中考模拟试题(一)
2022年成都市中考数学模拟试题(1)(解析版)

2022年成都市中考数学模拟试题(1)A卷(共100分)第Ⅰ卷一.选择题(共10小题,满分30分,每小题3分)1.﹣2021的倒数是()A.2021 B.C.﹣2021 D.【答案】D【解析】﹣2021的倒数是:﹣.故选:D.2.如图所示的几何体的从左面看到的图形为()A.B.C.D.【答案】D【解析】从这个几何体的左面看,所得到的图形是长方形,能看到的轮廓线用实线表示,看不见的轮廓线用虚线表示,因此,选项D的图形,符合题意,故选:D.3.据统计,某城市去年接待旅游人数约为89 000 000人,89 000 000这个数据用科学记数法表示为()A.8.9×106B.8.9×105C.8.9×107D.8.9×108【答案】C【解析】89 000 000这个数据用科学记数法表示为8.9×107.故选:C.4.在平面直角坐标系中,点A(m﹣1,2)与点B(3,n)关于y轴对称,则()A.m=3,n=2 B.m=﹣2,n=3 C.m=2,n=3 D.m=﹣2,n=2【答案】D【解析】∵点A(m﹣1,2)与点B(3,n)关于y轴对称,∴m﹣1=﹣3,n=2,解得:m=﹣2,故选:D.5.下列运算正确的是()A.a2•a3=a6B.(a﹣b)2=a2﹣b2C.(a2)3=a6D.5a2﹣3a=2a【答案】C【解析】A、a2•a3=a5,故本选项不合题意;B、(a﹣b)2=a2﹣2ab+b2,故本选项不合题意;C、(a2)3=a2×3=a6,故本选项符合题意;D、5a2与﹣3a不是同类项,所以不能合并,故本选项不合题意;故选:C.6.如图,四边形ABCD是菱形,E、F分别是BC、CD两边上的点,不能保证△ABE和△ADF一定全等的条件是()A.∠BAF=∠DAE B.EC=FC C.AE=AF D.BE=DF【答案】C【解析】A.∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵∠BAF=∠DAE,∴∠BAE=∠CAF,∴△ABE≌△ADF(AAS),故选项A不符合题意;B..∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,BC=BD,∵EC=FC,∴BE=DF,∴△ABE≌△ADF(SAS),故选项B不符合题意;C..∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵AE=AF,∴△ABE和△ADF只满足两边和一边的对角相等,两个三角形不一定全等,故选项C符合题意;D..∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,又∵BE=DE,∴△ABE≌△ADF(SAS),故选项D不符合题意.故选:C.7.给出一组数据:3,2,5,3,7,5,3,7,这组数据的中位数是()A.3 B.4 C.5 D.7【答案】B【解析】这组数据按从小到大的顺序排列为:2,3,3,3,5,5,7,7,则中位数为:(3+5)÷2=4.故选:B.8.分式方程=的解是()A.x=9 B.x=7 C.x=5 D.x=﹣1【答案】A【解析】去分母得:2(x﹣2)=x+5,去括号得:2x﹣4=x+5,解得:x=9,经检验x=9是分式方程的解.故选:A.9.我国古代数学名著《孙子算经》中记载了一道题,大意是:有100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.【答案】D【解析】设大马有x匹,小马有y匹,由题意得:,故选:D.10.如图,已知点O是正六边形ABCDEF的中心,扇形AOE的面积是12π,则该正六边形的边长是()A.6 B.C.D.12【答案】A【解析】连接OF,设⊙O的半径为R,∵O是正六边形ABCDEF的中心,∴∠AOF=∠EOF==60°,∴∠AOE=120°,∵OA=OF,∴△OAF是等边三角形,∴AF=OA=R,∵扇形AOE的面积是12π,∴=12π,∴R2=36,∴AF=R=6,∴正六边形的边长是6,故选:A.