第一章导数及其应用练习题

合集下载

人教版高中数学选修2-2习题第一章导数及其应用1.1.2导数的概念

人教版高中数学选修2-2习题第一章导数及其应用1.1.2导数的概念

第一章导数及其应用1.1变化率与导数导数的观点A 级基础稳固一、选择题1. y= x2在 x= 1 处的导数为 ()A. 2x B. 2 C. 2+ x D. 1分析:由于 f(x)= x2,x= 1,因此y= f(1+x)- f (1)= (1+x)2- 1= 2x+ (x)2,所以y=(2+x)= 2.x答案: B2.一物体运动知足曲线方程s=4t2+ 2t- 3,且 s′(5)= 42(m/s),其实质意义是 () A.物体 5 秒内共走过42 米B.物体每 5 秒钟运动42 米C.物体从开始运动到第 5 秒运动的均匀速度是42 米/秒D.物体以 t= 5 秒时的刹时速度运动的话,每经过一秒,物体运动的行程为42 米分析:由导数的物理意义知,s′ (5)= 42(m/s)表示物体在t= 5 秒时的刹时速度.答案: D3.设函数 f (x)在点 x0邻近有定义,且有 f(x0+x)- f(x0 )= a x+ b(x)2,(a,b 为常数 ),则 ()A. f′ (x)= a B. f′ (x)= bC. f′ (x0)= a D. f′ (x0)= b分析:由于 f′(x=f( x0+x)-f(x)=0)xa x+ b(x)2=(a+ b x)= a,因此 f′(xx0)=a.答案: C4.已知 y=x+ 4,则 y′|x1= ________.=555A. 2B. 10C. 5 D.-10分析:由题意知y=1+x+ 4- 1+ 4=5+x-5,y+-5+-5所以=5x1=5x=. 所以 y′|xx x=xx=5x ( 5+ x +5) 10.答案: B5.假如某物体做运动方程为s = 2(1- t 2)的直线运动 (s 的单位为 m , t 的单位为 s),那么 其在 1.2 s 末的刹时速度为 ()A .- 4.8 m/sB .- 0.88 m/sC . 0.88 m/sD . 4.8 m/s解 析 : 运 动 物 体 在1.2s 末 的 瞬 时 速 度 即 为 s 在 1.2 处 的 导数 , 所 以f ( 1.2+ t )- f ( 1.2)=t222[1-( 1.2+t ) ]- 2×( 1- 1.2 )=2(- 答案: A 二、填空题6.设函数t - 2.4)=- 4.8(m/s).f(x)知足f ( 1)- f ( 1- x )=- 1,则 f ′(1)= ________.x分析: f ( 1)- f ( 1- x ) = f ( 1- x )- f ( 1)= f ′(1)=- 1.x- x答案:- 17.函数 f(x)= x 2+ 1 在 x = 1 处可导,在求 f ′(1)的过程中,设自变量的增量为x ,则函数的增量y = ________.分析:y = f(1+ x)- f(1) =- (1 2+ 1)=2 x + ( x)2.答案: 2 x + (x)28.某物体做匀速直线运动,其运动方程是 s = vt ,则该物体在运动过程中其均匀速度与任何时辰的刹时速度的大小关系是________.s ( +t )- s ( t )分析: v 0== s t 0=ttv ( t 0+ t )- v ( t 0)=v tt= v.t答案:相等三、解答题19.利用导数的定义,求函数y = x 2+ 2 在点 x = 1 处的导数. 解:由于y = 1 2+2 - 1 =( x + x ) x 2+ 2- 2x x -(x ) 2,因此y =- 2x - x ,( x + x ) 2· x 2 x ( x + x ) 2· x 2因此 y ′=y = - 2x - x2=- 23,( x +2xx ) · xx因此 y ′|x =1=- 2.10.在自行车竞赛中,运动员的位移与竞赛时间t 存在关系 s(t)= 10t + 5t 2(s 的单位是 m ,t 的单位是 s).(1)求 t = 20,t = 0.1 时的s 与s ;t(2)求 t = 20 时的速度.解: (1) 当 t = 20, t = 0.1 时,s = s(20+ t)- s(20)= 10(20+ 0.1)+ 5(20+ 0.1)2- (10 ×20+ 5× 202)= 1+ 20+ 5×0.01=21.05.因此s 21.05 = 210.5.= 0.1ts( + t)+(+ t) 2- 10t - 5t 2(2)v ==10 t 5 t =tt5(t ) 2+ 10 t + 10tt(5 t + 10+ 10t)= 10+ 10t ,t=因此 t = 20 时的速度即为10+ 10×20= 210(m/s).B 级 能力提高1.某物体运动规律是 s = t 2 - 4t + 5,若此物体的刹时速度为 0,则 t = ()A .3B .2.5C .2D .1分析: s = (t + t)2- 4(t +t) + 5- ( t 2- 4t + 5)= 2t t + ( t)2- 4 t ,由于 v =st= 2t - 4= 0,因此 t = 2.答案: C2.婴儿从出生到第24 个月的体重变化如下图,第二年婴儿体重的均匀变化率为________kg/ 月.分析:第二年婴儿体重的均匀变化率为14.25- 11.25= 0.25(kg/月 ).24- 12答案: 0.253.若一物体运动方程是 (s 的单位是 m , t 的单位是 s)3t 2+ 2( t ≥3),s =29+ 3( t - 3) 2( 0≤t < 3) .求: (1) 物体在 t ∈内的均匀速度;(2) 物体的初速度v 0;(3) 物体在 t = 1 时的刹时速度.解: (1) 由于物体在 t ∈内的时间变化量为t = 5-3= 2,物体在 t ∈内的位移变化量为:= × 2+ 2- (3 ×32+ 2)= 3×(52- 32s 3 5 )= 48,因此物体在 t ∈上的均匀速度为 s 48 = 24(m/s).= 2t (2) 求物体的初速度 v 0 即求物体在 t = 0 时的刹时速度.由于物体在 t = 0 邻近的均匀变化率为s ( +)- ( ) == ftftt29+ 3[( 0+ t )- 3]2- 29- 3( 0- 3) 2= 3t - 18.t因此物体在 t = 0 处的刹时变化率为,s (3 t - 18)=- 18,t =即物体的初速度为- 18 m/s.(3)物体在 t = 1 时的刹时速度即为函数在 t = 1 处的刹时变化率.由于物体在 t = 1 邻近的均匀变化率为:s ( + )- ( )= f 1 t f 1 = tt29+ 3[( 1+ t )- 3]2- 29- 3( 1- 3) 2t - 12,= 3t因此物体在 t = 1 处的刹时变化率为:s = (3 t - 12)=- 12.t即物体在 t = 1 时的速度为- 12 m/s.。

高中数学 第一章 导数及其应用 1.3 导数在研究函数中的运用同步练习(含解析)新人教A版选修2-2

高中数学 第一章 导数及其应用 1.3 导数在研究函数中的运用同步练习(含解析)新人教A版选修2-2

高中数学第一章导数及其应用1.3 导数在研究函数中的运用同步练习(含解析)新人教A版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章导数及其应用1.3 导数在研究函数中的运用同步练习(含解析)新人教A版选修2-2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章导数及其应用1.3 导数在研究函数中的运用同步练习(含解析)新人教A 版选修2-2的全部内容。

1.3导数在研究函数中的运用1。

曲线f (x )=x ㏑x 在点x =1处的切线方程是( )A . y=2x +2B .y=2x -2C .y=x —1D .y=x +1答案:C解析:解答:根据导数的几何意义求出函数f (x )在x =1处的导数,从而求出切线的斜率,再用点斜式写出切线方程,化成一般式即可解:y=x ln x , y '=1×ln+x •1x=1+ln x , y '=1又当x =1时y=0,∴切线方程为y=x -1即x —y-1=0,故选:C分析:此题主要考查导数的计算,以及利用导数研究曲线上某点切线方程,属于基础题 2.曲线y=2xx -在点(1,-1)处的切线方程为 A .y=x -2 B .y=—3x +2 C .y=2x —3 D .y= —2x +1 答案:D解析:解答:根据题意 ,由于曲线y=2x x -,则可知其导数2222(2)(2)x x y x x ---'==--,故当x =1时,则可知导数值为—2,则由点斜式方程可知为y= —2x +1,选D.分析:主要是考查了导数在研究曲线的切线方程中的运用,属于基础题. 3. 函数21ln 2y x x =-的单调递减区间为( ) A.(—1,1] B.(0,1] C 。

