高考数学讲义空间向量与立体几何.知识框架

合集下载

空间向量与立体几何知识总结(高考必备!)

空间向量与立体几何知识总结(高考必备!)

y k iA(x,y,z)O jxz 空间向量与立体几何一、空间直角坐标系的建立及点的坐标表示空间直角坐标系中的坐标:如图给定空间直角坐标系和向量a ,设,,i j k(单位正交基底)为坐标向量,则存在唯一的有序实数组123(,,)a a a ,使123a a i a j a k =++,有序实数组123(,,)a a a 叫作向量a在空间直角坐标系O xyz -中的坐标,记作123(,,)a a a a =.在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使OA xi yj zk =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标.二、空间向量的直角坐标运算律(1)若123(,,)a a a a = ,123(,,)b b b b =, 则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=--- ,123(,,)()a a a a R λλλλλ=∈,112233//,,()a b a b a b a b R λλλλ⇔===∈,(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

(3)//a b b a λ⇔= 112233()b a b a R b aλλλλ=⎧⎪⇔=∈⎨⎪=⎩三、空间向量直角坐标的数量积1、设b a ,是空间两个非零向量,我们把数量><b a b a ,cos ||||叫作向量b a ,的数量积,记作b a ⋅,即b a ⋅=><b a b a ,cos |||| 规定:零向量与任一向量的数量积为0。

立体几何与空间向量知识梳理

立体几何与空间向量知识梳理

立体几何与空间向量知识梳理
立体几何与空间向量是数学中的两个重要分支,它们都涉及到三维空间的计算和处理。

下面是它们的知识梳理:
一、立体几何
1. 立体几何基本概念:点、线、面、立体、平行、垂直、角度、投影等。

2. 立体图形的性质:体积、表面积、对称性、切割等。

3. 立体几何基本公式:立方体、长方体、正方体、圆柱、圆锥、球等的体积和表面积公式。

4. 立体几何运用:解决物体体积和表面积的计算问题,如容器的容积、房间的面积等。

二、空间向量
1. 空间向量定义及表示:三维空间中的有向线段,可以用起点坐标和终点坐标表示。

2. 空间向量的运算:加、减、数乘、点乘、叉乘等。

3. 空间向量的性质:模长、模长计算公式、向量方向,空间向量的平行性、垂直性等。

4. 空间向量的应用:用向量来表示物理量,如力、速度、加速
度等。

总结
立体几何和空间向量是数学中两个重要的分支,它们在三维空间中进行计算和处理。

在应用方面,立体几何可以解决物体的体积和表面积计算问题,而空间向量则可以用来表示和处理物理量。

在学习过程中,要注意掌握基本概念和公式,熟练掌握基本运算和性质,逐渐深入到应用层面。

高中数学空间向量与立体几何知识点归纳总结

高中数学空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结一.知识要点。

1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)向量具有平移不变性2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。

(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。

(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为aa ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。

(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。

若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。

立体几何和空间向量综合知识点(高中数学)

立体几何和空间向量综合知识点(高中数学)

立体几何与空间向量一.空间几何体的体积与表面积:1.简单几何体的侧面积、体积及相关性质: 棱柱、棱锥、台体的表面积:柱体、椎体、台体的侧面积:h c S h c c S ch S '=''+==21,)(21,锥侧台侧柱侧(其中c c ',分 别为上下底面周长,h 为高,h '为斜高或母线长)圆柱的表面积 :222r rl S ππ+=; 圆锥的表面积:2r rl S ππ+=;圆台的表面积:22R Rl r rl S ππππ+++=(r,R 分别为上下底面圆的半径); 球的表面积:24R S π=; 扇形的面积:222121360r lr R n S απ===扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积柱体的体积:h S V ⨯=底;锥体的体积:h S V ⨯=底31; 台体的体积:h S S S S V ⨯+⋅+=)(31下下上上 ;球体的体积:334R V π=。

2.空间几何体直观图斜二测画法要领: 横相等,竖减半,倾斜45°,面积为原来的42,平行关系不变。

3.棱锥的平行截面的性质:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似 相似比等于顶点到截面的距离与顶点到底面的距离之比; 它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;4.立体几何中常见模型的性质: 长方体:(1)长方体从一个顶点出发的三条棱长分别为a,b,c ,则体对角线长为222c b a ++,全面积为2ab+2abc+2ac ,体积V=abc 。