二.填空题(共4小题,满分16分,每小题4分)11.(4分)分解因式m2﹣4的结果为________.【答案】(m+2)(m﹣2).【解析】m2﹣4=(m+2)(m﹣2).12.(4分)在△ABC中,∠A=45°,AB=,∠ABC=75°.则BC长为________.【答案】4.【解析】过点B作BD⊥AC于点D,如图:∵BD⊥AC,∴∠ADB=∠CDB=90°.在△ABC中,∠A=45°,∠ABC=75°,∴∠C=180°﹣∠A﹣∠ABC=60°,∴∠DBC=30°,∠ABD=∠A=45°,∴AD=BD,BC=2CD,∵AB=,∴AB2=AD2+BD2=2BD2,∴=2BD2,∴BD=2(舍负),设CD=x,则BC=2x,∴+x2=(2x)2,解得:x=2(舍负),∴BC=2x=4.13.(4分)如果抛物线y=ax2﹣3x+1与x轴有交点,那么a的取值范围是________.【答案】a≤且a≠0.【解析】∵抛物线y=ax2﹣3x+1与x轴有交点,∴a≠0,△≥0,∴9﹣4a×1≥0,∴a≤,14.(4分)如图,在Rt△ABC中,∠C=90°,AC=BC,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AC,AB于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧在∠BAC内交于点O;③作射线AO,交BC于点D.若BD=2,则CD的长为________.【答案】.【解析】过点D作DH⊥AB,则DH=DC,由题目作图知,AD是∠CAB的平分线,则CD=DH,∵△ABC为等腰直角三角形,故∠B=45°,则△DHB为等腰直角三角形,故BD=HD=2,则DH=DC=三.解答题(共6小题,满分54分)15.(12分)(1)计算:(﹣3)0+|﹣2|﹣tan60°;(2)解不等式组:.【答案】见解析【解析】(1)原式=1+2﹣=1+2﹣3,=0.(2),由①得x>﹣3,由②得x≤2.故不等式组的解集为﹣3<x≤2.16.(6分)化简:(﹣a+1)÷.【答案】见解析【解析】原式=(﹣)×=×=×=.17.(8分)今年是建党100周年,学校决定开展观看爱国电影、制作手抄报、朗诵经典和唱响红歌四项活动喜迎建党100周年.为了解学生对四种活动的喜爱程度,随机调查了m名学生最喜爱的一项活动(每名学生只能选择一项),并将调查结果绘制成两幅不完整的统计图表.活动学生人数观看电影60制作手抄报36朗诵经典50唱响红歌x合计m请根据统计图表提供的信息,解答下列问题:(1)m=________,n=________,x=________;(2)在扇形统计图中,“朗诵经典”所对应的圆心角度数是________度;(3)若该学校有1000人,请你估计喜欢“制作手抄报”和“唱响红歌”的学生共有________名.【答案】见解析【解析】(1)由题意可得,m=60÷30%=200,n%=50÷200=25%,x=200﹣﹣36﹣50=54,故答案为:200,25,54;(2)扇形统计图中,朗诵经典”所对应的圆心角度数是360°×25%=90°;故答案为:90;(3)由题意可得,全校1000名学生中,喜爱“制作手抄报”的学生有:1000×=180(名),喜爱“唱响红歌”的学生有:1000×=270(名),180+270=450(名),答:估计喜欢“制作手抄报”和“唱响红歌”的学生共有450名.故答案为:450.18.(8分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图,老师测得升旗台前斜坡AC的坡度为1:10(即AE:CE=1:10),学生小明站在离升旗台水平距离为35m (即CE=35m)处的C点,测得旗杆顶端B的仰角α=30°,已知小明身高CD=1.6m,求旗杆AB 的高度.