氧化还原反应及电化学基础
第七章-氧化还原反应与电化学基础

§7.2 电化学电池
5. 正负极
• 电子的流出极叫负极:Zn极 • 电子的流入极叫正极:Cu极
6. 阴阳极
• 阳极(Positive Electrode): 凡是进行氧化反应的电极叫阳极。
• 阴极(Negative Electrode): 凡是进行还原反应的电极叫阴极。
第七章 氧化还原反应与电化学基础
在超氧化物中(KO2),氧的氧化数 为 1 ;
2
在氧的氟化物(OF2,O2F2)中,氧的 氧化数分别为+2和+1。
❖ 在所有的氟化物中氟的氧化数为-1。
第七章 氧化还原反应与电化学基础
§7.1 基本概念
例:
SiO2: Si的氧化数为+4; Cr2O72-:Cr的氧化数为+6; Fe3O4: Fe的氧化数为 8 ;
Mz+(aq)+ze-
–
离子电极
2OH-(aq) Pt | O2(p)|OH-(c)
金属-难 溶盐电极
AgCl(s) +e-
Ag(s) +Cl-(aq) Ag|AgCl|Cl-
§7.3 电极电势
(Electrode Potential)
7.3.1 电极电势的产生 7.3.2 电极电势的意义 7.3.3 电池电动势 7.3.4 标准电极电势 7.3.5 标准电极电势表 7.3.6 Nernst方程式 7.3.7 Nernst 方程式的应用
MgCl2(s)
第七章 氧化还原反应与电化学基础
§7.1 基本概念
2. 失去电子的过程叫氧化,得到电子的
过程叫还原
Zn(s) Zn2+(aq)+2eCu2+(aq)+2e- Cu(s) 局限性:形成共价分子的氧化过程不
氧化还原反应和电化学

氧化还原反应和电化学氧化还原反应和电化学是化学领域中重要的研究方向,它们在生产、能源、环境保护等各个领域都具有重要的应用价值。
本文将从氧化还原反应的基础知识入手,介绍氧化还原反应的定义、特征以及电化学的相关概念和应用。
一、氧化还原反应的基本概念和特征1.1 氧化还原反应的定义氧化还原反应是指化学反应中,电子从一种物质转移到另一种物质的过程。
在氧化还原反应中,发生氧化的物质失去电子,而发生还原的物质则获得电子。
整个过程涉及到电子的转移和能量的释放。
1.2 氧化还原反应的特征氧化还原反应的特征可以总结为以下几个方面:1)电子的转移:氧化还原反应中,电子从一个物质转移到另一个物质,导致物质的氧化或还原。
2)氧化和还原:氧化是指物质失去电子,还原是指物质获得电子。
3)氧化剂和还原剂:氧化剂是指能接受电子的物质,还原剂是指能提供电子的物质。
4)氧化态和还原态:在氧化还原反应中,物质的氧化态和还原态发生变化。
二、电化学的基本概念和应用2.1 电化学的基本概念电化学是研究电能与化学能之间相互转化的学科。
它涉及到电解、电池等重要概念。
2.2 电化学的应用电化学在许多领域都有广泛的应用。
以下是电化学的几个应用方面:1)电解:通过电解,可以将化合物分解为原子或离子,使得某些实验或工业过程得以实现。
2)电池:电化学电池是将化学能转化为电能的装置,广泛应用于电子产品、交通工具等领域。
3)腐蚀和防腐:电化学腐蚀是指金属在电解质中发生的一种化学腐蚀过程,而电化学防腐则是通过电化学方法来保护金属材料。
4)电解池:电解池是用于电解过程的装置,广泛应用于化学实验、电镀、电解精炼等领域。
三、氧化还原反应与电化学的关系氧化还原反应和电化学有着密切的关系。
氧化还原反应中的电子转移过程是电化学研究的基础。
通过电化学的方法,我们可以控制和利用氧化还原反应,实现能量的转化和化学反应的控制。
例如,电化学电池就是通过氧化还原反应来产生电能的装置。
氧化还原反应与电化学

氧化还原反应与电化学氧化还原反应是化学反应中常见的重要类型之一,也是电化学研究的核心内容。