高中数学选修22:第一章导数及其应用单元测试题.doc

高中数学选修22:第一章导数及其应用单元测试题.doc

数学选修 2-2 第一章单元测试题一、选择题 ( 本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f ( x) 的定义域为开区间 ( a,b) ,导函数f′(x) 在( a,b) 内的图像如图所示,则函数 f ( x)在开区间( a,b)内有极小值点()A.1 个B.2 个C.3 个D.4 个1 12.在区间[ 2,2] 上,函数 f ( x)=x2+px+q 与g( x)=2x+x2在1同一点处取得相同的最小值,那么f(x)在[2,2]上的最大值是()C.8D.423.点P在曲线y=x3-x+3上移动,设点P处的切线的倾斜角为α,则α 的取值范围是( )ππ3A.[0 ,2 ] B.[0 ,2 ] ∪[ 4π,π)3 π 3C.[ 4π,π ) D.[ 2,4π]14.已知函数f ( x) =2x4-2x3+3m,x∈R,若f ( x) +9≥0恒成立,则实数 m的取值范围是()3 3A.m≥2 B.m>23 3C.m≤2 D.m<2x2 25.函数f ( x) =cos x-2cos 2的一个单调增区间是 ()f x 0+3 -f x 06.设f ( x) 在x=x0 处可导,且lim Δx=1,Δx→0则 f ′(x0)等于( )A.1 B.0C.3x+97.经过原点且与曲线y=x+5相切的切线方程为()A.x+y=0B.x+25y=0C.x+y= 0 或x+25y=0D.以上皆非8.函数f ( x) =x3+ax2+bx+c,其中a,b,c为实数,当a2-3b<0 时,f ( x) 是()A.增函数B.减函数C.常数D.既不是增函数也不是减函数13 29.若a>2,则方程3x -ax +1=0 在(0,2) 上恰好有 ()A.0 个根B.1 个根C.2 个根D.3 个根1 10.一点沿直线运动,如果由始点起经过t s 后距离为s=4t 4-53t 3+2t 2,那么速度为零的时刻是( )A.1 s 末B.0 sC.4 s 末D.0,1,4 s 末x2,x∈[0,1],2f(x) d x 等于 () 11.设f ( x) =则2-x,x∈ 1,2] ,0D.不存在sin x sin x1 sin x2 12.若函数 f(x) =x,且 0<x1<x2 <1,设 a=x1 ,b=x2 ,则 a,b 的大小关系是 ( )A.a>b B.a<bC.a=b D.a、b的大小不能确定二、填空题 ( 本大题共 4 小题,每小题 5 分,共 20 分.把答案填在题中横线上 )1 3 213.若 f(x) =3x -f ′(1)x +x+5,则 f ′(1) = ________.π π14.已知函数 f(x) 满足 f(x) =f( π-x) ,且当 x∈ -2,2 时,f(x) =x+sin x,设a=f(1) ,b=f(2) ,c=f(3) ,则a、b、c 的大小关系是 ________.15.已知函数f(x) 为一次函数,其图像经过点(2,4) ,且1f(x) d x=3,则函数f(x) 的解析式为________.16.(2010 ·江苏卷) 函数2y=x(x>0)的图像在点 2(a k,a k) 处的切线与x 轴的交点的横坐标为a k+1,其中k∈N*. 若a1=16,则a1+a3+a5的值是________.三、解答题 ( 本大题共 6 小题,共 70 分,解答应出写文字说明、证明过程或演算步骤 )17.(10 分) 如图,直线y=kx分抛物线y=x-x2与x轴所围成图形为面积相等的两部分,求k 的值.18.(12 分) 已知函数 f(x) =x4-4x3+ax2-1 在区间 [0,1] 上单调递增,在区间 [1,2) 上单调递减.(1)求 a 的值;(2)若点 A(x0,f(x0)) 在函数 f(x) 的图像上,求证:点 A关于直线x=1 的对称点 B 也在函数 f(x) 的图像上.19.(12 分) 设 x=- 2 与 x=4 是函数 f(x) =x3+ax2+bx 的两个极值点.(1)求常数 a,b;(2)试判断 x=- 2,x= 4 是函数 f(x) 的极大值还是极小值,并说明理由.20.(12 分) 已知 f(x) =ax3-6ax2+b,x∈[ -1,2] 的最大值为 3,最小值为- 29,求 a,b 的值.21.(12 分)(2010 ·重庆卷 ) 已知函数 f(x) =ax3+x2+ bx( 其中常数a,b∈R) ,g( x) =f ( x) +f′(x) 是奇函数.(1)求 f ( x)的表达式;(2)讨论 g( x)的单调性,并求 g( x)在区间[1,2]上的最大值与最小值.1-x22.(12 分) 已知函数f ( x) =ln( ax+1) +1+x,x≥0,其中a>0.(1)若 f ( x)在 x=1处取得极值,求 a 的值;(2)求 f ( x)的单调区间;(3)若 f ( x)的最小值为1,求 a 的取值范围.参考答案1.答案 A解析设极值点依次为 x1,x2,x3且 a<x1<x2<x3<b,则 f ( x) 在( a,x1) ,( x2,x3) 上递增,在 ( x1,x2) ,( x3,b) 上递减,因此,x1、x3是极大值点,只有x2是极小值点.2.答案 D3.答案 B4.答案 A1解析因为函数 f ( x)=2x4-2x3+3m,所以 f ′(x)=2x3-6x2.令 f ′(x)=0,得 x=0或 x=3,经检验知 x=3是函数的一个最27小值点,所以函数的最小值为 f (3)=3m-2.不等式 f ( x)+9≥0恒成27 3立,即 f ( x)≥-9恒成立,所以3m-2≥-9,解得 m≥2.5.答案 A解析 f ( x)=cos2x-cos x-1,∴f′(x)=-2sin x·cos x+sin x=sin x·(1-2cos x).令 f ′(x)>0,结合选项,选A.6. 答案 D7. 答案 D8. 答案 A9. 答案 B解析 1 3 2设 f ( x ) =3x -ax +1,则2f ′(x )=x -2ax =x ( x -2a ) ,当 x ∈(0,2) 时, f ′(x )<0,f ( x ) 在(0,2) 上为减函数,又 f (0) f (2) =8 111 3-4a +1 = 3 -4a <0,f ( x ) =0 在(0,2) 上恰好有一个根,故选 B.10. 答案 D11. 答案 C解析 数形结合,如图.2f(x) d x = 1x 2d x + 2(2 -x) d x0 11 3 11 22= 3x+ 2x -2x11 1= 3+(4 -2-2+2)5= 6,故选 C .12. 答案Af ′(x) =x cos x -sin x解析 x 2, 令 g(x) =x cos x -sin x ,则g ′(x) =- x sin x +cos x -cos x =- x sin x.∵0<x<1,∴ g ′(x)<0 ,即函数 g(x) 在 (0,1) 上是减函数,得 g(x)<g(0) =0,故 f ′(x)<0 ,函数 f(x) 在(0,1) 上是减函数,得 a>b ,故选A .213. 答案 32 2解析 f ′(x) = x -2f ′(1)x + 1,令 x=1,得 f ′(1) =3.14. 答案 c<a<b解析f(2) = f( π-2) , f(3) = f( π- 3) ,因为 f ′(x) = 1+π ππcos x≥0,故f(x)在-2,2上是增函数,∵2 >π-2>1>π-3>0,∴f( π-2)>f(1)>f( π-3) ,即 c<a<b.2815.答案 f(x) =3x+3解析设函数 f(x) =ax+b(a ≠0) ,因为函数 f(x) 的图像过点(2,4) ,所以有 b=4-2a.∴1 f(x) d x= 1 (ax +4-2a) d x0 01 2 1 1=[ ax +(4 -2a)x] | 0=a+4-2a=1.2 22 8 2 8∴a=3. ∴b=3. ∴f(x) =3x+3.16. 答案21解析2 2∵y′=2x,∴过点( a k,a k)处的切线方程为y-a k=2a k( x1-a k),又该切线与 x 轴的交点为( a k+1,0),所以 a k+1=2a k,即数列{ a k}1是等比数列,首项a1=16,其公比q=2,∴ a3=4,a5=1,∴ a1+a3 +a5=21.17. 解析抛物线 y =x -x 2 与 x 轴两交点的横坐标为x 1=0,x 2=1,所以,抛物线与 x 轴所围图形面积 S = 12) d x =x 2 x 3 11 (x -x 2 -3 0=2-1 13=6.y =x -x 2,又 由此可得抛物线 y =x -x 2 与 y =kx 两交点的横y =kx ,S- 2 x 3 -坐标 x 3= , 4= - ,所以 = 1-k (x - x 2 kx) d x =1 k x - 1k -0 x 1 k 2 02313=6(1 -k) .3又 S = ,所以 (1 -k) 3=1,∴ k =1- 4.622118. 解析 (1) 由函数 f(x) =x4-4x3+ax2-1 在区间 [0,1] 单调递增,在区间 [1,2) 单调递减,∴x =1 时,取得极大值,∴ f ′(1) = 0.又 f ′(x) = 4x3-12x2+2ax ,∴4-12+2a = 0? a = 4.(2) 点 A(x0,f(x0)) 关于直线 x =1 的对称点 B 的坐标为 (2 -x0, f(x0)) ,f(2 -x0) =(2 -x0)4 -4(2 -x0)3 +4(2 -x0)2 -1= (2 -x0)2[(2 -x0) -2]2 -1= x 40-4x30+ ax20- 1=f(x0) ,∴A 关于直线 x =1 的对称点 B 也在函数 f(x) 的图像上.19.解析 f ′(x) =3x2+2ax+b.(1) 由极值点的必要条件可知:12-4a+b=0,f ′( - 2) =f ′(4) = 0,即48+8a+b=0,解得 a=- 3,b=- 24.或f ′(x) = 3x2+2ax+b=3(x +2)(x -4)=3x2-6x-24,也可得 a=- 3,b=- 24.(2) 由 f ′(x) = 3(x +2)(x -4) .当 x<- 2 时, f ′(x) > 0,当- 2<x<4 时, f ′(x) < 0. ∴x=- 2 是极大值点,而当x>4 时, f ′(x) > 0,∴x=4 是极小值点.20.解析 a≠0( 否则 f(x) =b 与题设矛盾 ) ,由f ′(x) = 3ax2-12ax=0 及 x∈[ - 1,2] ,得 x=0. (1) 当 a>0 时,列表:x ( -1,0) 0 (0,2)f ′(x) +0 -f(x) 增极大值 b 减由上表知, f(x) 在[ - 1,0] 上是增函数,f(x) 在[0,2] 上是减函数.则当 x=0 时, f(x) 有最大值,从而b=3.又f( -1) =- 7a+3,f(2) =- 16a+3,∵a>0,∴ f( -1) >f(2) .从而 f(2) =- 16a+3=- 29,得a=2.(2)当 a<0 时,用类似的方法可判断当 x=0 时 f(x) 有最小值.当x=2 时, f(x) 有最大值.从而 f(0) =b=- 29, f(2)=-16a-29=3,得a=- 2.综上, a= 2,b=3 或 a=- 2,b=- 29.21.解析 (1) 由题意得f′(x) = 3ax2+2x+b. 因此g( x) =f ( x) +f′(x)=ax3+(3 a+1) x2+( b+2) x+b.因为函数 g( x)是奇函数,所以g(-x)=- g( x),即对任意实数x,有 a(- x)3+(3 a+1)(-x)2+( b +2)( -x) +b=- [ ax3+(3 a+1) x2+( b+2) x+b] ,从而 3a+1=0,b=0,解得a=-1,b=0,因此f ( x) 的解析式为f ( x) =-x3+x2. 331(2)由(1) 知g( x) =-1x3+2x,所以g′(x) =-x2+2. 3令g′(x)=0,解得x1=-2,x2=2,则当x<-2或x> 2时,g′(x)<0,从而 g( x)在区间(-∞,-2],[ 2,+∞)上是减函数;当- 2<x< 2时,g′(x)>0 ,从而g( x) 在[ - 2, 2] 上是增函数.由前面讨论知, g( x)在区间[1,2] 上的最大值与最小值只能在x=1,2,2 时取得,而g(1)5=3,g( 2) =4 23,g(2)4=3. 因此g( x)在区间 [1,2] 上的最大值为g( 2) =4 2,最小值为3g(2)4=3.22. 分析解答本题,应先正确求出函数 f ( x)的导数f ′(x),再利用导数与函数的单调性、导数与极值、导数与最值等知识求解,并注意在定义域范围内求解.a 2 ax2+a-2解析 (1) f′(x) =ax+1-1+x 2=ax+1 1+x 2,∵f ( x)在 x=1处取得极值,2∴f ′(1)=0,即 a·1+a-2=0,解得 a=1.(2) f′(x) =ax2+a-22,ax+1 1+x∵x≥0, a>0,∴ ax+1>0.①当 a≥2时,在区间[0,+∞)上, f ′(x)>0,∴f( x)的单调增区间为[0,+∞).②当 0<a<2 时,由 f ′(x)>0,解得 x> 2-a a.由 f ′(x)<0,解得 x< 2-a a.∴f ( x)的单调减区间为(0, 2-a 2-a a ) ,单调增区间为 ( a,+∞ ) .(3) 当a≥2时,由 (2) ①知,f ( x) 的最小值为f (0) =1;当 0<a<2,由 (2) ②知,f ( x) 在x=2-aa 处取得最小值,且2-af ( a )< f (0) =1.综上可知,若 f ( x)的最小值为1,则 a 的取值范围是[2,+∞).。

