第一章导数及其应用章末归纳总结
人教版高中数学选修2-2第一章导数及其应用复习优质

3.利用导数研究函数的极值和最值
1.应用导数求函数极值的一般步骤: (1)确定函数f(x)的定义域; (2)解方程f′(x)=0的根; (3) 检 验 f′(x) = 0 的 根 的 两 侧 f′(x) 的 符 号. 若左正右负,则f(x)在此根处取得极大值; 若左负右正,则f(x)在此根处取得极小值; 否则,此根不是f(x)的极值点.
(2)法一:设切点为(x0,y0), 则直线 l 的斜率为 f′(x0)=3x2 0+1, ∴直线 l 的方程为 3 y=(3x2 + 1)( x - x ) + x 0 0 0+x0-16, 又∵直线 l 过点(0,0), 3 ∴0=(3x2 + 1)( - x ) + x 0 0 0+x0-16, 3 整理得,x0=-8, ∴x0=-2.
解之得,x0=-2, 3 ∴y0=(-2) +(-2)-16=-26, k=3×(-2)2+1=13. ∴直线 l 的方程为 y=13x, 切点坐标为(-2, -26). x (3)∵切线与直线 y=- +3 垂直, 4 ∴切线的斜率 k=4. 设切点坐标为(x0, y0),则 f′ (x0)= 3x2 0+ 1= 4, ∴ x0= ± 1, x0=1 x0=-1, ∴ 或 y0=- 14 y0=- 18. 即切点为 (1,- 14)或 (- 1,- 18). 切线方程为 y=4(x- 1)-14 或 y= 4(x+ 1)-18. 即 y=4x- 18 或 y=4x- 14.
例 3: 已知函数 f(x)=-x3+ax2+bx, 在区间(-2,1) 2 内,当 x=-1 时取极小值,当 x= 时取极大值. 3 (1)求函数 y=f(x)在 x=-2 时的对应点的切线方程; (2)求函数 y=f(x)在[-2,1]上的最大值与最小值.
_高中数学第一章导数及其应用2

f(x)=1x
f ′(x)=-x12=-x-2
f(x)= x
f ′(x)=21 x=12x-12
f(x)=x3
f′(x)=3x2
结论:若f(x)=xα(α为有理数),则f′(x)=αxα-1.
1.y=c表示平行于x轴的直线,或与x轴重合的直线, 其斜率为0,故y=c上任一点处的导数值为____0____, 直线y=x的斜率为1,故直线y=x上任一点处的导数值 为___1_____.
[分析] 只需求出K、Q两点的横坐标即可.
[解析]
设P(x0,y0),则kl1=y′|x=x0=2
1 x0
.
∵直线l1与l2垂直,则kl2=-2 x0,
∴直线l2的方程为y-y0=-2 x0(x-x0).
∵点P(x0,y0)在曲线y= x上,∴y0= x0.
在直线l2的方程中令y=0,则- x0=-2 x0(x-x0).
2.当y=c表示路程关于时间的函数时,常数c表明路 程不变化,因此一直处于__静__止____状态,故瞬时速度 为___0_____,因此y′=____0____;
当y=x表示路程关于时间的函数时,路程的改变量等 于时间的改变量,因此物体做匀速直线运动,瞬时速 度为___1_____,故y′=____1____.
当P点不是切点时,设切点为A(x0,y0),由定义可求得切 线的斜率为k=3x20.
∵A在曲线上,∴y0=x30,∴xx300--82=3x20,
∴x30-3x20+4=0,∴(x0+1)(x0-2)2=0, ∴x0=-1或x0=2(舍去),∴y0=-1,k=3, 此时切线方程y+1=3(x+1),即3x-y+2=0. 故经过点P的曲线的切线有两条,方程为12x-y-16=0和 3x-y+2=0. [警示] 求曲线过点P的切线时,应注意检验点P是否在曲 线上,若点P在曲线上,应分P为切点和P不是切点讨论.