(参考数据:tan30°≈0.58,结果保留整数)【答案】见解析【解析】作DG⊥AE于G,则∠BDG=α,则四边形DCEG为矩形.∴DG=CE=35m,EG=DC=1.6m在直角三角形BDG中,BG=DG•×tanα=35×0.58=20.3m,∴BE=20.3+1.6=21.9m.∵斜坡AC的坡比为i AC=1:10,CE=35m,∴EA=35×=3.5,∴AB=BE﹣AE=21.9﹣3.5≈18m.答:旗杆AB的高度为18m.19.如图,在平面直角坐标系xOy中,函数y=(x<0)的图象经过点(﹣6,1),直线y=mx+m 与y轴交于点(0,﹣2).(1)求k,m的值;(2)过第二象限的点P(n,﹣2n)作平行于x轴的直线,交直线y=mx+m于点A,交函数y=(x<0)的图象于点B.①当n=﹣1时,判断线段PA与PB的数量关系,并说明理由;②若PB≥2PA,结合函数的图象,直接写出n的取值范围.【答案】见解析【解析】(1)∵函数y=(x<0)图象经过点(﹣6,1),∴k=﹣6×1=﹣6,∵直线y=mx+m与y轴交于点(0,﹣2),∴m=﹣2;(2)①PB=2PA,理由如下:当n=﹣1时,点P坐标为(﹣1,2),∴点A坐标为(﹣2,2),点B坐标为(﹣3,2),∴PA=1,PB=2,∴PB=2PA;②∵点P坐标为(n,﹣2n),PA平行于x轴,把y=﹣2n分别代入y=(x<0)和y=﹣2x﹣2得,点B坐标为(,﹣2n),点A坐标为(n﹣1,﹣2n),∴PA=n﹣(n﹣1)=1,PB=|n﹣|,当PB=2PA时,则|n﹣|=2,如图1,当n﹣=2,解得n1=﹣1,n2=3(不合题意,舍去),如图2,当﹣n=2解得n1=﹣3,n2=1(不合题意,舍去),∴PB≥2PA时,n≤﹣3或﹣1≤n<0.20.如图所示,过圆w外一点K做圆w的两条切线,其切点分别为L和N,在KN的延长线上取一点M,△KLM的外接圆和圆w相交于点P(异于点L),QN⊥LM于Q,LM与圆w相交于点R,求证:∠MPQ=2∠MPR=2∠KML.【答案】见解析【解析】证明:延长KL至A,延长PR交KM于T,连接PL、RN、LN、QT,设△KLM外接圆为⊙O,如图:∵四边形KLPM是⊙O的内接四边形,∴∠LPM=180°﹣∠K,同理∠LPR=180°﹣∠LNR,∴∠MPT=∠LPM﹣∠LPR=(180°﹣∠K)﹣(180°﹣∠LNR)=∠LNR﹣∠K,∵KA是⊙W的切线,∴∠LNR=∠ALM,∴∠MPT=∠ALM﹣∠K=∠LMK,即∠MPT=∠RMT,∵∠PTM=∠MTR,∴△PTM∽△MTR,∴=,即MT2=PT•RT,∵TN是⊙W的切线,∴NT2=PT•RT,∴MT=NT,∵NQ⊥LM,∴QT是Rt△NQM斜边MN的中线,∴QT=MT=NT,∴=,∠TQM=∠TMQ,∵∠QTR=∠PTQ,∴△QTR∽△PTQ,∴∠QPT=∠TQR,∴∠QPT=∠TQM=∠TMQ=∠MPT,∴∠MPQ=2∠MPR=2∠KML.B卷(共50分)一.填空题(共5小题,满分20分,每小题4分)21.(4分)已知一次函数y=x+3k﹣2的图象不经过第二象限,则k的取值范围是________.【答案】k≤.【解析】一次函数y=x+3k﹣2的图象不经过第二象限,则可能是经过一三象限或一三四象限,经过一三象限时,3k﹣2=0,解得k=,经过一三四象限时,3k﹣2<0.解得k<故k≤.22.(4分)设m、n是方程x2+x﹣1001=0的两个实数根,则m2+2m+n的值为1000.【答案】1000.【解析】∵m、n是方程x2+x﹣1001=0的两个实数根,∴m+n=﹣1,并且m2+m﹣1001=0,∴m2+m=1001,∴m2+2m+n=m2+m+m+n=1001﹣1=1000.23.(4分)在平面直角坐标系xOy中,⊙O的半径为13,直线y=kx﹣3k+4与⊙O交于B,C两点,则弦BC长的最小值等于________.