高中数学第一章导数及其应用1.2.2基本初等函数的导数公式及导数的运算法则(二)练习新人教A版选修2_2

高中数学第一章导数及其应用1.2.2基本初等函数的导数公式及导数的运算法则(二)练习新人教A版选修2_2

1.2.2 基本初等函数的导数公式及导数的运算法则(二)[A 基础达标]1.函数y =(x +1)2(x -1)在x =1处的导数等于( ) A .1 B .2 C .3D .4解析:选D.y ′=[(x +1)2]′(x -1)+(x +1)2(x -1)′ =2(x +1)(x -1)+(x +1)2=3x 2+2x -1, 所以y ′|x =1=4.2.函数y =cos(-x )的导数是( ) A .cos x B .-cos x C .-sin xD .sin x解析:选C.法一:[cos(-x )]′=-sin(-x )·(-x )′=sin(-x )=-sin x . 法二:y =cos(-x )=cos x ,所以[cos(-x )]′=(cos x )′=-sin x .3.(2018·郑州高二检测)若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(-1,0)∪(2,+∞) C .(2,+∞)D .(-1,0)解析:选C.因为f ′(x )=2x -2-4x =2(x -2)(x +1)x,又x >0,所以f ′(x )>0即x-2>0,解得x >2.4.对于函数f (x )=e xx 2+ln x -2kx,若f ′(1)=1,则k 等于( )A.e 2B.e 3 C .-e 2D .-e 3解析:选A.因为f ′(x )=e x(x -2)x 3+1x +2kx2,所以f ′(1)=-e +1+2k =1,解得k =e2,故选A. 5.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2e xf ′(1)+3ln x ,则f ′(1)=( )A .-3B .2eC.21-2eD.31-2e解析:选D.因为f ′(1)为常数, 所以f ′(x )=2e xf ′(1)+3x,所以f ′(1)=2e f ′(1)+3, 所以f ′(1)=31-2e.6.若f (x )=log 3(2x -1),则f ′(2)=________. 解析:因为f ′(x )=[log 3(2x -1)] ′= 1(2x -1)ln 3(2x -1)′=2(2x -1)ln 3,所以f ′(2)=23ln 3.答案:23ln 37.已知函数f (x )=ax 4+bx 2+c ,若f ′(1)=2,则f ′(-1)=________. 解析:法一:由f (x )=ax 4+bx 2+c ,得f ′(x )=4ax 3+2bx .因为f ′(1)=2, 所以4a +2b =2, 即2a +b =1.则f ′(-1)=-4a -2b =-2(2a +b )=-2. 法二:因为f (x )是偶函数, 所以f ′(x )是奇函数, 所以f ′(-1)=-f ′(1)=-2. 答案:-28.已知f (x )=exx,若f ′(x 0)+f (x 0)=0,则x 0的值为________.解析:因为f ′(x )=(e x )′x -e x x ′x 2=e x(x -1)x2(x ≠0). 所以由f ′(x 0)+f (x 0)=0, 得e x0(x 0-1)x 20+e x0x 0=0. 解得x 0=12.答案:129.求下列函数的导数: (1)y =cos(1+x 2); (2)y =sin 2⎝ ⎛⎭⎪⎫2x +π3; (3)y =ln(2x 2+x ); (4)y =x ·2x -1.解:(1)设u =1+x 2,y =cos u ,所以y ′x =y ′u ·u ′x =(cos u )′·(1+x 2)′ =-sin u ·2x =-2x sin(1+x 2). (2)设y =u 2,u =sin v ,v =2x +π3,则y ′x =y ′u ·u ′v ·v ′x =2u ·cos v ·2 =4sin v ·cos v=2sin 2v =2sin ⎝ ⎛⎭⎪⎫4x +2π3. (3)设u =2x 2+x ,则y ′x =y ′u ·u ′x =(ln u )′·(2x 2+x )′ =1u ·(4x +1)=4x +12x 2+x. (4)y ′=x ′·2x -1+x ·(2x -1)′. 先求t =2x -1的导数. 设u =2x -1,则t =u 12,t ′x =t ′u ·u ′x =12·u -12·(2x -1)′=12×12x -1×2=12x -1 . 所以y ′=2x -1+x 2x -1=3x -12x -1. 10.已知抛物线y =ax 2+bx +c 通过点P (1,1),且在点Q (2,-1)处与直线y =x -3相切,求实数a 、b 、c 的值.解:因为曲线y =ax 2+bx +c 过点P (1,1), 所以a +b +c =1.① 因为y ′=2ax +b ,所以4a +b =1.②又因为曲线过点Q (2,-1), 所以4a +2b +c =-1.③ 联立①②③,解得a =3,b =-11,c =9.[B 能力提升]11.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)·…·(x -a 8),则f ′(0)=( )A .26B .29C .212D .215解析:选 C.因为f ′(x )=x ′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x =(x -a 1)(x -a 2)·…·(x -a 8)+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列,所以a 1a 8=a 2a 7=a 3a 6=a 4a 5=8,所以f ′(0)=84=212.12.给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″ (x )=(f ′(x ))′.若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎪⎫0,π2上不是凸函数的是( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=-x 3+2x -1D .f (x )=-x e -x解析:选D.若f (x )=sin x +cos x ,则f ″(x )=-sin x -cos x ,在x ∈⎝⎛⎭⎪⎫0,π2上,恒有f ″(x )<0;若f (x )=ln x -2x ,则f ″(x )=-1x 2,在x ∈⎝⎛⎭⎪⎫0,π2上,恒有f ″(x )<0;若f (x )=-x 3+2x -1,则f ″(x )=-6x ,在x ∈⎝⎛⎭⎪⎫0,π2上,恒有f ″(x )<0;若f (x )=-xe-x,则f ″(x )=2e-x-x e-x=(2-x )e -x,在x ∈⎝⎛⎭⎪⎫0,π2上,恒有f ″(x )>0,不是凸函数.13.已知曲线y =e 2x·cos 3x 在点(0,1)处的切线与直线l 的距离为5,求直线l 的方程.解:因为y ′=(e 2x)′·cos 3x +e 2x·(cos 3x )′=2e 2x·cos 3x -3e 2x·sin 3x , 所以y ′|x =0=2,所以经过点(0,1)的切线方程为y -1=2(x -0), 即y =2x +1.设符合题意的直线方程为y =2x +b ,根据题意,得5=|b -1|5,解得b =6或-4. 所以符合题意的直线方程为y =2x +6或y =2x -4. 14.(选做题)已知函数f (x )=ax 2+ln x 的导数为f ′(x ). (1)求f (1)+f ′(1);(2)若曲线y =f (x )存在垂直于y 轴的切线,求实数a 的取值范围. 解:(1)由题意,函数的定义域为(0,+∞), 由f (x )=ax 2+ln x , 得f ′(x )=2ax +1x,所以f (1)+f ′(1)=3a +1.(2)因为曲线y =f (x )存在垂直于y 轴的切线,故此时切线斜率为0,问题转化为在x ∈(0,+∞)内导函数f ′(x )=2ax +1x存在零点,即f ′(x )=0⇒2ax +1x=0有正实数解,即2ax 2=-1有正实数解,故有a <0,所以实数a 的取值范围是(-∞,0).。

高中新课程数学(新课标人教A版)选修2-2《第一章 导数及其应用》知识点、考点、及其例题

高中新课程数学(新课标人教A版)选修2-2《第一章 导数及其应用》知识点、考点、及其例题

第一章导数及其应用知识点及练习题知识点1:导数概念的引入1. 导数的物理意义:瞬时速率。

一般的,函数()y f x =在0x x =处的瞬时变化率是000()()limx f x x f x x∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000()()limx f x x f x x∆→+∆-∆2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。