(2)已知长方体的体对角线与过同一顶点的三条棱所成的角分别为γβα,,,则有1cos cos cos 222=++γβα或2sin sin sin 222=++γβα。

(3)长方体外接球的直径是长方体的体对角线长222c b a ++。

高考数学知识点总结之空间向量与立体几何

高考数学知识点总结之空间向量与立体几何

2019 高考数学知识点总结之空间向量与立体几何一、考点纲要:1、空间向量及其运算(1)空间向量的基本知识:①定义:空间向量的定义和平面向量同样,那些拥有大小和方向的量叫做向量,而且仍用有向线段表示空间向量,且方向同样、长度相等的有向线段表示同样向量或相等的向量。

②空间向量基本定理:ⅰ定理:假如三个向量不共面,那么关于空间任一直量,存在独一的有序实数组 x、y、z,使。

且把叫做空间的一个基底,都叫基向量。

ⅱ正交基底:假如空间一个基底的三个基向量是两两相互垂直,那么这个基底叫正交基底。

ⅲ 单位正交基底:当一个正交基底的三个基向量都是单位向量时,称为单位正交基底,往常用表示。

ⅳ空间四点共面:设 O、A、B、C 是不共面的四点,则对空间中任意一点 P,都存在独一的有序实数组 x、y、z,使。

③共线向量 (平行向量 ):ⅰ定义:假如表示空间向量的有向线段所在的直线相互平行或重合,则这些向量叫做共线向量或平行向量,记作。

ⅱ规定:零向量与任意愿量共线 ;ⅲ共线向量定理:对空间任意两个向量平行的充要条件是:存在实数,使。

④共面向量:ⅰ定义:一般地,能平移到同一平面内的向量叫做共面向量 ;空间的任意两个向量都是共面向量。

ⅱ向量与平面平行:假如直线 OA 平行于平面或在内,则说向量平行于平面,记作。

平行于同一平面的向量,也是共面向量。

ⅲ共面向量定理:假如两个向量、不共线,则向量与向量、共面的充要条件是:存在实数对 x、 y,使。

ⅳ空间的三个向量共面的条件:当、、都是非零向量时,共面向量定理本质上也是、、所在的三条直线共面的充要条件,但用于判准时,还需要证明此中一条直线上有一点在另两条直线所确立的平面内。

ⅴ共面向量定理的推论:空间一点P 在平面 MAB 内的充要条件是:存在有序实数对x、y,使得,或关于空间任意必定点O,有。

⑤空间两向量的夹角:已知两个非零向量、,在空间任取一点O,作, (两个向量的起点必定要同样),则叫做向量与的夹角,记作,且。

高中数学必修2--空间向量与立体几何知识点归纳总结

高中数学必修2--空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结一.知识要点。

1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)向量具有平移不变性2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。

(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。

(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a共线的单位向量为a ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。

(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。

若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。

空间向量与立体几何的知识点总结

空间向量与立体几何的知识点总结

空间向量与立体几何空间向量及其线性运算知识点一空间向量的概念1.定义:在空间,具有大小和方向的量叫做空间向量.2.长度或模:向量的大小.3.表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a,b,c,…表示;若向量a的起点是A,终点是B,也可记作AB,其模记为|a|或|AB|.4.几类特殊的空间向量名称定义及表示零向量长度为0的向量叫做零向量,记为0单位向量模为1的向量称为单位向量相反向量与向量a长度相等而方向相反的向量,称为a的相反向量,记为 -a共线向量(平行向量)如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.规定:对于任意向量a,都有0∥a相等向量方向相同且模相等的向量称为相等向量注意:空间中的任意两个向量都可以平移到同一个平面内,成为同一平面内的两个向量.知识点二空间向量的线性运算空间向量的线性运算加法a+b=OA+AB=OB减法a-b=OA-OC=CA数乘当λ>0时,λa=λOA=PQ;当λ<0时,λa=λOA=MN;当λ=0时,λa=0运算律交换律:a+b=b+a;结合律:a+(b+c)=(a+b)+c,λ(μa)=(λμ)a;分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb.共线向量与共面向量知识点一 共线向量1.空间两个向量共线的充要条件对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb . 2.直线的方向向量在直线l 上取非零向量a ,我们把与向量a 平行的非零向量称为直线l 的方向向量. 知识点二 共面向量 1.共面向量如图,如果表示向量a 的有向线段OA 所在的直线OA 与直线l 平行或重合,那么称向量a 平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a 平行于平面α.平行于同一个平面的向量,叫做共面向量.2.向量共面的充要条件如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .推论:1.已知空间任意一点O 和不共线的三点A ,B ,C ,存在有序实数对(x ,y ),满足关系AC y AB x OA OP ++=,则点P 与点A ,B ,C 共面。