在化学中,氧化还原反应涉及到电子的转移过程,使得一个物质被氧化而另一个物质被还原。
电子转移的同时,伴随着原子、离子或者分子的氧化还原状态的变化。
本文将介绍氧化还原反应的基本概念和电化学的相关知识。
一、氧化还原反应的基本概念氧化还原反应是指在化学反应中,某些物质失去电子而被氧化,同时,其他物质获得这些电子而被还原的过程。
在氧化还原反应中,常常涉及到电子的传递。
被氧化的物质叫做还原剂,因为它让其他物质被还原;而被还原的物质则称为氧化剂,因为它让其他物质被氧化。
氧化还原反应可以通过氧化态的变化来体现。
在氧化还原反应中,原子、离子或者分子的氧化态增加,表示该物质被氧化;而氧化态减少则表示该物质被还原。
氧化态是衡量原子或者离子相对电荷的一种方式,通常用希腊字母表示。
例如,“+”表示正的氧化态,“-”表示负的氧化态。
二、电化学基础知识电化学是研究电能与化学反应之间关系的学科。
它包括两个主要的分支:电解学和电池学。
1. 电解学:电解学研究的是化学反应受到外加电压影响的过程。
在电解学中,电解是指通过外加电压使得非自发性的氧化还原反应发生。
在电解池中,被氧化的物质进入阳极,转化成离子或者原子,同时释放出电子;而被还原的物质进入阴极,接受这些电子,转化成原子或者离子的形式。
2. 电池学:电池学研究的是化学反应产生电能的过程。
在电池中,化学反应是自发进行的,并且通过电子流动产生电流。
电池包括两个电极:阳极和阴极。
阳极是发生氧化反应的地方,阴极是发生还原反应的地方。
在电池中,正极指的是发生还原反应的电极,而负极指的是发生氧化反应的电极。
三、应用举例氧化还原反应和电化学在我们的生活中有着广泛的应用。
1. 腐蚀与防腐氧化还原反应是金属腐蚀的重要原因之一。
金属在与氧气接触时会发生氧化反应,使得金属表面产生氧化物。
腐蚀会导致金属的物理性质和化学性质发生变化,造成质量和经济上的损失。
大学无机化学-第七章-氧化还原反应-电化学基础-课件

种元素的原子总数各自相等且电荷数相等 ④ 确定两半反应方程式得、失电子数目的最小公倍
数。将两个半反应方程式中各项分别乘以相应的 系数,使得、失电子数目相同。然后,将两者合 并,就得到了配平的氧化还原反应的离子方程式。 有时根据需要可将其改为分子方程式。
3Cl2 (g) + 6OH- = 5Cl- + ClO3- + 3H2O 3Cl2 (g) + 6NaOH = 5NaCl + NaClO3 + 3H2O
无机化学
§7.1 氧化还原反应的基本概念
例 4 配平方程式
Cr(OH)3 (s) + Br2 (l) + KOH
K2CrO4 + KBr
Cr(OH)3 (s) + Br2 (l)
电极组成:Pt , Cl2(p) | Cl- (a)
电极反应: Cl2 + 2e
2Cl-
无机化学
§7.2 电化学电池
3. 金属-金属难溶盐-阴离子电极
将金属表面涂有其金属难溶盐的固体,然后浸 入与该盐具有相同阴离子的溶液中构成的电极
电极组成:Ag ,AgCl(s)| Cl- (a) 电极反应:AgCl + e Ag + Cl电极组成:Hg ,Hg2Cl2(s)| Cl- (a) 电极反应:Hg2Cl2+2e 2Hg +2Cl-
无机化学
§7.1 氧化还原反应的基本概念
2-2 半反应法(离子—电子法) 配平原则 (1)反应过程中氧化剂得到的电子数等于还
原剂失去的电子数 (2)反应前后各元素的原子总数相等
氧化还原反应和电化学基础

8
⑷ 离子型化合物中,元素的氧化数等于该 ⑸ 离共子价所型带化的合电物荷中数,,共如用:电N子aC对I。偏向于电负性大 的原子 ,两原子的形式电荷数即为它们的氧化数, 如:HCI。 ⑹ 中性分子中,各元素原子氧化数的代数和为9 零。
