°,∠DCB =30°,BC =2,得BD =1,CD = 3.∴DE =CD ·sin 30°=32. OE =OB -BD ·cos 60°=1-12=12,∴D 点坐标为⎝ ⎛⎭⎪⎫0,-12,32,即向量OD ―→的坐标为⎝ ⎛⎭⎪⎫0,-12,32.(2)依题意:OA ―→=⎝ ⎛⎭⎪⎫32,12,0,OB ―→=(0,-1,0),OC ―→=(0,1,0). 所以AD ―→=OD ―→-OA ―→=⎝ ⎛⎭⎪⎫-32,-1,32,BC ―→=OC ―→-OB ―→=(0,2,0). 设向量AD ―→和BC ―→的夹角为θ,则 cos θ=AD ―→·BC―→|AD ―→|·|BC ―→|=⎝ ⎛⎭⎪⎫-32×0+-1×2+32×0⎝ ⎛⎭⎪⎫-322+-12+⎝ ⎛⎭⎪⎫322·02+22+02=-210=-105.∴cos θ=-105.。
8-5空间向量及其运算课件共83张PPT
∴(a+b)·(a-b)=-13. (2) 解析:cos〈a,b〉=|aa|·|bb|=-2155.
核/心/素/养
已知V为矩形ABCD所在平面外一点,且VA=VB=VC=VD,V→P=13V→C,V→M=23 V→B,V→N=23V→D,则VA与平面PMN的位置关系是__平__行____.
A.(2,3,3)
B.(-2,-3,-3)CFra bibliotek(5,-2,1)
D.(-5,2,-1)
4.在三棱锥O-ABC中,M,N分别是OA,BC的中点,G是△ABC的重心,用 基向量O→A,O→B,O→C表示M→G,O→G.
[解] M→G=M→A+A→G=12O→A+23A→N =12O→A+23(O→N-O→A) =12O→A+2312O→B+O→C-O→A =-16O→A+13O→B+13O→C. O→G=O→M+M→G =12O→A-16O→A+13O→B+13O→C =13O→A+13O→B+13O→C.
知识点二 数量积及坐标运算 1.两个向量的数量积 (1)a·b=|a||b|cos〈a,b〉. (2)a⊥b⇔_a_·_b_=__0__(a,b为非零向量). (3)|a|2=__a_2_____,|a|= x2+y2+z2.
2.空间向量的坐标运算
设a=(a1,a2,a3),b=(b1,b2,b3),则 (1)|a|= a21+a22+a32; (2)a+b=_(_a_1+__b_1_,__a_2+__b_2_,__a_3_+__b_3)_; (3)a-b=_(_a_1-__b_1_,__a_2_-__b_2,__a_3_-__b_3_) ; (4)λa=_(λ_a_1_,__λ_a_2,__λ_a_3_)____; (5)a·b=_a_1b_1_+__a_2_b_2+__a_3_b_3__;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3 空间向量及其坐标的运算
1.空间向量的坐标表示
(1)设e1,e2,e3为有公共起点O的三个两两垂直的单位向量(我们称它们为单位正交基底),以e1,e2,e3的公共起点O为原点,分别以e1,e2,e3的方向为x轴、y轴、z轴的正方向建立空间直角坐标系Oxyz,
那么对于空间任意一个向量p,一定可以把它平移,使它的起点与原点O重合,得到向量OP=p,由空间向量基本定理可知,存在有序实数组{x,y,z},使得p=xe1+ye2+ze3,我们把x,y,z称作向量p在单位正交基底e1,e2,e3下的坐标,记作p=(x,y,z),此时向量p的坐标恰是点P在空间直角坐标系Oxyz 中的坐标(x,y,z).
(2)向量p的坐标是把向量p的起点平移到坐标原点O,则OP的终点P的坐标就是向量p的坐标,这样就把空间向量坐标化了.
2.空间向量的坐标运算
3.(1)空间向量a,b,其坐标形式为:a=(a1,a2,a3),b=(b1,b2,b3),
则a+b=(a1+b1,a2+b2,a3+b3),a-b=(a1-b1,a2-b2,a3-b3),
λa=(λa1,λa2,λa3),a·b=a1b1+a2b2+a3b3.
(2)a·a=|a|2=
222 123 a a a
++
.
3.空间向量的平行、垂直及模、夹角
设a=(a1,a2,a3),b=(b1,b2,b3),则
【题型精讲】
考点一坐标的运算
【例1】(1)(2020·宜昌天问教育集团高二期末)设
,x y R
∈,向量(,1,1),b(1,,1),c(2,4,2)
a x y
===-,,c
a c b
⊥,则||
a b
+=()
A.B C.3D.4
(2)(2020·宜昌天问教育集团高二期末)已知空间向量()1,0,1a =,
()
1,1,b n =,3a b ⋅=则向量a 与b
λ(0λ≠)的夹角为( )
A .6π
B .6π或56π
C .3π
D .3π或23π 【玩转跟踪】
1.(2020·全国高二课时练习)下列向量中与向量()
010a =,,平行的向量是( )
A .()
100b =,, B .()
010c =-,,
C .()111d =--,,
D .
()
001e =-,,
2.(2020·全国高二课时练习)已知向量()
1,0,1a =,
()
2,0,2b =-,若
()()2ka b a kb +⋅+=,则k 的值
等于( )
A .1
B .35
C .25
D .1
5
3.(2020·广西北流市实验中学高一期中)在空间直角坐标系O ﹣xyz 中,点A (2,﹣1,3)关于yOz 平面对称的点的坐标是( )
A .(2,1,3)
B .(﹣2,﹣1,3)
C .(2,1,﹣3)
D .(2,﹣1,﹣3)
4.(2020·全国高二课时练习)已知
(1,1,2),(6,21,2)a b m λλ=+=-.
(1)若//a b ,分别求λ与m 的值;
(2)若||5a =,且与(2,2,)c λλ=--垂直,求a .
考点二 坐标运算在几何中的运用
【例2】(2020·全国高二课时练习)如图,在直三棱柱ABC -A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M ,N 分别是AA1,CB1的中点.
(1)求BM ,BN 的长. (2)求△BMN 的面积.
【玩转跟踪】
1.(2020·天水市第一中学高二月考(理))如图,在空间直角坐标系中有直三棱柱
111ABC A B C -,2CA CB
=,
13CC CB
=,则直线
1
BC 与直线
1
AB 夹角的余弦值为( ).
A
. B
.
C
. D .235
2.(2020·全国高二课时练习) 在直三棱柱ABOA1B1 O1中,∠AOB =π
2 ,AO =4,BO =2,AA1=4,
D 为A1B1的中点,在如图所示的空间直角坐标系中,求
1,DO A B 的坐标.
考点三 最值问题
【例3】(2020·全国高二课时练习)已知点
()1,1,A t t t --,
()
2,,B t t ,则A ,B 两点的距离的最小值为( )
B
. C
.
D .35
【玩转跟踪】
1.(2020·江西高安中学高一期中(理))已知
()1,2,3OA =,
()2,1,2OB =,
()
1,1,2OP =,点Q 在直线OP
上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为( )
A .241,,33⎛⎫
⎪⎝⎭
B .448,,333⎛⎫ ⎪⎝⎭
C .58,1,33⎛⎫ ⎪⎝
⎭ D .258,,333⎛⎫ ⎪⎝⎭
2.已知点(1,2,3)A ,(2,1,2)B ,(1,1,2)P ,(0,0,0)O ,点Q 在直线OP 上运动,当QA QB ⋅取得最小值时,点Q 的坐标为________________.。