【答案】24.【解析】∵y=kx﹣3k+4,∴(x﹣3)k=y﹣4,∵k为无数个值,∴x﹣3=0,y﹣4=0,解得x=3,y=4,∴直线y=kx﹣3k+4过定点(3,4),如图,P(3,4),连接OB,如图,当BC⊥OP时,弦BC最短,此时BP=PC,∵OP==5,∴BP==12,∴BC=2BP=24,即弦BC长的最小值等于24.24.(4分)如图,先将矩形纸片ABCD沿EF折叠(AB边与DE在CF的异侧),AE交CF于点G;再将纸片折叠,使CG与AE在同一条直线上,折痕为GH.若∠AEF=α,纸片宽AB=2cm,则HE=________cm.【答案】.【解析】如图,分别过G、E作GM⊥HE于M,EN⊥GH于N,延长GF、延长HE至点P,则GM=AB=2cm,由题意,∠AEF=α,由折叠性质可得∠PEF=∠AEF=α,∵四边形ABCD为矩形,∴GF∥HE,∴∠GFE=∠PEF=α,∴GE=GF.同理可得:GE=HE.∴HE=GF,∴四边形GHEF为平行四边形.∴∠GFE=∠GHE=α,∵EN⊥GH于N,HE=GE,∴由等腰三角形三线合一性质可得:HN=GN=,∵sin∠GHE=sinα==,∴HG=,在Rt△HEN中,cos∠GHE=cosα=,∴HE====.25.(4分)如图电路中,随机闭合开关S1,S2,S3,S4中的两个,能够点亮灯泡的概率为.【答案】.【解析】用列表法表示所有可能出现的情况如下:共有12种可能出现的情况,其中能够点亮灯泡的有8种,∴P==,(点亮灯泡)二.解答题(共3小题,满分30分)26.(8分)某电信公司推出20M宽带业务,第一天办理“包一年”业务的有10个顾客,“包两年”的有5个顾客,共收费20500元;第二天办理“包一年”业务的有15个顾客,“包两年”的有10个顾客,共收费35500元.(1)请求出办理“包一年”、“包两年”这两种业务分别应交的费用;(2)电信公司平时的手机收费标准是:主叫300分钟以内.每分钟0.2元;超过300分钟.超过的时间每分钟0.1元.为业务发展需要,电信公司推出20M宽带和手机的捆绑礼包业务,内容如下:使用时间礼包内容手机主叫超过300分钟费用20M宽带免费手机每月最低消费99元(每月免费0.2元/分钟24个月主叫时长300分钟)小方要在该公司办理20M宽带两年的业务,假设他使用该公司的手机,每月主叫时间一样,且手机在使用过程中再无其他费用产生,请你说明选择哪种方案更合算.【答案】见解析【解析】(1)设办理“包一年”业务应交x元,办理“包两年”业务应交y元,依题意,得:,解得:.答:办理“包一年”业务应交1100元,办理“包两年”业务应交1900元.(2)设小方每月主叫时间为m分钟(m为整数,不为整数的按照进一法取整).①当0<m≤300时,选择平时的手机收费标准2年所需费用为1900+12×2×0.2m=(4.8m+1900)元,选择宽带和手机的捆绑礼包业务2年所需费用为12×2×99=2376元.令4.8m+1900<2376,解得:m<99,令4.8m+1900=2376,解得:m=99,令4.8m+1900>2376,解得:m>99.∵m为正整数(利用进一法取整),∴当m≤99时,选择平时的手机收费标准划算;当99<m≤300时,选择宽带和手机的捆绑礼包业务划算;②当m>300时,选择平时的手机收费标准2年所需费用为1900+12×2×[300×0.2+0.1(x﹣300)]=(2.4x+2620)元,选择宽带和手机的捆绑礼包业务2年所需费用为12×2×[99+0.2(x﹣300)]=(4.8x+936)元.令2.4x+2620<4.8x+936,解得:x>701;令2.4x+2620=4.8x+936,解得:x=701;令2.4x+2620>4.8x+936,解得:x<701.∵m为正整数(利用进一法取整),∴当300<m≤701时,选择宽带和手机的捆绑礼包业务划算;当m>701时,选择平时的手机收费标准划算.