导数知识点总结及应用

导数知识点总结及应用导数是微积分中的基本概念,是描述函数变化率的工具。
它具有广泛的应用,不仅在数学中起着重要作用,也在其他学科中有着广泛的应用,如物理学、经济学、工程学等。
本文将总结导数的基本知识点以及其应用。
一、导数的定义和性质导数可以通过极限的计算来定义,假设函数f(x)在点x_0处有定义。
那么f(x)在x_0处的导数可以定义为:f'(x_0)=lim(x→x_0) (f(x)-f(x_0))/(x-x_0)导数的计算方法有很多,其中最基本的有以下几种:1.使用导数定义的极限计算法;2.利用导数的基本性质:线性性、乘法法则、链式法则等。
导数具有以下基本性质:1.若函数f(x)在点x_0处可导,则f(x)在该点连续;2.若函数f(x)在点x_0处可导,则f(x)在该点的函数值变化率为f'(x_0)。
二、导数的应用1.函数的极值与图像的凹凸性导数的一个重要应用是用于确定函数的最大值和最小值。
根据函数的图像和导数的符号,可以判断函数的增减性以及极值点。
具体来说,函数在极值点的导数为零,并且在极值点的导数变号。
另外,导数的符号还可以用来确定函数图像的凹凸性。
如果函数的导数在其中一区间上恒大于零,则函数在这一区间上是严格递增的,图像是凸的。
如果函数的导数在其中一区间上恒小于零,则函数在这一区间上是严格递减的,图像是凹的。
2.切线与法线函数的导数可以用来确定函数图像上任意一点处的切线和法线。
在其中一点x_0处,函数图像上的切线的斜率等于函数在该点处的导数值,即切线的斜率为f'(x_0)。
切线的方程可以通过点斜式来确定。
3.函数的近似计算函数的导数可以用来近似计算函数在其中一点处的函数值。
根据导数的定义,函数在该点的导数等于函数在该点的函数值变化率。
所以,如果已知其中一点的导数,可以通过导数乘以函数值变化的增量来估计函数值的增量。
4.曲线的弯曲程度导数还可以用来衡量曲线的弯曲程度。
2019-2020数学人教A版选修2-2讲义:第一章导数及其应用章末复习

知识系统整合规律方法收藏1.导数的概念,要注意结合实例理解概念的实质,利用导数的几何意义求曲线的切线方程,要注意当切线平行于y轴时,这时导数不存在,此时的切线方程为x=x0.2.利用基本初等函数的求导公式和四则运算法则求导数,熟记基本求导公式,熟练运用法则是关键,有时先化简再求导,会给解题带来方便.因此观察式子的特点,对式子进行适当的变形是优化解题过程的关键.3.对复合函数的求导,关键在于选取合适的中间变量,弄清每一步求导是哪个变量对哪个变量求导,不要混淆,最后要把中间变量换成自变量的函数.复合函数的导数(高考要求f(ax+b)的形式的),在学习的过程中不要无限制地拔高.4.利用导数判断函数的单调性应注意的几点(1)确定函数的定义域,解决问题的过程中,只能在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间.(2)在对函数划分单调区间时,除了必须确定使导数等于0的点外,还要注意定义区间内的不连续点或不可导点.(3)命题“如果f′(x)>0,则函数为增函数”的逆命题不成立,当f(x)在(a,b)内为增函数时,f′(x)≥0,如f(x)=x3.由于f′(x)≥0时,f′(x)可能恒为0,f(x)也就恒为常数,所以由f ′(x )≥0不能得到f (x )是单调增函数.因此,课本上关于单调性的结论在解题时要注意,它并非充要条件.5.利用导数研究函数的极值应注意的几点(1)可导函数f (x )在点x 0取得极值的充分必要条件是f ′(x )=0,且在x 0左侧与右侧,f ′(x )的符号不同,f ′(x 0)=0是x 0为极值点的必要非充分条件.(2)极值点也可以是不可导的,如函数f (x )=|x |在极小值点x 0=0处不可导. (3)求一个可导函数的极值时,常常把使f ′(x 0)=0的点x 0附近的函数值的变化情况列成表格,这样可使函数在各单调区间的增减情况一目了然.6.