容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000()()lim ()n x n f x f x k f x x x ∆→-'==-3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆考点:导数的几何意义及其应用[例题] 已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程; (3)求斜率为4的曲线的切线方程.[变式训练] 已知函数f(x)=x3+x -16.(1)求曲线y =f(x)在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f(x)的切线,且经过原点,求直线l 的方程及切点坐标.知识点2:导数的计算1)基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α=,则1()f x xαα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()xf x a =,则()ln x f x a a '=6 若()x f x e =,则()xf x e '=7 若()log xa f x =,则1()ln f x x a '=8 若()ln f x x =,则1()f x x'=2)导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f xg x f x g x g x g x ''•-•'= 3)复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=•考点:导数的求导及运算1、已知()22sin f x x x π=+-,则()'0f =2、若()sin x f x e x =,则()'f x =3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( )319.316.313.310.D C B A 4.过抛物线y=x 2上的点M )41,21(的切线的倾斜角是() A.30° B.45° C.60° D.90° 5.如果曲线2932y x =+与32y x =-在0x x =处的切线互相垂直,则0x =知识点3:导数在研究函数中的应用1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增; 如果()0f x '<,那么函数()y f x =在这个区间单调递减. 2.函数的极值与导数极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是:(1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值;(2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数函数极大值与最大值之间的关系.求函数()y f x =在[,]a b 上的最大值与最小值的步骤 (1) 求函数()y f x =在(,)a b 内的极值;(2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.考点:1.导数在研究函数单调性中的应用2.导数在求函数极值与最值中的应用题型一:导数在研究函数单调性中的应用[例题] 设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y=(e -1)x +4.(1)求a ,b 的值; (2)求f (x )的单调区间.[变式训练] 设函数f(x)=xekx(k ≠0).(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(-1,1)内单调递增,求k 的取值范围.题型二:导数在求函数极值与最值中的应用[例题]已知函数f(x)=-x3+ax2+bx在区间(-2,1)内,当x=-1时取极小值,当x=23时取极大值.(1)求函数y=f(x)在x=-2时的对应点的切线方程;(2)求函数y=f(x)在[-2,1]上的最大值与最小值.[变式训练] 设函数f(x)=[ax2-(4a+1)x+4a+3]e x.(1)若曲线y=f(x)在点(1,f(1))处的切线方程与x轴平行,求a;(2)若f(x)在x=2处取得极小值,求a的取值范围.知识点4:解决实际问题利用导数的知识,,求函数的最大(小)值,从而解决实际问题考点:1、导数在切线方程中的应用2、导数在单调性中的应用3、导数在极值、最值中的应用4、导数在恒成立问题中的应用题型一:导数在切线方程中的运用1.曲线3x y =在P 点处的切线斜率为k,若k=3,则P 点为( ) A.(-2,-8) B.(-1,-1)或(1,1)C.(2,8)D.(-21,-81)2.曲线53123+-=x x y ,过其上横坐标为1的点作曲线的切线,则切线的倾斜角为( ) A.6π B.4π C.3π D.π43题型二:导数在单调性中的运用1.函数32()31f x x x =-+是减函数的区间为( ) A.(2,)+∞ B.(,2)-∞ C.(,0)-∞ D.(0,2)2.关于函数762)(23+-=x x x f ,下列说法不正确的是( ) A .在区间(∞-,0)内,)(x f 为增函数 B .在区间(0,2)内,)(x f 为减函数 C .在区间(2,∞+)内,)(x f 为增函数 D .在区间(∞-,0)),2(+∞⋃内,)(x f 为增函数3.已知函数()y xf x '=的图象如右图所示(其中'()f x 是函数()f x 的导函数),下面四个图象中()y f x =的图象大致是( )4、(2010年山东21)(本小题满分12分)已知函数).(111)(R a xaax nx x f ∈--+-= (Ⅰ)当处的切线方程;在点时,求曲线))2(,2()(1f x f y a=-=(Ⅱ)当12a ≤时,讨论()f x 的单调性.题型三:导数在最值、极值中的运用1.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( ) A .2B. 3C. 4D.52.函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( ) A.5 , - 15 B.5 , 4 C.- 4 , - 15 D.5 , - 163.已知函数)0()(3≠++=adcxaxxf是R上的奇函数,当1=x时)(xf取得极值-2.(1)试求a、c、d的值;(2)求)(xf的单调区间和极大值;4.设函数2312)(bxaxexxf x++=-,已知12=-=xx和为)(xf的极值点。

数学选修2-2第一章导数及其应用

数学选修2-2第一章导数及其应用

数学选修2-2第一章导数及其应用1.一质点的运动方程是253s t =-,则在一段时间[11]t +∆,内相应的平均速度为( ) A.3()6t ∆+ B.3()6t -∆+ C.3()6t ∆- D.3()6t -∆-2.下列说法正确的是( )A.函数的极大值就是最大值 B.函数的极小值就是函数的最小值 C.函数的最值一定是极值 D.闭区间上的连续函数一定存在最值3.抛物线214y x =在点(21)Q ,处的切线方程( ) A.10x y -++= B.30x y +-= C.10x y -+= D.10x y +-=4.设21()(1)f x x =-,则(0)f '等于( ) A.2-B.1- C.1 D.25.0'()f x =0是可导函数y =f(x)在点x =x 0处有极值的 ( )A 充分不必要条件B 必要不充分条件C 充要条件 (D )非充分非必要条件6.曲线y=x 3+x-2 在点P 0处的切线平行于直线y=4x ,则点P 0的坐标是( ) A .(0,1) B.(1,0) C.(-1,-4)或(1,0) D.(-1,-4)7.函数y=2x 3-3x 2-12x+5在[0,3]上的最大值与最小值分别是( ) A .5 , -15 B.5 , 4 C.-4 , -15 D.5 , -168.已知201()212x x f x x x ⎧⎪=⎨-<⎪⎩,,,, ≤≤ ≤则20()f x dx =⎰( )A.56 B.76 C.43 D.53 9.设()f x '是函数()f x 的导函数,()y f x '=的图象如图所示,则()y f x =的图象最有可能的是( )10.设313y x ax c =-+在()-+,∞∞上单调递增,则( ) A.0a <且0c = B.0a >且c 是任意实数 C.0a <且c 是任意实数 D.0a <且0c ≠11.从边长为10cm 16cm ⨯的矩形纸板的四角截去四个相同的小正方形,作成一个无盖的盒子,则盒子容积的最大值为( ) A.312cmB.372cmC.3144cmD.3160cm12.如图,由曲线32y x x =-与2y x =所围图形的面积为( ) A.512B.3712C.94 D.8313.若对于任意x ,有3()4(1)1f x x f '==-,,则此函数解析式为 . 14.函数32x x y -=的单调增区间为 ,单调减区间为__________________; 15.函数()323922y x x x x =---<<有极大值 ,极小值 ;16.若()sin cos f x x α=-,则'()f α等于 ;17、已知3)2(3123++++=x b bx x y 是R 上的单调增函数,则b 的取值范围是 18.设321()252f x x x x =--+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的取值范围为 ; 19.计算下列定积分。