综上所述:当m≤99或m>701时,选择平时的手机收费标准划算;当99<m≤701时,选择宽带和手机的捆绑礼包业务划算.27.在等边△ABC中,AB=6,BD⊥AC,垂足为D,点E为AB边上一点,点F为直线BD上一点,连接EF.(1)将线段EF绕点E逆时针旋转60°得到线段EG,连接FG.①如图1,当点E与点B重合,且GF的延长线过点C时,连接DG,求线段DG的长;②如图2,点E不与点A,B重合,GF的延长线交BC边于点H,连接EH,求证:BE+BH=BF;(2)如图3,当点E为AB中点时,点M为BE中点,点N在边AC上,且DN=2NC,点F从BD中点Q沿射线QD运动,将线段EF绕点E顺时针旋转60°得到线段EP,连接FP,当NP+MP 最小时,直接写出△DPN的面积.【答案】见解析【解析】(1)①过D作DH⊥GC于H,如图:∵线段EF绕点E逆时针旋转60°得到线段EG,点E与点B重合,且GF的延长线过点C,∴BG=BF,∠FBG=60°,∴△BGF是等边三角形,∴∠BFG=∠DFC=60°,BF=GF,∵等边△ABC,AB=6,BD⊥AC,∴∠DCF=180°﹣∠BDC﹣∠DFC=30°,∠DBC=∠ABC=30°,CD=AC=AB=3,∴∠BCG=∠ACB﹣∠DCF=30°,∴∠BCG=∠DBC,∴BF=CF,∴GF=CF,Rt△FDC中,CF===2,∴GF=2,Rt△CDH中,DH=CD•sin30°=,CH=CD•cos30°=,∴FH=CF﹣CH=,∴GH=GF+FH=,Rt△GHD中,DG==;②过E作EP⊥AB交BD于P,过H作MH⊥BC交BD于M,连接PG,作BP中点N,连接EN,如图:∵EF绕点E逆时针旋转60°得到线段EG,∴△EGF是等边三角形,∴∠EFG=∠EGF=∠GEF=60°,∠EFH=120°,EF=GF,∵△ABC是等边三角形,∴∠ABC=60°,∴∠ABC+∠EFH=180°,∴B、E、F、H共圆,∴∠FBH=∠FEH,而△ABC是等边三角形,BD⊥AC,∴∠DBC=∠ABD=30°,即∠FBH=30°,∴∠FEH=30°,∴∠FHE=180°﹣∠EFH﹣∠FEH=30°,∴EF=HF=GF①,∵EP⊥AB,∠ABD=30°,∴∠EPB=60°,∠EPF=120°,∴∠EPF+∠EGF=180°,∴E、P、F、G共圆,∴∠GPF=∠GEF=60°,∵MH⊥BC,∠DBC=30°,∴∠BMH=60°,∴∠BMH=∠GPF②,而∠GFP=∠HFM③,由①②③得△GFP≌△HFM(AAS),∴PF=FM,∵EP⊥AB,BP中点N,∠ABD=30°,∴EP=BP=BN=NP,∴PF+NP=FM+BN,∴NF=BM,Rt△MHB中,MH=BM,∴NF=MH,∴NF+BN=MH+EP,即BF=MH+EP,Rt△BEP中,EP=BE•tan30°=BE,Rt△MHB中,MH=BH•tan30°=BH,∴BF=BE+BH,∴BE+BH=BF;(2)以M为顶点,MP为一边,作∠PML=30°,ML交BD于G,过P作PH⊥ML于H,设MP 交BD于K,如图:Rt△PMH中,HP=MP,∴NP+MP最小即是NP+HP最小,此时N、P、H共线,∵将线段EF绕点E顺时针旋转60°得到线段EP,∴F在射线QF上运动,则P在射线MP上运动,根据“瓜豆原理”,F为主动点,P是从动点,E 为定点,∠FEP=60°,则F、P轨迹的夹角∠QKP=∠FEP=60°,∴∠BKM=60°,∵∠ABD=30°,∴∠BMK=90°,∵∠PML=30°,∴∠BML=60°,∴∠BML=∠A,∴ML∥AC,∴∠HNA=180°﹣∠PHM=90°,而BD⊥AC,∴∠BDC=∠HNA=∠PHM=90°,∴四边形GHND是矩形,∴DN=GH,∵等边△ABC中,AB=6,BD⊥AC,∴CD=3,又DN=2NC,∴DN=GH=2,∵等边△ABC中,AB=6,点E为AB中点时,点M为BE中点,∴BM=,BD=AB•sin A=6×sin60°=3,Rt△BGM中,MG=BM=,BG=BM•cos30°=,∴MH=MG+GH=,GD=BD﹣BG=,Rt△MHP中,HP=MH•tan30°=,∴PN=HN﹣HP=GD﹣HP=,∴S△DPN=PN•DN=.28.