高中数学空间向量与立体几何知识点与例题

高中数学空间向量与立体几何知识点与例题

空间向量与立体几何知方法总结一.知识要点。

1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)向量具有平移不变性2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作ba//。

(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a=λb 。

(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中(4)与a 共线的单位向量为a±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。

(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP +=<=>)1(=++++=z y x OC z OB y OA x OP其中5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。

若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间向量在立体几何中的应用要求层次重难点空间直角坐标系空间直角坐标系 B (1)空间直角坐标系①了解空间直角坐标系,会用空间直角坐标表示点的位置.②会推导空间两点间的距离公式.(2)空间向量及其运算①了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.②掌握空间向量的线性运算及其坐标表示.③掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.空间两点间的距离公式 B空间向量的应用空间向量的概念 B空间向量基本定理 A空间向量的正交分解及其坐标表示B空间向量的线性运算及其坐标表示C空间向量的数量积及其坐标表示C运用向量的数量积判断向量的共线与垂直C空间向量在立体几何中的应用要求层次重难点空间直角坐标系空间直角坐标系 B(1)空间直角坐标系①了解空间直角坐标系,会用空间直角坐标表示点的位置.空间两点间的距离公式 B空间向空间向量的概念 B高考要求模块框架空间向量与立体几何.知识框架量的应用空间向量基本定理 A ②会推导空间两点间的距离公式.(2)空间向量及其运算①了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.②掌握空间向量的线性运算及其坐标表示.③掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.空间向量的正交分解及其坐标表示B空间向量的线性运算及其坐标表示C空间向量的数量积及其坐标表示C运用向量的数量积判断向量的共线与垂直 C知识内容1.在空间内,把具有大小和方向的量叫空间向量,可用有向线段来表示. 用同向且等长的有向线段表示同一向量或相等的向量.2.起点与终点重合的向量叫做零向量,记为0或0r.在手写向量时,在字母上方加上箭头,如a r ,AB u u u r.3.表示向量a r的有向线段的长度叫做向量的长度或模,记作||a r ,有向线段的方向表示向量的方向.有向线段所在的直线叫做向量的基线.4.如果空间中一些向量的基线互相平行或重合,则这些向量叫做共线向量或平行向量.a r 平行于b r 记为a b r r ∥.5.向量的加法、减法与数乘向量运算:与平面向量类似; 6.空间向量的基本定理:共线向量定理:对空间两个向量a r ,b r (0b ≠r ),a b r r ∥的充要条件是存在实数x ,使a xb =r r.共面向量:通常我们把平行于同一平面的向量,叫做共面向量.共面向量定理:如果两个向量a r ,b r 不共线,则向量c r 与向量a r ,b r共面的充要条件是,存在唯一的一对实数x ,y ,使c xa yb =+r r r.空间向量分解定理:如果三个向量a r ,b r ,c r不共面,那么对空间任一向量p u r ,存在一个唯一的有序实数组x ,y ,z ,使p xa yb zc =++u r r r r.表达式xa yb zc ++r r r ,叫做向量a r ,b r ,c r的线性表示式或线性组合.上述定理中,a r ,b r ,c r叫做空间的一个基底,记作{}a b c r r r ,,,其中a b c r r r ,,都叫做基向量.由此定理知,空间任意三个不共面的向量都可以构成空间的一个基底.7.两个向量的夹角:已知两个非零向量a b r r ,,在空间任取一点O ,作OA a =u u u r r ,OB b =u u u r r,则AOB ∠叫做向量a r 与b r的夹角,记作a b 〈〉r r ,.通常规定0πa b 〈〉r r ≤,≤.在这个规定下,两个向量的夹角就被唯一确定了,并且a b b a 〈〉=〈〉r r r r ,,. 如果90a b 〈〉=r r ,°,则称a r 与b r 互相垂直,记作a b ⊥r r . 8.