S4O62- 4x+(-2)×6=-2 x=2.5 H5IO6 I:+7 ; S2O32- S:+2 例:求MnO4-中Mn的氧化值
2×3
0
+5
Zn+ HNO3
+2
+2
Zn(NO3)2+ NO + H2O
3 ×2
56
配系数
先配变价元素,再用观察法配平其 它元素原子的系数。
15
用氧化数表示氧化还原的状态 对于离子化合物的氧化还原反应来说,电 子是完全失去或完全得到的。但是,对于共价化 合物来说,在氧化还原反应中,有电子的偏移, 但还没有完全的失去或得到,因此用氧化数来表 示就更为合理。
16
例如:
H2+Cl2=2HCl 这个反应的生成物是共价化合物,氢原子的电子 没有完全失去,氯原子也没有完全得到电子,只是形成 的电子对偏离氢,偏向氯罢了。用氧化数的升降来表示 就是氯从0到-1,氢从0到+1。这样,氧化数的升高就是 氧化,氧化数的降低就是还原。在氧化还原反应里,一 种元素氧化数升高的数值总是跟另一种元素氧化数降低 的数值相等的。
11
一、氧化值的定义
在氧化还原反应中,电子转移引起某些原子的价 电子层结构发生变化,从而改变了这些原子的带电状 态。为了描述原子带电状态的改变,表明元素被氧化 的程度,提出了氧化态的概念。表示元素氧化态的的 数值称为元素的氧化值,又称氧化数。
无机化学-氧化还原反应及电化学基础

6-3 电池电动势和电极电势
第二十七页,共69页。
6-3 电池电动势和电极电势
E 甘汞参比电极
构成: 由Hg/Hg2Cl2/KCl溶液组成;
2) 电极反响: H 2 C 2 g (s )l 2 e 2 H (l) g 2 C (a l)q 3) 电极电势:
-3,
; E 0.280V
电极符号:Pt2, H H2︱H2 +e(c ) H2PtC , C2l2l (p2 )︱eC l- (2c)Cl
“︱〞表示气体与溶液之间的界面,即气液界面
(p) 表示压力;
第十四页,共69页。
6-2 原电池
2 电极的类型和电池符号:
C 离子电极 组成:由同一种元素的不同氧化态的两种离子的溶液; 例:Fe3+/Fe2+电极
第十九页,共69页。
6-2 原电池
2.2 电池符号:
负极: 离子电极
电池反响:
电M 池符号4 : 8 n H O 5 F 2 e M 2 5 F n 3 4 e H 2 O
(-) Pt︱Fe2+ (c1), Fe3+(c2)‖MnO4+ (c3), H+(c4),Mn2+(c5)︱Pt (+)
和绿色Cr2(SO4)3,配平反响方程;
氧化数确定:
反响物: K2Cr2O7 [+6] FeSO4
[+2]
A
生成物: Cr2(SO4)3 [+3] Fe2(SO4)3 [+3]
每个Cr原子变化数=3
B
每个Fe原子变化数=1
C 总氧化数降低(2x3)x1
D
C 2 O 4 2 r 2 3 F 2 1 e H 4 2 C 3 2 r 3 F 3 7 e H 2 O
《无机化学》第五章 氧化还原反应和电化学基础

二、氧化还原反应方程式的配平
1. 氧化值法
配平原则:氧化剂中元素氧化值降低的总数等 于还原剂中元素氧化值升高的总数。
配平步骤: (1)写出反应方程式,标出氧化值有变化 的元素,求元素氧化值的变化值。
(2)根据元素氧化值升高总数和降低总数相等 的原则,调整系数,使氧化值变化数相等。
(3)用观察法使方程式两边的各种原子总数相 等。
酸表。
(4)E是电极处于平衡状态时表现出来的特
征,与反应速率无关。
(5)E仅适用于水溶液。
5.饱和甘汞电极:
Hg | Hg2Cl2(s) |KCl (饱和)
Hg2Cl2 (s) + 2e
2Hg(l) +2Cl-
E (Hg2Cl2/Hg)=0.245V