(12分)定义:在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴的交点坐标为(0,c),那么我们把经过点(0,c)且平行于x轴的直线称为这条抛物线的极限分割线.[特例感知](1)抛物线y=x2+2x+1的极限分割线与这条抛物线的交点坐标为________.[研究深入](2)经过点A(﹣1,0)和B(x,0)(x>﹣1)的抛物线y=﹣x2+mx+n与y轴交于点C,它的极限分割线与该抛物线的另一个交点为D,请用含m的代数式表示点D的坐标.[深入拓展](3)在(2)的条件下,设抛物线y=﹣x2+mx+n的顶点为P,直线EF垂直平分OC,垂足为E,交该抛物线的对称轴于点F.①当∠CDF=45°时,求点P的坐标.②若直线EF与直线MN关于极限分割线对称,是否存在使点P到直线MN的距离与点B到直线EF的距离相等的m的值?若存在,直接写出m的值;若不存在,请说明理由.【答案】见解析【解析】(1)∵抛物线y=x2+2x+1的对称轴为直线x=﹣1,极限分割线为y=1,∴极限分割线与这条抛物线的一个交点坐标为(0,1),则另一个交点坐标为(﹣2,1).故答案为:(0,1)和(﹣2,1).(2)∵抛物线经过点A(﹣1,0),∴﹣×(﹣1)2+m×(﹣1)+n=0,∴n=m+.∵y=﹣x2+mx+n=﹣(x﹣m)2+m2+n=﹣(x﹣m)2+m2+m+,∴对称轴为直线x=m,∴点D的坐标为(2m,m+).(3)①设CD与对称轴交于点G,若∠CDF=45°,则DG=GF.∴|m|=|m+|,∴m=或m=﹣.∴当m=时,y=×++=,点P的坐标为(,);当m=﹣时,y=×+(﹣)+=,点P的坐标为(﹣,).∴点P的坐标为(,)或(﹣,).②存在,m的值为0或1+或1﹣.如图,设MN与对称轴的交点为H.由(2)知,n=m+,y=﹣(x﹣m)2+m2+m+,∴P(m,m2+m+),∴抛物线y=﹣x2+mx+n的极限分割线CD:y=m+,∵直线EF垂直平分OC,∴直线EF:y=m+.∴点B到直线EF的距离为|m+|.∵直线EF与直线MN关于极限分割线CD对称,∴直线MN:y=m++m+=m+.∵P(m,m2+m+),∴点P到直线MN的距离为|m2+m+﹣(m+)|=|m2﹣m﹣|,∵点P到直线MN的距离与点B到直线EF的距离相等,∴|m2﹣m﹣|=|m+|,∴m=0或m=1+或m=1﹣.。
2024年陕西省西安市莲湖区中考一模语文试题(含解析)

2024年初中学业水平考试模拟试题语文( 一)注意事项:1.本试卷共8 页。
全卷总分120 分。
考试时间150 分钟。
2.答题前,考生在试卷和答题卡上务必用直径0.5 毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚。
3.请用直径0.5 毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效。
4.考试结束,本试卷和答题卡一并交回。
一、积累与运用(共5 小题,计17 分)1.经典诗文默写。
[在(1) ~(6)题中,任选四题....。
](6分)....;在(7)~(8)题中,任选一题(1)此中有真意,。
(陶渊明《饮酒》其五)(2)莫笑农家腊酒浑,。
(陆游《游山西村》)(3) ,愁云惨淡万里凝。
(岑参《白雪歌送武判官归京》)(4) ,八年风味徒思浙。
(秋瑾《满江红》)(5)我是你挂着眼泪的笑涡;。
(舒婷《祖国啊,我亲爱的祖国》)(6)树叶子却绿得发亮,。
(朱自清《春》)(7)光阴荏苒,岁月匆匆。
新旧交替的变化规律总是能给人以乐观、积极、向上的鼓舞力量,真可谓,。