极值与最值的区别(1)函数的极值是在局部范围内讨论问题,是一个局部概念,而函数的最值是对整个定义区间而言,是在整体范围内讨论问题,是一个整体性概念.(2)闭区间上的连续函数一定有最值,开区间内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值.(3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值则可能不止一个,也可能没有极值.7.导数的实际应用利用导数研究实际问题的最值的关键在于建立数学模型,因此要认真审题,分析各个量的关系,列出函数式y =f (x ),然后利用导数求出函数f (x )的最值,求函数f (x )的最值时,若f (x )在区间(a ,b)上只有一个极值点,要根据实际意义判定是最大值还是最小值,不必再与端点的函数值比较.8.求定积分求导运算与求原函数运算互为逆运算,求定积分的关键是要找到被积函数的原函数.为避免出错,在求出原函数后可利用求导与积分互为逆运算的关系进行验证.9.定积分的应用中的两个主要问题一是能利用定积分求曲边梯形的面积;二是能利用定积分求变速直线运动的路程及变力做功问题.其中,应特别注意求定积分的运算与利用定积分计算曲边梯形面积的区别.学科思想培优一、导数几何意义的应用例1 设曲线C :y =x 3-3x 和直线x =a (a >0)的交点为P ,过P 点的曲线C 的切线与x 轴交于点Q(-a ,0),求a 的值.[解] 依题意⎩⎨⎧y =x 3-3x ,x =a ,解得P(a ,a 3-3a ).y ′=3x 2-3,所以过P 点斜率为3a 2-3的曲线C 的切线方程为 y -(a 3-3a )=(3a 2-3)(x -a ).令y =0得切线与x 轴的交点为⎝ ⎛⎭⎪⎫2a 33a 2-3,0,则有2a 33a 2-3=-a ,解得a =±155.由已知a >0,所以a 的值为155. 拓展提升要求a 的值,需利用导数的几何意义写出过P 点的曲线C 的切线方程,求出该切线与x 轴的交点,通过列方程求解.本题主要考查导数的几何意义,要注意条件a >0.二、求函数的单调区间例2 设a ∈R ,讨论定义在(-∞,0)的函数f (x )=13ax 3+⎝ ⎛⎭⎪⎫a +12x 2+(a +1)x的单调性.[解] f ′(x )=ax 2+(2a +1)x +a +1=(x +1)(ax +a +1),x <0.(1)若a =0,则f ′(x )=x +1,当x ∈(-∞,-1)时,f ′(x )<0,f (x )单调递减;当x ∈(-1,0)时,f ′(x )>0,f (x )单调递增.(2)若a ≠0时,则f ′(x )=a (x +1)⎣⎢⎡⎦⎥⎤x +⎝ ⎛⎭⎪⎫1+1a .①若a >0,则当x ∈⎝ ⎛⎭⎪⎫-∞,-1-1a 时,f ′(x )>0,f (x )单调递增;当x ∈⎝ ⎛⎭⎪⎫-1-1a ,-1时,f ′(x )<0,f (x )单调递减;当x ∈(-1,0)时,f ′(x )>0,f (x )单调递增.②若-1≤a <0,则当x ∈(-∞,-1)时,f ′(x )<0,f (x )单调递减;当x ∈(-1,0)时,f ′(x )>0,f (x )单调递增.③若a <-1,则当x ∈(-∞,-1)时,f ′(x )<0,f (x )单调递减;当x ∈⎝ ⎛⎭⎪⎫-1,-1-1a 时,f ′(x )>0,f (x )单调递增;当x ∈⎝ ⎛⎭⎪⎫-1-1a ,0时,f ′(x )<0,f (x )单调递减.拓展提升导数研究函数的单调性是高考中最常见的考查方式,对函数性质的研究涉及到方方面面,涉及方法思想较多,数形结合思想、分类讨论思想、逆向思维等等.