两个向量的数量积:已知空间两个向量a r ,b r,定义它们的数量积(或内积)为:||||cos a b a b a b ⋅=〈〉r r r r r r ,空间两个向量的数量积具有如下性质:⑴||cos a e a a e ⋅=〈〉r r r r r ,;⑵0a b a b ⇔⋅=r r r r^;⑶2||a a a =⋅r r r ;⑷a b a b ⋅r r r r ||≤||||. 空间两个向量的数量积满足如下运算律:⑴()()a b a b λλ⋅=⋅r r r r ;⑵a b b a ⋅=⋅r r r r;⑶()a b c a c b c +⋅=⋅+⋅r r r r r r r . 9.空间向量的直角坐标运算:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i j k r r r,,,这三个互相垂直的单位向量构成空间向量的一个基底{}i j k r r r,,,这个基底叫做单位正交基底. 空间直角坐标系Oxyz ,也常说成空间直角坐标系[]O i j k r r r ;,,. 10.坐标:在空间直角坐标系中,已知任一向量a r,根据空间向量分解定理,存在唯一数组123()a a a ,,,使123a a i a j a k =++r r r r ,1a i r ,2a j r ,3a k r 分别叫做向量a r在i j k r r r ,,方向上的分量,有序实数组123()a a a ,,叫做向量a r在此直角坐标系中的坐标.上式可以简记作123()a a a a =r,,. 若123()a a a a =r ,,,123()b b b b =r,,, 则:112233()a b a b a b a b +=+++r r ,,;112233()a b a b a b a b -=---r r,,; 123()a a a a λλλλ=r ,,;112233a b a b a b a b ⋅=++r r .一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标.11.空间向量的平行和垂直的条件:设111()a a b c =r ,,,123()b b b b =r ,,, a b r r ∥(0b ≠r r )a b λ⇔=r r 112233a b a b a bλλλ=⎧⎪⇔=⎨⎪=⎩;11223300a b a b a b a b a b ⇔⋅=⇔++=r r r r^.两个向量的夹角与向量的长度的坐标计算公式: 222123||a a a a a a ⋅++r r r 222123||b b b b b b =⋅++r r r112233222222123123cos ||||a ba b a b a a a b b b ⋅〈〉==++++r rr r r r ,. 12.位置向量:已知向量a r ,在空间固定一个基点O ,再作向量OA a =u u u r r,则点A 在空间的位置就被向量a r所唯一确定了.这时,我们称这个向量为位置向量.由此,我们可以用向量及其运算来研究空间图形的性质.13.给定一个定点A 和一个向量a r,O 为空间中任一确定的点,B 为直线l 上的点,则P 在为过点A 且平行于向量a r的直线l 上⇔ AP ta =u u u r r①⇔ OP OA ta =+u u u r u u u r r②⇔ (1)OP t OA tOB =-+u u u r u u u r u u u r③这三个式子都称为直线l 的向量参数方程.向量a r称为该直线的方向向量.14.设直线1l 和2l 的方向向量分别为1v u r 和2v u u r,12l l ∥(或1l 与2l 重合)12v v ⇔u r u u r ∥;12l l ^12v v ⇔u r u u r^.若向量1v u r 和2v u u r是两个不共线的向量,且都平行于平面α(即向量的基线与平面平行或在平面内),直线l 的一个方向向量为v r,则l α∥或l 在α内 ⇔ 存在两个实数x y ,,使12v xv yv =+r u r u u r.15.如果向量n r 的基线与平面α垂直,则向量n r就称为平面α的法向量.设A 是空间任一点,n r 为空间内任一非零向量,则满足0AM n ⋅=u u u u r r的点M 表示过点A 且与向量n r 垂直的平面,0AM n ⋅=u u u u r r称为该平面的向量表示式.16.设12n n u u r u u r,分别是平面αβ,的法向量,则αβ∥或α与β重合⇔12n n u u r u u r ∥;12120n n n n αβ⇔⇔⋅=u u r u u r u u r u u r^^17.线面角:斜线和它在平面内的正射影的夹角叫做斜线和平面所成的角,是斜线与这个平面内所有直线所成角中最小的角.18.二面角:平面内的一条直线把平面分成两部分,其中的每一部分都叫做半平面.从一条直线出发的两个半平面所组成的图形叫做二面角;这条直线叫做二面角的棱.每个半平面叫做二面角的面.棱为l ,两个面分别为αβ,的二面角,记作l αβ--.在二面角l αβ--的棱上任取一点O ,在两半平面内分别作射线OA l ^,OB l ^,则AOB Ð叫做二面角l αβ--的平面角.二面角的平面角的大小就称为二面角的大小.我们约定二面角的范围为[0180]°,°. 设12m m αβu u r u u r ,^^,则角12m m 〈〉u u r u u r,与二面角l αβ--相等或互补.。

相关文档
最新文档