第一章导数及其应用练习题

第一章导数及其应用练习题

第一章导数及其应用1.1变化率与导数1.1.1变化率问题1.1.2导数的概念1.已知函数f(x)=2x2-4的图象上一点(1,-2)及邻近一点(1+Δx,-2+Δy),则ΔyΔx等于().A.4 B.4x C.4+2Δx D.4+2(Δx)22.如果质点M按规律s=3+t2运动,则在一小段时间[2,2.1]中相应的平均速度是().A.4 B.4.1 C.0.41 D.33.如果某物体的运动方程为s=2(1-t2)(s的单位为m,t的单位为s),那么其在1.2 s末的瞬时速度为().A.-4.8 m/s B.-0.88 m/s C.0.88 m/s D.4.8 m/s4.已知函数y=2+1x,当x由1变到2时,函数的增量Δy=________.5.已知函数y=2x,当x由2变到1.5时,函数的增量Δy=________.6.利用导数的定义,求函数y=1x2+2在点x=1处的导数.7.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为().A.0.40 B.0.41 C.0.43 D.0.448.设函数f(x)可导,则limΔx→0f(1+Δx)-f(1)3Δx等于().A.f′(1) B.3f′(1) C.13f′(1) D.f′(3)9.一做直线运动的物体,其位移s与时间t的关系是s=3t-t2,则物体的初速度是________.10.某物体作匀速运动,其运动方程是s=v t,则该物体在运动过程中其平均速度与任何时刻的瞬时速度的关系是________.11.子弹在枪筒中的运动可以看作是匀变速运动,如果它的加速度是a=5×105 m/s2,子弹从枪口射出时所用的时间为t0=1.6×10-3s,求子弹射出枪口时的瞬时速度.12.(创新拓展)已知f(x)=x2,g(x)=x3,求满足f′(x)+2=g′(x)的x的值.导数练习题 2015年春第 3 页 共 16 页1.1.3 导数的几何意义1.已知曲线y =12x 2-2上一点P ⎝ ⎛⎭⎪⎫1,-32,则过点P 的切线的倾斜角为( ).A .30°B .45°C .135°D .165°2.已知曲线y =2x 3上一点A (1,2),则A 处的切线斜率等于( ). A .2 B .4 C .6+6Δx +2(Δx )2 D .63.设y =f (x )存在导函数,且满足lim Δx →0f (1)-f (1-2Δx )2Δx=-1,则曲线y =f (x )上点(1,f (1))处的切线斜率为( ). A .2 B .-1 C .1 D .-24.曲线y =2x -x 3在点(1,1)处的切线方程为________. 5.设y =f (x )为可导函数,且满足条件 lim x →0f (1)-f (1-x )2x=-2,则曲线y =f (x )在点(1,f (1))处的切线的斜率是________.6.求过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线.7.设函数f (x )在x =x 0处的导数不存在,则曲线y =f (x )( ).A .在点(x 0,f (x 0))处的切线不存在B .在点(x 0,f (x 0))处的切线可能存在C .在点x 0处不连续D .在x =x 0处极限不存在 8.函数y =-1x 在⎝ ⎛⎭⎪⎫12,-2处的切线方程是( ).A .y =4xB .y =4x -4C .y =4x +4D .y =2x -49.若曲线y=2x2-4x+p与直线y=1相切,则p的值为________.10.已知曲线y=1x-1上两点A⎝⎛⎭⎪⎫2,-12、B(2+Δx,-12+Δy),当Δx=1时割线AB的斜率为________.11.曲线y=x2-3x上的点P处的切线平行于x轴,求点P的坐标.12.(创新拓展)已知抛物线y=ax2+bx+c通过点P(1,1),Q(2,-1),且在点Q 处与直线y=x-3相切,求实数a、b、c的值.导数练习题2015年春1.2导数的计算1.2.1几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则第1课时基本初等函数的导数公式1.已知f(x)=x2,则f′(3)().A.0 B.2x C.6 D.92.f(x)=0的导数为().A.0 B.1 C.不存在D.不确定3.曲线y=x n在x=2处的导数为12,则n等于().A.1 B.2 C.3 D.44.设函数y=f(x)是一次函数,已知f(0)=1,f(1)=-3,则f′(x)=________. 5.函数f(x)=x x x的导数是________.6.在曲线y=x3+x-1上求一点P,使过P点的切线与直线y=4x-7平行.7.设f0(x)=sin x,f1(x)=f0′(x),f2(x)=f1′(x),…,f n+1(x)=f n′(x),n∈N,则f2010(x)=().A.sin x B.-sin x C.cos x D.-cos x第 5 页共16 页8.下列结论①(sin x )′=-cos x ;②⎝ ⎛⎭⎪⎫1x ′=1x 2;③(log 3x )′=13ln x ;④(ln x )′=1x .其中正确的有( ).A .0个B .1个C .2个D .3个 9.曲线y =4x 3在点Q (16,8)处的切线的斜率是________. 10.曲线y =9x 在点M (3,3)处的切线方程是________.11.已知f (x )=cos x ,g (x )=x ,求适合f ′(x )+g ′(x )≤0的x 的值.12.(创新拓展)求下列函数的导数:(1)y =log 4x 3-log 4x 2;(2)y =2x 2+1x -2x ;(3)y =-2sin x 2(2sin 2x4-1).导数练习题 2015年春第 7 页 共 16 页第2课时 导数的运算法则及复合函数的导数1.函数y =cos x1-x的导数是( ). A.-sin x +x sin x (1-x )2B.x sin x -sin x -cos x (1-x )2C.cos x -sin x +x sin x (1-x )2D.cos x -sin x +x sin x 1-x2.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值为( ). A.193 B.103 C.133 D.163 3.已知f ⎝ ⎛⎭⎪⎫1x =x 1+x ,则f ′(x )等于( ).A.11+x B .-11+x C.1(1+x )2 D .-1(1+x )24.若质点的运动方程是s =t sin t ,则质点在t =2时的瞬时速度为________. 5.若f (x )=log 3(x -1),则f ′(2)=________.6.过原点作曲线y =e x 的切线,求切点的坐标及切线的斜率.7.函数y=(x-a)(x-b)在x=a处的导数为().A.ab B.-a(a-b) C.0 D.a-b8.当函数y=x2+a2x(a>0)在x=x0处的导数为0时,那么x0=().A.a B.±a C.-a D.a29.若f(x)=(2x+a)2,且f′(2)=20,则a=________.10.函数f(x)=x3+4x+5的图象在x=1处的切线在x轴上的截距为________.11.曲线y=e2x·cos 3x在(0,1)处的切线与直线L的距离为5,求直线L的方程.12.(创新拓展)求证:可导的奇函数的导函数是偶函数.导数练习题 2015年春第 9 页 共 16 页1.3 导数在研究函数中的应用1.3.1 函数的单调性与导数1.在下列结论中,正确的有( ). (1)单调增函数的导数也是单调增函数; (2)单调减函数的导数也是单调减函数; (3)单调函数的导数也是单调函数;(4)导函数是单调的,则原函数也是单调的. A .0个 B .2个 C .3个 D .4个 2.函数y =12x 2-ln x 的单调减区间是( ).A .(0,1)B .(0,1)∪(-∞,-1)C .(-∞,1)D .(-∞,+∞)3.若函数f (x )=x 3-ax 2-x +6在(0,1)内单调递减,则实数a 的取值范围是( ). A .a ≥1 B .a =1 C .a ≤1 D .0<a <1 4.函数y =ln(x 2-x -2)的递减区间为________.5.若三次函数f (x )=ax 3+x 在区间(-∞,+∞)内是增函数,则a 的取值范围是________.6.已知x >1,证明:x >ln(1+x ).7.当x >0时,f (x )=x +2x 的单调递减区间是( ).A .(2,+∞)B .(0,2)C .(2,+∞)D .(0,2) 8.已知函数y =f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则y =f (x )的图象可能是( ).9.使y =sin x +ax 为R 上的增函数的a 的范围是________. 10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.11.已知函数f (x )=x 3+ax +8的单调递减区间为(-5,5),求函数y =f (x )的递增区间.12.(创新拓展)求下列函数的单调区间,并画出大致图象: (1)y =x +9x ; (2)y =ln(2x +3)+x 2.导数练习题 2015年春第 11 页 共 16 页1.3.2 函数的极值与导数1.下列函数存在极值的是( ).A .y =1xB .y =x -e xC .y =x 3+x 2+2x -3D .y =x 32.函数y =1+3x -x 3有( ).A .极小值-1,极大值1B .极小值-2,极大值3C .极小值-2,极大值2D .极小值-1,极大值33.函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( ).A .无极大值点,有四个极小值点B .有三个极大值点,两个极小值点C .有两个极大值点,两个极小值点D .有四个极大值点,无极小值点4.设方程x 3-3x =k 有3个不等的实根,则常数k 的取值范围是________.5.已知函数y =x 2x -1,当x =________时取得极大值________;当x =________时取得极小值________.6.求函数f (x )=x 2e -x 的极值.7.函数f (x )=2x 3-6x 2-18x +7( ).A .在x =-1处取得极大值17,在x =3处取得极小值-47B .在x =-1处取得极小值17,在x =3处取得极大值-47C.在x=-1处取得极小值-17,在x=3处取得极大值47D.以上都不对8.三次函数当x=1时有极大值4,当x=3时有极小值0,且函数过原点,则此函数是().A.y=x3+6x2+9x B.y=x3-6x2+9xC.y=x3-6x2-9x D.y=x3+6x2-9x9.函数f(x)=x3+3ax2+3(a+2)x+3既有极大值又有极小值,则实数a的取值范围是________.10.函数y=x3-6x+a的极大值为________,极小值为________.11.已知函数y=ax3+bx2,当x=1时函数有极大值3,(1)求a,b的值;(2)求函数y的极小值.12.(创新拓展)设函数f(x)=a3x3+bx2+cx+d(a>0),且方程f′(x)-9x=0的两个根分别为1,4.(1)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;(2)若f(x)在(-∞,+∞)内无极值点,求a的取值范围.导数练习题 2015年春第 13 页 共 16 页1.3.3 函数的最大(小)值与导数1.函数y =x e -x ,x ∈[0,4]的最大值是( ).A .0 B.1e C.4e 4 D.2e 22.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( ).A .0≤a <1B .0<a <1C .-1<a <1D .0<a <123.设f (x )=x (ax 2+bx +c )(a ≠0)在x =1和x =-1处均有极值,则下列点中一定在x 轴上的是( ).A .(a ,b )B .(a ,c )C .(b ,c )D .(a +b ,c )4.函数y =x +2cos x 在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值是________. 5.函数f (x )=sin x +cos x 在x ∈⎣⎢⎡⎦⎥⎤-π2,π2的最大、最小值分别是________. 6.求函数f (x )=x 5+5x 4+5x 3+1在区间[-1,4]上的最大值与最小值.7.函数y =x 33+x 2-3x -4在[0,2]上的最小值是( ).A .-173B .-103C .-4D .-6438.已知函数f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为().A.-37 B.-29 C.-5 D.-119.函数f(x)=4xx2+1,x∈[-2,2]的最大值是________,最小值是________.10.如果函数f(x)=x3-32x2+a在[-1,1]上的最大值是2,那么f(x)在[-1,1]上的最小值是________.11.已知函数f(x)=-x3+3x2+9x+a.(1)求f(x)的单调递减区间;(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.12.(创新拓展)已知函数f(x)=x2e-ax(a>0),求函数在[1,2]上的最大值.导数练习题 2015年春第 15 页 共 16 页1.4 生活中的优化问题举例1.如果圆柱截面的周长l 为定值,则体积的最大值为( ).A.⎝ ⎛⎭⎪⎫l 63πB.⎝ ⎛⎭⎪⎫l 33πC.⎝ ⎛⎭⎪⎫l 43πD.14⎝ ⎛⎭⎪⎫l 43π 2.若一球的半径为r ,作内接于球的圆柱,则其侧面积最大为( ).A .2πr 2B .πr 2C .4πr D.12πr 2 3.某公司生产一种产品, 固定成本为20000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x 的关系是R (x )=⎩⎪⎨⎪⎧ -x 3900+400x ,0≤x ≤390,90 090,x >390,则当总利润最大时,每年生产产品的单位数是( ). A .150 B .200 C .250 D .3004.有矩形铁板,其长为6,宽为4,现从四个角上剪掉边长为x 的四个小正方形,将剩余部分折成一个无盖的长方体盒子,要使容积最大,则x =________.5.如图所示,某厂需要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,当砌壁所用的材料最省时,堆料场的长和宽分别为________.6.如图所示,已知矩形的两个顶点位于x 轴上,另两个顶点位于抛物线y =4-x 2在x 轴上方的曲线上,求这个矩形面积最大时的边长.7.设底为正三角形的直棱柱的体积为V,那么其表面积最小时,底面边长为().A.3V B.32V C.34V D.23V8.把长为12 cm的细铁丝截成两段,各自摆成一个正三角形,那么这两个正三角形的面积之和的最小值是().A.32 3 cm2B.4 cm2 C.3 2 cm2D.2 3 cm29.在半径为r的圆内,作内接等腰三角形,当底边上的高为________时它的面积最大.10.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为________.11.某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2+x)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.(1)试写出y关于x的函数关系式;(2)当m=640米时,需新建多少个桥墩才能使y最小?12.(创新拓展)如图所示,在边长为60 cm的正方形铁片的四角上切去相等的正方形,再把它沿虚线折起,做成一个无盖的长方体箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?。

高中数学练习题(含答案)

高中数学练习题(含答案)