三、求函数的极值与最值例3 设a 为实数,函数f (x )=x 3-x 2-x +a .(1)求f (x )的极值;(2)当a 在什么范围内取值时,曲线y =f (x )与x 轴仅有一个交点. [解] (1)f ′(x )=3x 2-2x -1,若f ′(x )=0,则x =-13或x =1. 当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )的极大值是f ⎝ ⎛⎭⎪⎫-13=a +527,极小值是f (1)=a -1.(2)因为函数f (x )=x 3-x 2-x +a =(x -1)2(x +1)+a -1.由此可知,x 取足够大的正数时,有f (x )趋于+∞,取足够小的负数时,有f (x )趋于-∞,所以曲线y =f (x )与x 轴至少有一个交点,从(1)中可知f (x )的单调性,可画出草图.当f (x )的极大值a +527<0,即a ∈⎝ ⎛⎭⎪⎫-∞,-527时,它的极小值也小于0,因此曲线y =f (x )与x 轴仅有一个交点,它在(1,+∞)上.当f (x )的极小值a -1>0,即a ∈(1,+∞)时,它的极大值也大于0,因此曲线y =f (x )与x 轴仅有一个交点,它在⎝ ⎛⎭⎪⎫-∞,-13上. 故当a ∈⎝ ⎛⎭⎪⎫-∞,-527∪(1,+∞)时,曲线y =f (x )与 x 轴仅有一个交点.拓展提升一般地,对于“双峰”函数(只有一个极大值和一个极小值的函数),当函数f (x )的极大值小于零或函数f (x )的极小值大于零时,图象与x 轴仅有一个交点.四、恒成立问题例4 已知f (x )=x 3-12x 2-2x +5,当x ∈[-1,2]时,f (x )<m 恒成立,求实数m 的取值范围.[解] ∵f (x )=x 3-12x 2-2x +5, ∴f ′(x )=3x 2-x -2.令f ′(x )=0,即3x 2-x -2=0,∴x =1或x =-23. 当x ∈⎝ ⎛⎭⎪⎫-1,-23时,f ′(x )>0,f (x )为增函数;当x ∈⎝ ⎛⎭⎪⎫-23,1时,f ′(x )<0,f (x )为减函数;当x ∈(1,2)时,f ′(x )>0,f (x )为增函数. 所以当x =-23时,f (x )取得极大值f ⎝ ⎛⎭⎪⎫-23=5+2227;当x =1时,f (x )取得极小值f (1)=72. 又f (-1)=112,f (2)=7.因此,f (x )在[-1,2]上的最大值为f (2)=7. 要使f (x )<m 恒成立,须f (x )m ax <m ,即m >7. 所以所求实数m 的取值范围是(7,+∞). 拓展提升本题中要使m >f (x )恒成立,只要m 大于f (x )的最大值即可,从而求出f (x )的最大值,问题就可得到解决,若将本题中“f (x )<m 恒成立”改为“f (x )>m 恒成立”,则只需求出f (x )的最小值即可.五、利用导数证明不等式例5 已知a ,b 为实数,且b >a >e ,求证:a b >b a . [证明] 因为b >a >e ,所以要证a b >b a ,只需证b ln a >a ln b . 设f (x )=x ln a -a ln x (x >a ),则f ′(x )=ln a -ax .因为x >a >e ,所以ln a >1,且ax <1. 所以f ′(x )>0,且f ′(a )>0.所以函数f (x )=x ·ln a -a ln x 在[a ,+∞)上是单调递增函数. 所以f (b )>f (a )=a ln a -a ln a =0,即b ln a -a ln b >0, 所以b ln a >a ln b ,故a b >b a . 拓展提升“构造”是一种重要而灵活的思维方式,应用好构造思想解题的关键是:一要有明确的方向,即为什么目的而构造;二是要弄清条件的本质特点,以便重新进行逻辑组合.