三、 影响电极电势的因素
1.影响 因素
(1)电极的本性:即电对中氧化型或还 原型物质的本性。
还原型:在电极反应中同一元素低氧化值的物质。)
电对:氧化型/还原型
例:MnO2 +4H+ + 2e
Mn2+ +2H2O
电对:MnO2 / Mn2+
(2)E与电极反应中的化学计量系数无关。
例:Cl2 + 2e 1/2Cl2 + e
2Cl- E(Cl2/Cl-)=1.358V Cl-
(3)电极反应中有OH- 时查碱表,其余状况查
(3)分别配平两个半反应,使等号两边的原子 数和电荷数相等。
(4)根据得失电子数相等的原则,给两个半 反应乘以相应的系数,然后合并成配平的离子 方程式。
(5)将离子方程式写成分子方程式。
离子电子法配平时涉及氧原子数的增加和减 少的法则:
氧化还原反应与电化学

氧化还原反应与电化学在化学领域中,氧化还原反应是一种重要的反应类型,也是电化学研究的基础。
本文将探讨氧化还原反应与电化学之间的联系,阐述其在化学领域中的重要性。
一、氧化还原反应的基本概念和特点1.1 氧化还原反应的定义和原理氧化还原反应是指化学反应中发生的电荷转移过程,其中一个物种失去电子被氧化而另一个物种获得电子被还原的过程。
在这个过程中,原子、离子和分子之间的价电子数量会发生变化。
1.2 氧化还原反应的基本特征氧化还原反应具有以下基本特征:- 电子转移:在氧化还原反应中,电子从一个物种转移到另一个物种。
- 价电子数变化:反应中存在物质的氧化和还原两个过程,其中一个物质的氧化态数增加,而另一个物质的氧化态数减少。
- 氧化剂和还原剂:反应中起氧化作用的物质被称为氧化剂,而起还原作用的物质被称为还原剂。
二、氧化还原反应与电化学的关系2.1 电化学基础知识电化学研究了电荷转移与化学反应之间的关系。
在电化学中,我们通过测量电流和电位的变化来研究氧化还原反应。
这一领域的核心是电解和电池。
2.2 电解过程电解是指在外加电势的作用下,将电解质溶液或熔融电解质通过电解发生氧化还原反应的过程。
在电解过程中,正电荷离子迁移到负极,而负电荷离子则迁移到阳极。
2.3 电池反应电池是一种将化学能转化为电能的装置。
它基于氧化还原反应,通过将两个半反应分隔在不同的电极中,产生电流。
在电池中,氧化反应和还原反应相互对应,形成闭合的电路。
三、氧化还原反应与实际应用氧化还原反应在许多实际应用中发挥着重要作用。
以下是一些例子:3.1 腐蚀和防腐氧化还原反应是金属腐蚀的基本原理。
金属与氧气或水接触时,发生氧化反应,并失去电子。
这导致金属的腐蚀。
防腐是通过控制氧化还原反应来保护金属表面,延长其使用寿命。
3.2 电解水制氢电解水是一种常见的制氢方法。
在电解水过程中,水分子发生氧化还原反应,水分子中的氢原子被氧化,形成氧气;水分子中的氧原子被还原,形成氢气。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半反应写法:氧化态 + n e = 还原态
电对
Fe2+/Fe Cu2+/Cu
氧化还原电对:氧化态/还原态
3 氧化还原反应方程式的配平 氧化数法
a、反应物写出氧化剂和还原剂,产物写出还原产物和氧化产物;
b、确定氧化剂和还原剂的氧化数变化值,并根据变化相等的要 求配上系数;
降低 5 ×2
KMnO4+
Solution
由以上数据可知,活动性顺序为:
Mn > Zn > Cr > Fe > Co > Ni > Pb
2) 标准电动势
∴
∵ G = - nFE
nFE lg K 2.303RT
E 和平衡常数
又∵
K
F = 96485 (c/mol); R 取 8.314 J· mol-1 · K-1; 且当 T = 298.15 K 时,则:
Cl2(g) + 2I- = 2Cl- + I2(s)
解:
分压写成:p/pθ 浓度写成:c/cθ
= 1.36 – 0.536 = 0.82 (V)
例2 试求下列电池的电动势E池 (–) Zn | Zn2+(0.1 mol/dm3) || Cu2+(0.001 mol/dm3) | Cu (+)
2) 电极反应的 Nernst 方程式
解:
= 1.229 (V)
3) 浓度和酸度对电极电势的影响
对于电极Nernst 方程:
影响存在三种类型: (1)一边型: 如 Zn2+/Zn: Zn2+ + 2e = Zn(s)
类型(1)和(2)的 E值受浓度影响, 不受pH影响。
(2)二边型: 如 Fe3+/ Fe2+: Fe3+ + e = Fe2+
负极反应: Sn + 2 e = Sn
例:求SnCl2 还原4+ FeCl3 反应 2+ (298K) 的平衡常数 K 。
= 0.771 (V)
= 0.151 (V)
E = 正 - 负 = 0.771 - 0.151 = 0.620 (V)
反应式(1): 2 Fe3+ + Sn2+ = 2 Fe2+ + Sn4+
思考:氧化数 — ―表观化合价”
(1)Na2S2O3
+2
Na2S4O6
+2.5
(2) CrO5
+10
CrO5 结构
化合价+6,与O有能力 形成六个共价键
S2O3 中S的氧化数为+2:
“表观化合价”
2–
O O S OS
化合价
(+6) (-2)
化合价平均值 = + 2
2 氧化还原反应,半反应,氧化还原电对
将 E=正-负和 E=正-负代入上面电池反应的 Nernst方程式,
可得到电极反应的 Nernst方程式 :
电极反应的 Nernst方程式: 电极反应式一般写为:m 氧化型 + n e = q 还原型
例 写出以下电极反应 的 Nernst 方程式: O2(g) + 4H+ + 4e = 2H2O(l)
E 0.05917 lg K n
K为广度量,与方程式写法有关;广度量的数值与物质的数量成正比。如:体积、 质量、焓、熵、内能、自由焓等。 E为强度量,与方程式的写法无关。 强度量
的数值仅取决于物质本身的特性,而与物质的数量无关。如:温度、压力、密度、摩
尔内能等。
求平衡常数
解: 正极反应:Fe3+ + e = Fe2+
原电池,在恒温、恒压下,体系自由能降低等于体系所作的最大电功,则:
1) 电池电动势 E 和 G G = – Wmax
Wmax= U×It = E×Q (Q为电量)
1个电子电量 = 1.602 10–19 (c ,库仑)
n 摩尔电子电量 Q = n 6.0221023 1.60210–19 = n 9.65104 (c/mol) = n F ( F 为Faraday 常数)
3、注明沉淀、气体等
二、电池电动势(E)与电极电势()
1 原电池:
Cu-Zn原电池
负极
正极
原电池(Galvanic cells):
------化学能转化成电能的装置
(区别于电解池 electrolytic cells) 1)组成: ① 半电池(电极) ② 检流计 ③ 盐桥(琼脂 + 强电解质KCl, KNO3等,作用是补充电荷、 维持电荷平衡) 2)电极反应:
规定:标准氢电极“ H+/H2(p) = 0 ‖
1) 标准氢电极(SHE): 2 H+ + 2e H2 (H+/H2) = 0.0000 (V)
铂片上表面镀一层海绵状铂(铂 黒,吸附H2的能力很强),插入H+ 浓度为1mol/dm3 的溶液中,25ºC下, 不断地通入标准压力的纯 H2气流, 与溶液中的H+ 达平衡。
2)标准电极电势的测定
将待测的标准电极与标准氢电极组成原电池,在 25º C下,用检流计确定 电池的正极(+)、负极(–) ,然后用电位计测定电池的电动势E来决定。 IUPAC 规定: E = (+) – (–)