第一章 导数及其应用1.已知直线1+=x y 与曲线)ln(a x y +=相切,则=a ( ) A .-1 B .-2 C .0 D .2 2.设函数]65,0[,142cos 3sin 3)(23πθθθ∈-++=x x x x f ,则导数)1('-f 的取值范围是( )A .]343[+,B .]63[,C .]634[,- D .]3434[+-, 3.2222π=--⎰-dx x x m,则m 等于( )A .-1B .0C .1D .24.曲线3:(0)C y x x =≥在点1x =处的切线为l ,则由曲线C 、直线l 及x 轴围成的封闭图形的面积是( ). A .1 B .112 C . 43 D .345.定义方程()'()f x f x =的实数根0x 叫做函数()f x 的 “新驻点”,若函数()g x x =,()ln(1)h x x =+,3()1x x ϕ=-的“新驻点”分别为,,αβγ,则,,αβγ的大小关系为( ) A .γαβ>> B .βαγ>> C .αβγ>> D .βγα>> 6.若()f x 在R 上可导,()()2223f x x f x '=++,则()3f x dx =⎰( )A .16B .54C .﹣24D .﹣187.若)(x f 满足23'22)2(,)(2)(e f e x x xf x f x x-==-.则0>x 时,)(x f ( ) A .有极大值,无极小值 B .有极小值,无极大值C .既有极大值,又有极小值D .既无极大值,也无极小值8.已知函数2()ln(1)f x a x x =+-在区间(0,1)内任取两个实数p ,q ,且p≠q ,不等式(1)(1)1f p f q p q+-+>-恒成立,则实数a 的取值范围为( )A .[15,)+∞B .](,15-∞C .](12,30D .](12,15- 9.已知()()201f x x xf '=--,则()2014f 的值为( )A .20122014⨯B .20132014⨯C .20132015⨯D .20142016⨯10.若函数()y f x '=在区间()12,x x 内是单调递减函数,则函数()y f x =在区间()12,x x 内的图象可以是( )11.设a 为实数,函数f (x )=x 3+ax 2+(a-2)x 的导数是)('x f ,且)('x f 是偶函数,则曲线y=f (x )在原点处的切线方程为( )A .y=-2xB .y=3xC .y=-3xD .y=4x12.已知定义在R 上的函数)(x f 满足(1)1f =,且对于任意的x ,21)(<'x f 恒成立,则不等式22lg 1(lg )22x f x <+的解集为( ) A .1(0,)10 B .1(0,)(10,)10+∞U C .1(,10)10 D .(10,)+∞ 13.曲线y =2x 3-3x +1在点(1,0)处的切线方程为( )A .y =4x -5B .y =-3x +2C .y =-4x +4D .y =3x -314.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小值为( ) A .1 B 2 C .22D 315.已知函数2221y x x =-+的导数为y ',y '=( )A .22x -B .41x +C .42x -D .21x + 16.已知曲线f (x )=ln x 在点(x 0,f (x 0))处的切线经过点(0,-1),则x 0的值为( ) A .1eB .1C .eD .10 17.已知)(x f '是奇函数)(x f 的导函数,0)1(=-f ,当0>x 时,0)()(>-'x f x f x ,则使得0)(>x f 成立的x 的取值范围是( )A .)1,0()1,(Y --∞B .),1()0,1(+∞-YC .)1,0()0,1(Y -D .),1()1,(+∞--∞Y18.曲线sin e x y x =+(其中e =2.71828…是自然对数的底数)在点(01),处的切线的斜率为 ( )(A )2 (B )3 (C )13(D )1219.曲线324y x x =-+在点(1,3)处的切线的倾斜角为( ) A .30° B .45° C.60° D.120°20.若曲线ln y kx x =+在点(1,)k 处的切线平行于x 轴,则k =( )A .1-B .0C .1D .221.计算120(11)x dx +-⎰的结果为( ).A .1B .4πC .14π+D .12π+ 22.函数xxx f +=1cos )(在)1,0(处的切线方程是( ) A .01=-+y x B .012=-+y x C .012=+-y x D .01=+-y x 23.如果对定义在R 上的函数()f x ,对任意两个不相等的实数12,x x ,都有11221221()()()()x f x x f x x f x x f x +>+,则称函数()f x 为“H 函数”.给出下列函数①31y x x =-++;②32(sin cos )y x x x =--;③1xy e =+;④ln 0()00x x f x x ⎧≠⎪=⎨=⎪⎩.以上函数是“H 函数”的共有( )A.1个B.2个C.3个D.4个24.【函数f (x )=(x 2﹣2x )e x(e 为自然数的底数)的图象大致是( ).25.若0cos2cos tt xdx =-⎰,其中(0,)t π∈,则t =( ).A.6π B.2π C.56πD.π26.已知函数f(x)=x 3+bx 2+cx+d(b 、c 、d 为常数),当x∈(0,1)时取得极大值,当x∈(1,2)时取极小值,则22)3()21(-++c b 的取值范围是( ). A.()5,237B.)5,5(C.)25,437(D.(5,25)27.已知函数()()12ln +=x x f ,则()='0f ( ) A . 0B . 1C . 2D .28.⎰+1)2(dx x e x 等于 ( )A. 1B. eC. 1-eD. e + 129.已知函数()()y f x x R =∈上任一点00(,())x f x 处的切线斜率200(2)(1)k x x =-+,则该函数()f x 的单调递减区间为( )A.[1,)-+∞B.(,2]-∞C.(,1),(1,2)-∞-D.[2,)+∞ 30.函数1)(23++-=x x x x f 在点(1,2)处的切线的斜率是( ) A .B . 1C . 2D . 331.设()x f '是函数()x f 的导函数,将()x f y =和()x f y '=的图象画在同一个直角坐标系中,不可能正确的是( ) A .B .C .D .32.曲线2y x=与直线1y x =-及4x =所围成的封闭图形的面积为( ) A. 42ln 2- B. 2ln 2- C. 4ln 2- D. 2ln 233.函数a ax x x f --=3)(3在(0,1)内有最小值,则a 的取值范围为( ) A .10<≤a B .10<<aC .11<<-aD .210<<a34.已知定义域为R 的奇函数()x f 的图象是一条连续不断的曲线,当()+∞∈,1x 时,()0<'x f ;当()1,0∈x 时()0>'x f ,且()02=f ,则关于x 的不等式()()01>+x f x 的解集为( ) A .(﹣2,﹣1)∪(0,2) B . (﹣∞,﹣2)∪(0.2)C .(﹣2,0)D . (1,2)35.曲线sin e x y x =+(其中e =2.71828…是自然对数的底数)在点(01),处的切线的斜率为( )(A )2 (B )3 (C )13(D )1236.已知函数32()1f x x bx cx =+++有两个极值点12,x x 且12[2,1],[1,2]x x ∈--∈,则(1)f -的取值范围是( )A .[3,12]B .3[,6]2-C .3[,3]2-D .3[,12]2-37.已知函数f (x )=﹣x 3+ax 2﹣x ﹣1在(﹣∞,+∞)上是单调函数,则实数a 的取值范围是A . B . C .D .38.已知函数()sin cos f x x x =+,且'()3()f x f x =,则x 2tan 的值是( )A .34-B .34C .43-D .43 39.过原点作曲线ln y x =的切线,则切线斜率为 ( ) A .2e B .21e C .e D .1e40.曲线sin xy x e =+在点()0,1处的切线方程是( )A .330x y -+=B .220x y -+=C .210x y -+=D .310x y -+= 41.由曲线y x =2y x =-及y 轴所围成的图形的面积为( )A .4B .6C .103 D .16342. ()f x '是函数()f x 的导数,函数()xf x e是增函数( 2.718281828e =⋅⋅⋅是自然对数的底数),()f x '与()f x 的大小关系是( )A .()()f x f x '=B .()()f x f x '>C .()()f x f x '≤D .()()f x f x '≥43.已知函数()f x 的定义域是R ,()f x '是()f x 的导数.()514f =-,对R x ∀∈,有()f x e '≤-( 2.71828e =⋅⋅⋅是自然对数的底数).不等式()2215ln 24f x x x x <-的解集是( )A .()0,1B .()1,+∞C .()0,+∞D .1,12⎛⎫⎪⎝⎭44.设''()y f x =是'()y f x =的导数.某同学经过探究发现,任意一个三次函数32()f x ax bx cx d =+++(0a ≠)都有对称中心00(,())x f x ,其中x 0满足''0()0f x =.已知32115()33212f x x x x =-+-,则1232014()()()()2015201520152015f f f f ++++=L ( )A .2012B .2013C .2014D .201545.已知函数x e xx f =)(,给出下列结论:①),1(+∞是)(x f 的单调递减区间;②当)1,(e k -∞∈时,直线k y =与)(x f y =的图象有两个不同交点; ③函数)(x f y =的图象与12+=x y 的图象没有公共点. 其中正确结论的序号是( )A.①②③B.①③C.①②D.②③ 46.定义在(0,)2π上的函数()f x ,()'f x 是它的导函数,且恒有()()'tan f x f x x >⋅成立.则( )A 3()()63f ππ<B .)1(1cos 2)6(3f f ⋅>⋅πC 6()2()64f ππ>D 2()()43f ππ> 47.已知函数)(x f 满足x e x xf x f x x =+')(2)(2,8)2(2e f =,则当0>x 时,)(x f ( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值,也有极小值D .既无极大值,也无极小值48.定义在R 上的可导函数()f x ,当()1,x ∈+∞时,()()()10x f x f x '-->恒成立,()())12,3,2122a fb fc f ===,则,,a b c 的大小关系为( ) A .c a b << B .b c a << C .a c b << D .c b a <<49.若不等式2229t t a t t +≤≤+在(]2,0∈t 上恒成立,则a 的取值范围是( )A .⎥⎦⎤⎢⎣⎡1,61 B .⎥⎦⎤⎢⎣⎡134,61 C .⎥⎦⎤⎢⎣⎡1,132 D .⎥⎦⎤⎢⎣⎡22,6150.已知函数231()1()32mx m n x f x x +++=+的两个极值点分别为12,x x ,且1(0,1),x ∈2x ∈()1,+∞,点(,)P m n 表示的平面区域为D ,若函数log (4),(1)a y x a =+>的图像上存在区域D 内的点,则实数a 的取值范围是( ) A .(]1,3 B . ()3,+∞ C .()1,3 D .[)3,+∞51.