六、利用导数解决实际问题例6 烟囱向其周围地区散落烟尘造成环境污染.已知A ,B 两座烟囱相距20 km ,其中B 烟囱喷出的烟尘量是A 烟囱的8倍,经环境检测表明:落在地面某处的烟尘浓度与该处到烟囱距离的平方成反比,而与烟囱喷出的烟尘量成正比.(比例系数为k ).若C 是AB 连线上的点,设AC =x km ,C 点的烟尘浓度记为y .(1)写出y 关于x 的函数表达式;(2)是否存在这样的点C ,使该点的烟尘浓度最低?若存在,求出AC 的距离;若不存在,说明理由.[解] (1)不妨设A 烟囱喷出的烟尘量为1,则B 烟囱喷出的烟尘量为8,由AC =x (0<x <20),可得BC =20-x .依题意,点C 处的烟尘浓度y 的函数表达式为: y =kx 2+k ·8(20-x )2(0<x <20).(2)对(1)中的函数表达式求导得y ′=-2k x 3+16k(20-x )3=2k (9x 3-60x 2+1200x -8000)x 3(20-x )3.令y ′=0,得(3x -20)·(3x 2+400)=0; 又0<x <20,∴x =203.∵当x ∈⎝ ⎛⎭⎪⎫0,203时,y ′<0;当x ∈⎝ ⎛⎭⎪⎫203,20时,y ′>0, ∴当x =203时,y 取最小值.故存在点C ,当AC =203 km 时,该点的烟尘浓度最低. 拓展提升在利用导数解决这类优化问题时,其一般步骤是:(1)设出恰当的未知量,并确定未知量的取值范围(即函数定义域);(2)依题意将所求最值的量表示为未知量的函数;(3)求出函数的导数,令导数等于0,得到导数为0的点;(4)通过单调性确定出函数的最值点以及最值.七、定积分的应用例7 已知A (-1,2)为抛物线C :y =2x 2上的点,直线l 1过点A ,且与抛物线C 相切于A 点,直线l 2:x =a (a ≠-1)交抛物线C 于点B ,交直线l 1于点D .(1)求直线l 1的方程;(2)若△BAD 的面积为S 1,求|BD |及S 1的值;(3)设由抛物线C ,与直线l 1,l 2所围成图形的面积为S 2,求证S 1∶S 2的值为与a 无关的常数.[解] 如下图所示.(1)由y =2x 2,得y ′=4x . 当x =-1时,y ′=-4, ∴直线l 1的方程为 y -2=-4(x +1), 即4x +y +2=0.(2)由⎩⎨⎧y =2x 2,x =a ,得B 点坐标为(a,2a 2),由⎩⎨⎧x =a ,4x +y +2=0得D 点坐标为(a ,-4a -2),∴点A 到直线BD 的距离为|a +1|, |BD |=2a 2+4a +2=2(a +1)2, ∴S 1=12|BD |·|a +1|=|a +1|3.拓展提升(1)由导数的几何意义求出切线l1的斜率,再由点斜式写出直线l1的方程.(2)求出点A到直线l2的距离以及B,D两点的坐标,从而由三角形的面积公式可求出S1.(3)由定积分的定义求出S2,注意讨论a的取值,再证明S1∶S2是常数.。
高中数学 第一章 导数及其应用 1.5 定积分的概念 1.6 微积分基本定理要点讲解素材 新人教A版选修22

定积分和微积分要点讲解一、定积分的概念教材上从求曲边梯形的面积和变速运动的路程出发引入了定积分的概念:如果函数()f x 在区间[],a b 上是连续的,用分点011i i n a x x x x x b -=<<<<<<=将区间[],a b 等分成n 个小区间,在每个小区间[]1,i i x x -上任取一点i ξ(1,2,,i n =),作和式()()11nni i i i b af x f nξξ==-∆=∑∑,当n →∞时,上述和式无限接近某个常数,这个常数叫做函数()f x 在区间[],a b 上的定积分,记作()baf x dx ⎰,即()()1li m nbi an i b af x dx f n ξ→∞=-=∑⎰. 