International Union of Pure and Applied Chemistry 国际理论和应用化学联合会
nE 2 0.620 lg K 20.96 0.05917 0.05917
K 9.121020
反应式(2): Fe3+ +
Sn2+ = Fe2+ +
Sn4+
0.620 10.48 0.05917
电池反应的 Nernst 方程式
和电极电势的因素 4、影响电动势 E 对于氧化还原反应:m O + n R = p R + q O
• 酸性条件下,K2Cr2O7将碳氧化为CO2,自身被 还原为Cr3+的离子方程式。
氧化数法配平注意事项:
配平原则:
1、电荷守恒:氧化剂得电子数等于还原剂失电子数。
2、质量守恒:反应前后各元素原子总数相等。
写出的方程式必须与实验事实相符合:
1、反应介质: 酸性介质中,不能出现 OH- 碱性介质中,不能出现 H+ 2、难溶或弱电解质应写成分子形式
正极(Cu): 负极(Zn): Cu2+ + 2e = Cu Zn- 2e = Zn2+
写电池符号应注意事项:
• 正、负极:左(-),右(+) • 界面“|‖:单质写在极棒“|‖
的 外面。
3)电池反应及电池符号: Zn + Cu2+ = Zn2+ + Cu
• 要注明:离子浓度(c);气体
分压(p);
(V) (设Cr2O72-和Cr3+的浓度均为1mol/L)
= 1.23 + 0.0592/6· lg(1×1014) = 1.37 = 1.23 = 1.23 + 0.0592/6 · lg(1×10-3)14 = 0.82 = 1.23 + 0.0592/6 · lg(1×10-7)14 = 0.36
1)单质中,元素的氧化数等于零。(N2 、H2 、O2 等) 2)离子化合物中,与元素的电荷数相一致。 NaCl CaF2 +1,-1 +2,-1 3) 共价化合物中,成键电子对偏向电负性大的元素。 O: -2 (H2O 等);-1 (H2O2); -0.5 (KO2 超氧化钾)
H:
+1 (一般情况);-1 (CaH2 电对: O1/R1 和 O2/R2 (O氧化型;R还原型) 恒温、
(由化学反应等温式)
非标准态时, 浓度 商(或反应商)为Q
分压写成:p/pθ 浓度写成:c/cθ
恒压下:
将 GT = nFE 代入上式得:
电池反应的 Nernst方程式:
例1 写出以下电池反应 的 Nernst 方程式:
历
年代
氧化反应
与氧化合 化合价升高 失去电子
还原反应
从氧化物夺取氧 化合价降低 得到电子
史 18世纪末 发 19世纪中 展 20世纪初
认 识 不 断 深 化
例如:
Fe + Cu2+ = Fe2+ + Cu 称为全(总)反应
Fe - 2e
氧化 还原
电子转移
Fe2+
(氧化)半反应
Cu2+ + 2e
Cu (还原)半反应
+7
HCl
-1
MnCl2 + Cl2 + KCl + H2O
升高 2 ×5
+2
0
c、配平: 先配平阳离子和阴离子,后配平氧和氢。
2KMnO4 + 16HCl = 2MnCl2 + 5Cl2 + 2KCl + 8H2O
• 氯气是重要的化工原料,可以用来制备很多化 工产品,比如可以制备净水剂高铁酸钾,写出 碱性条件下,由氯化铁制备高铁酸钾的离子方 程式。
氧化还原反应
电化学
一、氧化数及氧化还原反应方程式的配平
1、氧化数 2、氧化还原反应 3、氧化还原反应方程式的配平
二、电池电动势(E)与电极电势()
1、原电池 电池电动势 2、电极电势 标准电极电势 3、电池电动势E和化学反应G的关系 4、影响电极电势的因素
三、电极电势的应用及相关计算