若存在直线l 与曲线1C 和曲线2C 都相切,则称曲线1C 和曲线2C 为“相关曲线”,有下列四个命题:①有且只有两条直线l 使得曲线221:4C x y +=和曲线222:4240C x y x y +-++=为“相关曲线”; ②曲线211:12C y x =+和曲线221:12C y x =-是“相关曲线”; ③当0b a >>时,曲线21:4C y ax =和曲线2222:-C x b y a +=()一定不是“相关曲线”; ④必存在正数a 使得曲线1C :ln y a x =和曲线2:C 2y x x =-为“相关曲线”. 其中正确命题的个数为( )A .1B .2C .3D .4 52.已知函数()12()ln ,(2f x xg x x a a ==+为常数),直线l 与函数()(),f x g x 的图像都相切,且l 与函数()f x 的图像的切点的横坐标为1,则a 的值为( )A .1B .1-C .12-D .2 53.某工厂生产的机器销售收入1y (万元)是产量x (千台)的函数:2117x y =,生产总成本2y (万元)也是产量x (千台)的函数;)0(2232>-=x x x y ,为使利润最大,应生产( ) A .9千台 B .8千台 C .7千台 D .6千台54.函数32()393,f x x x x =--+若函数()()[2,5]g x f x m x =-∈-在上有3个零点,则m 的取值范围为 .55.已知函数()x f y =的图象在3=x 处的切线方程为72+-=x y ,则()()33f f '+的值是 56.已知()f x 为定义在(0,+∞)上的可导函数,且()'()f x xf x >恒成立,则不等式0)()1(2>-x f xf x 的解集为 .57.已知函数f (x )=x 3+ax 2﹣a (a∈R),若存在x 0,使f (x )在x=x 0处取得极值,且f (x 0)=0,则a 的值为 .58.若函数()x f 在定义域D 内某区间I 上是增函数,且()xx f 在I 上是减函数,则称()x f y =在I 上是“弱增函数”.已知函数()()b x b x x h +--=12在(0,1]上是“弱增函数”,则实数b的值为59.已知点P 在曲线14+=x e y 上,α为曲线在点P 处切线的倾斜角,则α的取值范围是 .60.如图,线段AB =8,点C 在线段AB 上,且AC =2,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设CP =x , △CPD 的面积为()f x .则()f x 的定义域为 ; '()f x 的零点是 .61.曲线y =xln x 在点(e ,e )处的切线与直线x +ay =1垂直,则实数a 的值为________. 62.函数()3123f x x x =-+,()3xg x m =-,若对[]11,5x ∀∈-,[]20,2x ∃∈,()()12f x g x ≥,则实数m 的最小值是 .63.若曲线ln y ax x =-在()1,a 处的切线平行于x 轴,则实数a = .64.已知函数()y f x =的导函数()y f x '=的图象如下,则()y f x =有 个极大值点.65.已知函数()326)1(f x x mx m x ++++=存在极值,则实数m 的取值范围为_ _________.66.求曲线y=ln (2x-1)上的点到直线2x-y+3=0的最短距离_______.67.曲线21y x =-与直线2,0x y ==所围成的区域的面积为 . 68.如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为 .69.已知函数()f x 的定义域是R ,()f x '是()f x 的导数,()1f e =,()()()g x f x f x '=-,()10g =,()g x 的导数恒大于零,函数()()xh x f x e =-( 2.71828e =⋅⋅⋅是自然对数的底数)的最小值是 . 70.对于函数b x a x a x x f +-+-=)3(231)(23有六个不同的单调区间,则a 的取值范围为 .ACP BD71.函数()y f x =图象上不同两点()()1122,,,A x y B x y 处的切线的斜率分别是A B k k ,,规定(),A Bk k A B ABϕ-=(AB 为线段AB 的长度)叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给出以下命题:①函数321y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(),3A B ϕ>;②存在这样的函数,图象上任意两点之间的“弯曲度”为常数; ③设点A,B 是抛物线21y x =+上不同的两点,则(),2A B ϕ≤;④设曲线xy e =(e 是自然对数的底数)上不同两点()()112212,,,,1A x y B x y x x -=且,若(),1t A B ϕ⋅<恒成立,则实数t 的取值范围是(),1-∞.其中真命题的序号为________.(将所有真命题的序号都填上) 72.已知22:1O x y +=e .若直线2y k x =+上总存在点P ,使得过点P 的O e 的两条切线互相垂直,则实数k 的最小值为 . 73.已知()1cos f x x x =,则()2f f ππ⎛⎫'+= ⎪⎝⎭. 74.已知函数),(ln )(R n m nx x m x f ∈+= ,曲线()y f x =在点()()1,1f 处的切线方程为220x y --=.(1)=+n m ;(2)若1x >时,()0kf x x+<恒成立,则实数k 的取值范围是 .75.对于函数()f x ,若对于任意的123,,x x x R∈,()()()123,,f x f x f x 为某一三角形的三边长,则称()f x 为“可构成三角形的函数”.已知函数()1x x e tf x e +=+是“可构成三角形的函数”,则实数t 的取值范围是( )A .1,22⎡⎤⎢⎥⎣⎦B .[]0,1C .[]1,2D .()0,+∞76.已知函数2()ln()f x x a x x =+--在0x =处取得极值.(1)求实数a 的值;(2)若关于x 的方程5()2f x x b =-+在区间[0,2]上恰有两个不同的实数根,求实数b 的取值范围;(3)证明:对任意的正整数n ,不等式34249+++ (21)ln(1)n n n++>+都成立.77.已知函数f (x )=alnx ﹣ax ﹣3(a <0). (Ⅰ)求函数f (x )的单调区间;(Ⅱ)若函数y=f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t∈[0,1],函数g (x )=x 3+x 2[f′(x )+m]在区间(t ,2)上总不是单调函数,其中f′(x )为f (x )的导函数,求实数m 的取值范围.78.已知函数()ln 1,.f x x ax a R =++∈ (Ⅰ)求()1f x x =在处的切线方程;(Ⅱ)若不等式()0f x ≤恒成立,求a 的取值范围;(Ⅲ)数列11{},2,21n n n a a a a +==+中,数列{}n b 满足ln ,{}n n n b n a b =记的前n 项和为n T ,求证:124.2n n n T -+<-79.已知函数()23bx ax x f +=的图象经过点M (1,4),曲线在点M 处的切线恰好与直线x+9y=0垂直.(1)求实数b a ,的值;(2)若函数()x f 在区间[]1,+m m 上单调递增,求m 的取值范围80.已知函数()()R a ax x f ∈=,()1ln -=x x g .(1)若函数()()()x x f x x g x h 221--+=存在单调递减区间,求a 的取值范围; (2)当0>a 时,试讨论这两个函数图象的交点个数.81.已知()x a x f ln =,()()cx bx x f x g ++=2,且()12='f ,()x g 在21=x 和2=x 处有极值.(1)求实数c b a ,,的值;(2)若0>k ,判断()x g 在区间()k k 2,内的单调性.82.设函数()()0ln >--=a x a x x f .(1)若,1=a 求()x f 的单调区间及()x f 的最小值;(2)若0>a ,求()x f 的单调区间;(3)试比较222222ln 33ln 22ln nn +++Λ与()()()12121++-n n n 的大小.其中()2≥∈*n N n 且,并证明你的结论.83.已知函数)0()(>++=a c x b ax x f 的图象在点))1(,1(f 处的切线方程为1-=x y . (1)用a 表示出b ,c ;(2)证明:当21≥a 时,x x f ln )(≥在),1[+∞上恒成立; (3)证明:)()1(2)1ln(131211*N n n n n n ∈+++>++++Λ.84.已知函数()()2f x x x a =-,()()21g x x a x a =-+-+(其中a ∈R ).(Ⅰ)如果函数()y f x =和()y g x =有相同的极值点,求a 的值,并直接写出函数()f x 的单调区间;(Ⅱ)令()()()F x f x g x =-,讨论函数()y F x =在区间[]1,3-上零点的个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章导数及其应用练习题部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑第一章导数及其应用1.1 变化率与导数1.1.1 变化率问题1.1.2 导数的概念1.已知函数f(x>=2x2-4的图象上一点(1,-2>及邻近一点(1+Δx,-2+Δy>,则错误!等于( >.b5E2RGbCAPA.4B.4xC.4+2ΔxD.4+2(Δx>22.如果质点M按规律s=3+t2运动,则在一小段时间[2,2.1]中相应的平均速度是( >.A.4 B.4.1 C.0.41 D.33.如果某物体的运动方程为s=2(1-t2>(s的单位为m,t的单位为s>,那么其在1.2 s末的瞬时速度为( >.p1EanqFDPwA.-4.8 m/s B.-0.88 m/sC.0.88 m/s D.4.8 m/s4.已知函数y=2+错误!,当x由1变到2时,函数的增量Δy=________.5.已知函数y=错误!,当x由2变到1.5时,函数的增量Δy=________.6.利用导数的定义,求函数y=错误!+2在点x=1处的导数.7.已知函数y=f(x>=x2+1,则在x=2,Δx=0.1时,Δy的值为( >.A.0.40 B.0.41 C.0.43 D.0.448.设函数f(x>可导,则错误!错误!等于( >.DXDiTa9E3d A.f′(1> B.3f′(1> C.错误!f′(1> D.f′(3>9.一做直线运动的物体,其位移s与时间t的关系是s=3t-t2,则物体的初速度是________.10.某物体作匀速运动,其运动方程是s=vt,则该物体在运动过程中其平均速度与任何时刻的瞬时速度的关系是________.RTCrpUDGiT11.子弹在枪筒中的运动可以看作是匀变速运动,如果它的加速度是a=5×105 m/s2,子弹从枪口射出时所用的时间为t0=1.6×10-3s,求子弹射出枪口时的瞬时速度.5PCzVD7HxA 12.(创新拓展>已知f(x>=x2,g(x>=x3,求满足f′(x>+2=g′(x>的x的值.1.1.3导数的几何意义1.已知曲线y=错误!x2-2上一点P错误!,则过点P的切线的倾斜角为( >.jLBHrnAILgA.30° B.45° C.135° D.165°2.已知曲线y=2x3上一点A(1,2>,则A处的切线斜率等于( >.A.2 B.4C.6+6Δx+2(Δx>2D.63.设y=f(x>存在导函数,且满足错误!错误!=-1,则曲线y=f(x>上点(1,f(1>>处的切线斜率为( >.xHAQX74J0XA.2 B.-1 C.1 D.-24.曲线y=2x-x3在点(1,1>处的切线方程为________.5.设y=f(x>为可导函数,且满足条件错误!错误!=-2,则曲线y=f(x>在点(1,f(1>>处的切线的斜率是________.LDAYtRyKfE6.求过点P(-1,2>且与曲线y=3x2-4x+2在点M(1,1>处的切线平行的直线.7.设函数f(x>在x=x0处的导数不存在,则曲线y=f(x>( >.A.