对这个概念我们应从如下几个方面进行理解1.对区间[],a b 分割的绝对任意性:在定义中我们将区间[],a b 进行等分是为了计算上的方便,实际上对区间[],a b 的分割是任意的,这时只要这些区间中长度最大的区间的长度趋向于零即可.2.在每个小区间[]1,i i x x -上取点的绝对任意性:在教材上的两个例题是为了计算的方便将点取小区间[]1,i i x x -的端点,实际上我们可以在区间[]1,i i x x -上任意取点,如取中点等.3.当n →∞时,和式()()11nni i i i b af x f nξξ==-∆=∑∑无限接近某个常数的唯一确定性.它不依赖于对区间[],a b 的分割方法,也不依赖于在每个小区间[]1,i i x x -上取点的方式.即()baf x dx ⎰是一个客观上存在的仅仅依赖于积分上下限和被积函数的唯一确定的常数.同时它也与积分变量无关,即()()b baaf x dx f t dt =⎰⎰.4.数学思想上的划时代意义.产生定积分概念的"以直代曲""以匀速代变速"和"无限逼近"的数学思想,使人类在认识数学世界的观念上有了重大突破,在数学的发展史上具有重大意义.我们要仔细理解体会这种思想,可以说这才是我们在高中阶段学习定积分的真正目的.例如在求曲边梯形的面积的课本例1中,我们把区间[]0,1等分成n 个小区间,在每个小区间上"以直代曲"就将曲边问题转化为直边问题,随着n 的增大这些小区间的宽度越来越小,这时在每个小区间上直边形的面积已经和曲边形的面积非常接近,我们就可以以这些小直边形的面积之和近似代替曲边形的面积,而当n →∞时这些小直边形就几乎变成了线段,这时小直边形的面积几乎就等于小曲边形的面积,这无穷个几乎变成了线段的直边形的面积之和就是所求的曲边形的面积了.我们常说"线动成面",对课本例1,我们也可以这样形象的理解:就将小直边形的宽度变成零,使其成为线段,这时小直边形和小曲边形的就完全重合了,而将这些线段从0到1运动就形成了()2f x x =,1x =, x 轴所围成的曲边形,将这些线段的"面积"积累起来就是所求的曲边形的面积. 二、微积分基本定理的应用作变速直线运动的物体如果其运动方程是()S t ,那么该物体在时间区间[],a b 内通过的路程是()()S b S a -,另一方面由导数的物理意义,该物体在任意时刻的瞬时速度为()()'S t s t =,我们把该物体运动的时间区间[],a b 无限细分,在每个小时间段上,将其速度看作匀速,就能求出该物体在每个小时间段上通过的路程,将这无限个小时间段上的路程加起来,就是该物体在时间区间[],a b 上通过的路程,由定积分的定义可知,这个数值是()bas t dt ⎰.由此可知()()()()'b baaS t dt s t dt S b S a ==-⎰⎰.一般地有如下结论:如果()f x 是[],a b 上的连续函数,并且有()()F x f x '=,则()()()baf x dx F b F a =-⎰.这就是微积分基本定理,是微积分学最为辉煌的定理,是数学发展史的一个重要里程碑,利用这个定理可以很方便的计算定积分,其关键是找到一个函数使其导数等于被积函数,下面举例说明它在计算定积分上的应用.例1 计算定积分()1xx ee dx --⎰分析:()'x x e e =,()'x x e e --=-,故()'x x x x e e e e --+=-.解:()()11'112xxxx xx eedx eedx ee e e---⎡⎤-=+=+=+-⎣⎦⎰⎰.点评:关键是找()F x ,使()'x xF x e e -=-,可以通过求导运算求探求.例2 计算定积分220cos sin 22x x dx π⎛⎫- ⎪⎝⎭⎰.分析:被积函数比较复杂,我们可以先化简,再探求.由于222cos sin cos 2cos sin sin 1sin 222222x x x x x x x ⎛⎫-=-+=- ⎪⎝⎭,而'1x =,()cos 'sin x x =-,故()2cos '1sin cos sin 22x x x x x ⎛⎫+=-=- ⎪⎝⎭.解:()()[]2'2222000cos sin 1sin cos cos 2212x x dx x dx x x dx x x πππππ⎛⎫-=-=+=+ ⎪⎝⎭=-⎰⎰⎰点评:被积函数较为复杂时要先化简在求解. 掌握如下的定积分计算公式对解题是有帮助的.①111bm m ab x dx xa m +=+⎰(,1m Q m ∈≠-),②1ln bab dx x a x =⎰,③b x x a b e dx e a =⎰,④ln x n xm n a a dx ma =⎰,⑤cos sin bab xdx xa=⎰,⑥()sin cos babxdx x a=-⎰.例如 例3 计算定积分()1223x x dx -⎰.分析:先展开再利用上面的定积分公式. 解:()1223xx dx -⎰=()104269xxxdx -⋅+⎰=146920ln 4ln 6ln 9x x x ⎛⎫-⋅+ ⎪⎝⎭ 3108ln 4ln 6ln 9=-+. 点评:根据定积分公式结合定积分的运算性质是计算定积分的根本.从上面不难看出利用微积分基本定理计算定积分比用定义计算要方便的多,在实际解题中要注意对被积函数的化简展开以及有意识的利用定积分的三条运算性质,以起到化难为易的作用.三、定积分的三条性质根据定积分的定义不难得到定积分的三条性质 性质1.常数因子可提到积分号前,即:()()bbaakf x dx k f x dx =⎰⎰(k 为常数);性质2.代数和的积分等于积分的代数和: 即:()()()()bb bx aa a f x g x dx f x d g x dx ±=±⎡⎤⎣⎦⎰⎰⎰;性质3.(定积分的可加性)如果积分区间[],a b 被点c 分成两个小区间[],a c 与[],c b , 则:()()()bc daacf x dx f x dx f x dx =+⎰⎰⎰。
导数及其应用 章末归纳总结 课件

2.求函数f(x)在闭区间[a,b]上的最大值、最小值的方法 与步骤:
(1)求f(x)在(a,b)内的极值; (2)将(1)中求得的极值与f(a)、f(b)相比较,其中最大的一个 值为最大值,最小的一个值为最小值. 特别地,①当f(x)在[a,b]上单调时,其最小值、最大值在 区间端点取得;②当f(x)在(a,b)内只有一个极值点时,若在这 一点处f(x)有极大(或极小)值,则可以断定f(x)在该点处取得最 大(或最小)值,这里(a,b)也可以是(-∞,+∞).
当a<0时,函数f(x)在(-1,-1-a)上单调递减;在[-1- a,+∞)上单调递增.
(3)①当a≥0时,由(2)可知,函数f(x)在(-1,+∞)上单调 递增.此时,(a,a+1)⊆(-1,+∞),故f(x)在(a,a+1)上为 增函数.
②当a<0时,由(2)可知,函数f(x)在[-1-a,+∞)上单调 递增.
5.讨论含参数的函数的单调性时,必须注意分类讨论. 6.极值与最值的区别和联系 (1)函数的极值不一定是最值,需对极值和区间端点的函 数值进行比较,或者考察函数在区间内的单调性. (2)如果连续函数在区间(a,b)内只有一个极值,那么极大 值就是最大值,极小值就是最小值. (3)可导函数的极值点导数为零,但是导.数.为.零.的.点.不.一. 定.是.极.值.点... (4)极值是一个局.部.概念,极大值不.一.定.比极小值大.
y0-y1=f ′(x1)(x0-x1)① 又y1=f(x1)② 由①②求出x1,y1的值. 即求出了过点P(x0,y0)的切线方程.