在点(x0,f(x0>>处的切线不存在B.在点(x0,f(x0>>处的切线可能存在C.在点x0处不连续D.在x=x0处极限不存在8.函数y=-错误!在错误!处的切线方程是( >.Zzz6ZB2Ltk A.y=4xB.y=4x-4C.y=4x+4 D.y=2x-49.若曲线y=2x2-4x+p与直线y=1相切,则p的值为________.10.已知曲线y=错误!-1上两点A错误!、B<2+Δx,-错误!+Δy),当Δx=1时割线AB的斜率为________.dvzfvkwMI1 11.曲线y=x2-3x上的点P处的切线平行于x轴,求点P的坐标.12.(创新拓展>已知抛物线y=ax2+bx+c通过点P(1,1>,Q(2,-1>,且在点Q处与直线y=x-3相切,求实数a、b、c的值.rqyn14ZNXI1.2 导数的计算1.2.1 几个常用函数的导数1.2.2 基本初等函数的导数公式及导数的运算法则第1课时基本初等函数的导数公式1.已知f(x>=x2,则f′(3>(>.A.0 B.2x C.6 D.92.f(x>=0的导数为( >.A.0 B.1 C.不存在 D.不确定3.曲线y=xn在x=2处的导数为12,则n等于( >.A.1 B.2 C.3 D.44.设函数y=f(x>是一次函数,已知f(0>=1,f(1>=-3,则f′(x>=________.5.函数f(x>=错误!的导数是________.6.在曲线y=x3+x-1上求一点P,使过P点的切线与直线y=4x -7平行.7.设f0(x>=sin x,f1(x>=f0′(x>,f2(x>=f1′(x>,…,fn +1(x>=fn′(x>,n∈N,则f2018(x>=( >.EmxvxOtOco A.sin xB.-sin xC.cos xD.-cos x8.下列结论①(sin x>′=-cos x;②错误!′=错误!;③(log3x>′=错误!;④(ln x>′=错误!.SixE2yXPq5其中正确的有( >.A.0个 B.1个 C.2个 D.3个9.曲线y=错误!在点Q(16,8>处的切线的斜率是________.10.曲线y=错误!在点M(3,3>处的切线方程是________.11.已知f(x>=cos x,g(x>=x,求适合f′(x>+g′(x>≤0的x 的值.12.(创新拓展>求下列函数的导数:(1>y=log4x3-log4x2;(2>y=错误!-2x;(3>y=-2sin错误!(2sin2错误!-1>.6ewMyirQFL第2课时导数的运算法则及复合函数的导数1.函数y=错误!的导数是( >.A.错误!B.错误!kavU42VRUsC.错误!D.错误!y6v3ALoS892.已知f(x>=ax3+3x2+2,若f′(-1>=4,则a的值为( >.A.错误!B.错误!C.错误!D.错误!M2ub6vSTnP3.已知f错误!=错误!,则f′(x>等于( >.0YujCfmUCwA.错误!B.-错误!C.错误!D.-错误!eUts8ZQVRd4.若质点的运动方程是s=tsin t,则质点在t=2时的瞬时速度为________.5.若f(x>=log3(x-1>,则f′(2>=________.6.过原点作曲线y=ex的切线,求切点的坐标及切线的斜率.7.函数y=(x-a>(x-b>在x=a处的导数为( >.A.abB.-a(a-b> C.0 D.a-b8.当函数y=错误!(a>0>在x=x0处的导数为0时,那么x0=( >.sQsAEJkW5TA.aB.±aC.-aD.a29.若f(x>=(2x+a>2,且f′(2>=20,则a=________.10.函数f(x>=x3+4x+5的图象在x=1处的切线在x轴上的截距为________.11.曲线y=e2x·cos 3x在(0,1>处的切线与直线L的距离为错误!,求直线L的方程.GMsIasNXkA12.(创新拓展>求证:可导的奇函数的导函数是偶函数.1.3 导数在研究函数中的应用1.3.1 函数的单调性与导数1.在下列结论中,正确的有( >.(1>单调增函数的导数也是单调增函数;(2>单调减函数的导数也是单调减函数;(3>单调函数的导数也是单调函数;(4>导函数是单调的,则原函数也是单调的.A.0个 B.2个 C.3个 D.4个2.函数y=错误!x2-ln x的单调减区间是( >.A.(0,1> B.(0,1>∪(-∞,-1>C.(-∞,1> D.(-∞,+∞>3.若函数f(x>=x3-ax2-x+6在(0,1>内单调递减,则实数a的取值范围是( >.A.a≥1 B.a=1 C.a≤1 D.0<a<14.函数y=ln(x2-x-2>的递减区间为________.5.若三次函数f(x>=ax3+x在区间(-∞,+∞>内是增函数,则a的取值范围是________.6.已知x>1,证明:x>ln(1+x>.7.当x>0时,f(x>=x+错误!的单调递减区间是( >.A.(2,+∞> B.(0,2>C.(错误!,+∞> D.(0,错误!>TIrRGchYzg8.已知函数y=f(x>的导函数f′(x>=ax2+bx+c的图象如图所示,则y=f(x>的图象可能是( >.9.使y=sin x+ax为R上的增函数的a的范围是________.10.已知f(x>=x2+2xf′(1>,则f′(0>=________.11.已知函数f(x>=x3+ax+8的单调递减区间为(-5,5>,求函数y=f(x>的递增区间.12.(创新拓展>求下列函数的单调区间,并画出大致图象:(1>y=x+错误!;(2>y=ln(2x+3>+x2.1.3.2函数的极值与导数1.下列函数存在极值的是( >.A.y=错误!B.y=x-exC.y=x3+x2+2x-3 D.y=x32.函数y=1+3x-x3有( >.A.极小值-1,极大值1 B.极小值-2,极大值3C.极小值-2,极大值2 D.极小值-1,极大值33.函数f(x>的定义域为R,导函数f′(x>的图象如图所示,则函数f(x>( >.A.无极大值点,有四个极小值点B.有三个极大值点,两个极小值点C.有两个极大值点,两个极小值点D.有四个极大值点,无极小值点4.设方程x3-3x=k有3个不等的实根,则常数k的取值范围是________.5.已知函数y=错误!,当x=________时取得极大值________;当x=________时取得极小值________.7EqZcWLZNX6.求函数f(x>=x2e-x的极值.7.函数f(x>=2x3-6x2-18x+7( >.A.在x=-1处取得极大值17,在x=3处取得极小值-47B.在x=-1处取得极小值17,在x=3处取得极大值-47C.在x=-1处取得极小值-17,在x=3处取得极大值47D.以上都不对8.三次函数当x=1时有极大值4,当x=3时有极小值0,且函数过原点,则此函数是( >.A.y=x3+6x2+9xB.y=x3-6x2+9xC.y=x3-6x2-9xD.y=x3+6x2-9x9.函数f(x>=x3+3ax2+3(a+2>x+3既有极大值又有极小值,则实数a的取值范围是________.lzq7IGf02E10.函数y=x3-6x+a的极大值为________,极小值为________.11.已知函数y=ax3+bx2,当x=1时函数有极大值3,(1>求a,b的值;(2>求函数y的极小值.12.(创新拓展>设函数f(x>=错误!x3+bx2+cx+d(a>0>,且方程f′(x>-9x=0的两个根分别为1,4.zvpgeqJ1hk(1>当a=3且曲线y=f(x>过原点时,求f(x>的解读式;(2>若f(x>在(-∞,+∞>内无极值点,求a的取值范围.1.3.3 函数的最大(小>值与导数1.函数y=xe-x,x∈[0,4]的最大值是( >.A.0 B.错误! C.错误! D.错误!NrpoJac3v12.函数f(x>=x3-3ax-a在(0,1>内有最小值,则a的取值范围为(>.A.0≤a<1 B.0<a<1C.-1<a<1 D.0<a<错误!3.设f(x>=x(ax2+bx+c>(a≠0>在x=1和x=-1处均有极值,则下列点中一定在x轴上的是( >.1nowfTG4KIA.(a,b> B.(a,c> C.(b,c> D.(a+b,c>4.函数y=x+2cos x在区间错误!上的最大值是________.fjnFLDa5Zo5.函数f(x>=sin x+cos x在x∈错误!的最大、最小值分别是________.tfnNhnE6e56.求函数f(x>=x5+5x4+5x3+1在区间[-1,4]上的最大值与最小值.7.函数y=错误!+x2-3x-4在[0,2]上的最小值是( >.A.-错误! B.-错误! C.-4 D.-错误!HbmVN777sL 8.已知函数f(x>=2x3-6x2+m(m为常数>在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为( >.V7l4jRB8HsA.-37 B.-29 C.-5 D.-119.函数f(x>=错误!,x∈[-2,2]的最大值是________,最小值是________.83lcPA59W910.如果函数f(x>=x3-错误!x2+a在[-1,1]上的最大值是2,那么f(x>在[-1,1]上的最小值是________.mZkklkzaaP 11.已知函数f(x>=-x3+3x2+9x+a.(1>求f(x>的单调递减区间;(2>若f(x>在区间[-2,2]上的最大值为20,求它在该区间上的最小值.12.(创新拓展>已知函数f(x>=x2e-ax(a>0>,求函数在[1,2]上的最大值.1.4 生活中的优化问题举例1.如果圆柱截面的周长l为定值,则体积的最大值为( >.A.错误!3πB.错误!3πC.错误!3πD.错误!错误!3πAVktR43bpw2.若一球的半径为r,作内接于球的圆柱,则其侧面积最大为( >.A.2πr2B.πr2C.4πrD.错误!πr23.某公司生产一种产品,固定成本为20000元,每生产一单位的产品,成本增加100元,若总收入R与年产量x的关系是R(x>=错误!则当总利润最大时,每年生产产品的单位数是( >.A.150 B.200 C.250 D.300ORjBnOwcEd4.有矩形铁板,其长为6,宽为4,现从四个角上剪掉边长为x的四个小正方形,将剩余部分折成一个无盖的长方体盒子,要使容积最大,则x=________.2MiJTy0dTT5.如图所示,某厂需要围建一个面积为512平方M的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,当砌壁所用的材料最省时,堆料场的长和宽分别为________.gIiSpiue7A6.如图所示,已知矩形的两个顶点位于x轴上,另两个顶点位于抛物线y=4-x2在x轴上方的曲线上,求这个矩形面积最大时的边长.uEh0U1Yfmh7.设底为正三角形的直棱柱的体积为V,那么其表面积最小时,底面边长为( >.A.错误!B.错误!C.错误!D.2错误!IAg9qLsgBX8.把长为12 cm的细铁丝截成两段,各自摆成一个正三角形,那么这两个正三角形的面积之和的最小值是( >.WwghWvVhPEA.错误!错误! cm2B.4 cm2C.3错误! cm2D.2错误!cm2asfpsfpi4k9.在半径为r的圆内,作内接等腰三角形,当底边上的高为________时它的面积最大.10.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为________.11.某地建一座桥,两端的桥墩已建好,这两墩相距mM,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为xM的相邻两墩之间的桥面工程费用为(2+错误!>x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.ooeyYZTjj1(1>试写出y关于x的函数关系式;(2>当m=640M时,需新建多少个桥墩才能使y最小?12.(创新拓展>如图所示,在边长为60 cm的正方形铁片的四角上切去相等的正方形,再把它沿虚线折起,做成一个无盖的长方体箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?BkeGuInkxI申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

相关文档
最新文档