已知曲线y=13x3+43. (1)求曲线在点P(2,4)处的切线方程; (2)求曲线过点P(2,4)的切线方程; (3)求斜率为4的曲线的切线方程. [解析] (1)∵P(2,4)在曲线y=13x3+43上,且y′=x2, ∴在点P(2,4)处的切线的斜率k=y′|x=2=4, ∴曲线在点P(2,4)处的切线方程为y-4=4(x-2),即4x-y -4=0.
一元函数的导数及其应用小结

3.导数在研究函数中的应用
追问:使用导数方法可解决哪些问题呢?
单调性
求单调区间
3.导数在研究函数中的应用
追问:使用导数方法可解决哪些问题呢?
单调性
零点个数
求单调区间
方程解的个数
3.导数在研究函数中的应用
追问:使用导数方法可解决哪些问题呢?
单调性
零点个数
极值
求单调区间
如:f ( x) x3,
f ( x) 3x 2 ≥ 0.
3.导数在研究函数中的应用
导数的概念
定量地刻画函
数局部变化
用导数研究
函数的性质
函数的极值
函数局部的最大
(最小)值.
3.导数在研究函数中的应用
追问:导数为0的点一定是函数的极值点吗?函数的极值点导数一定为0吗?
3.导数在研究函数中的应用
单调性 f ( x2 ) f ( x1 )
0.
(增函数)
x2 x1
最大
(小)值
导数
3.导数在研究函数中的应用
原有方法
x1 , x2 (a, b),
单调性 f ( x2 ) f ( x1 )
0.
(增函数)
x2 x1
最大
(小)值
导数
x (a, b),
f ( x) 0.
(sin x) cos x, (cos x) sin x;
1
(ex)′ = ex , (ln x) .
x
2.导数的运算
基本初等函数
加、减、乘、除
导数定义
导数定义
基本初等函
数的导数
复杂的函数
导数知识点归纳及应用

导数知识点归纳及应用导数是微积分中非常重要的一个概念,它描述了一个函数在其中一点处的变化率。
导数的应用非常广泛,不仅在数学中有着重要的意义,也在物理、经济、工程等领域中得到了广泛的应用。
下面将详细介绍导数的定义、性质及其应用。
首先,我们来看导数的定义。
设函数f(x)在点x=a处的导数为f'(a),则导数的定义为:f'(a) = lim_(x→a) [f(x)-f(a)]/(x-a)其中,lim表示极限运算。
这个定义表明,导数可以通过求极限来得到,它描述了函数在点a处的变化率。
根据导数的定义,我们可以得到一些导数的基本性质。
首先,导数有线性性质,即对于任意的实数a和b,以及函数f(x)和g(x),有:(af(x)+bg(x))' = af'(x)+bg'(x)其次,导数满足乘法法则和链式法则。
乘法法则表明,对于函数的乘积,其导数可以通过各个函数的导数来计算,具体而言有:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)链式法则表明,对于复合函数,其导数可以通过外层函数和内层函数的导数来计算,具体而言有:(f(g(x)))'=f'(g(x))g'(x)此外,导数还满足反函数法则和导数的平均值定理。
反函数法则表明,对于反函数,其导数可以通过原函数的导数来计算,具体而言有:(f^(-1)(y))'=1/f'(x)导数的平均值定理表明,对于一个区间[a,b]上连续且可导的函数f(x),存在一个点c,在[a,b]内,使得f'(c)等于函数在该区间的平均变化率。
了解了导数的定义和性质后,我们可以来看一些导数的应用。
首先,导数可以用于计算函数在其中一点的斜率。
具体而言,如果函数f(x)在点x=a处的导数存在,那么它就可以表示函数在该点处的斜率,即函数在该点处的切线的斜率。
其次,导数还可以用于确定函数的最值。