(王湾《次北固山下》)(8)人生之路常有不如意,但我们要有“,”的旷达胸襟,心怀“古仁人之心”,用聪明才智书写专属于自己的辉煌。
(范仲淹《岳阳楼记》)阅读语段,完成2~3题。
站在历史的海岸漫溯那一道道沟渠:楚大夫沉吟泽畔,九死不悔;魏武帝扬鞭东指,壮心不已;陶渊明悠然南山,饮酒采菊……他们选择了永恒,纵然谄媚诬蔑视听,也不随其流扬其波,这是执著的选择;纵然马革guǒ尸,魂归狼烟,这是豪壮的选择;纵然一身清苦,终日难饱,也愿怡然自乐,躬耕lǒng 亩,这是高雅的选择。
在一番选择中,帝王将相成其盖世伟业,贤士迁客成其千古文章。
2.请根据语境,选出加点字正确的读音。
(只填序号)(2分)(1)站在历史的海岸漫溯.(A. shuò B. sù)那一道道沟渠。
( )(2)纵然谄.(A. chǎn B. xiàn)媚诬蔑视听,也不随其流扬其波。
中考物理模拟试题1word版(带答案)

中考物理模拟试题一、单选题(本大题共12小题,共36.0分)1. 下列有关估测中,最符合实际的是( )A. 人体正常体温是38.5℃B. 橡皮从课桌掉到地上的时间约5sC. 人正常步行的速度约为5m/sD. 书桌的高度约为80cm2. 将甲、乙两种固体物质加热,它们的温度随时间的变化图像如图所示,下列说法正确的是( )A. 甲物质是非晶体B. 甲物质两段斜率不同,是因为比热容不同C. 甲的温度达到50℃时,不断吸热,内能不变D. 在第5min时,甲和乙两种物质的状态都是固液共存态3. 对下列诗词中物态变化的分析,正确的是( )A. “月落乌啼霜满天”,霜的形成是凝华现象,需要放热B. “斜月沉沉藏海雾”,雾的形成是液化现象,需要吸热C. “露从今夜白,月是故乡明”,露的形成是熔化现象,需要吸热D. “遥知不是雪,为有暗香来”,雪的形成是凝固现象,需要放热4. 下列四幅图中,关于声现象的描述不正确的是( )A. 甲图中钢尺伸出桌边的长度越长,拨动时发出的声音的响度越小B. 乙图中医生用B超检查病情,利用的是声音可以传递信息C. 丙图中戴上防噪声耳罩,可以阻止噪声进入人耳D. 丁图中开启倒车雷达,是利用超声波回声定位5. 如图所示,在“探究凸透镜成像规律”的实验中,当蜡烛和凸透镜之间的距离为26cm时,在图中光屏上得到一个清晰的实像。
下列说法正确的是( )A. 该凸透镜的焦距大于 13cmB. 一小虫飞落在透镜的中间部分,屏上会出现小虫的像C. 只将蜡烛和光屏互换,可以在光屏上得到清晰放大的像D. 将蜡烛远离凸透镜时,为了在光屏上得到清晰的像,应将光屏远离凸透镜6. 在研究摩擦力时,小明同学用一块各侧面光滑程度完全相同的木块,在同一水平桌面上进行了三次实验。
如图所示,当用弹簧测力计水平拉木块做匀速直线运动时,弹簧测力计三次示数F1、F2、F3的大小关系为( )A. F1=F2>F3B. F1>F2>F3C. F2>F1>F3D. F1<F2=F37. 如图所示,A和B为由铜和铁制成的实心球,它们的体积相同,此时杠杆恰好水平平衡,若将它们同时浸没水中则( )A.杠杆仍然保持平衡B.杠杆不能平衡A下沉C. 杠杆不能保持平衡B下沉D. 无法确定8. 2022年2月4日-2月20日,北京、河北张家口将举办第24届冬季奥林匹克运动会,如图所示是我国运动健儿在冰雪赛场上的英姿。
【解析版】潍坊市中考数学模拟试卷(一)

山东省潍坊市中考数学模拟试卷(一)一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.)1.计算的结果是()A. 2 B.±2 C.﹣2 D.2.地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为()A. 64×105 B. 6.4×105 C. 6.4×106 D. 6.4×1073.如图是五个相同的正方体组成的一个几何体,它的左视图是()A. B. C. D.4.已知抛物线y=x2﹣2x+1与x轴的一个交点为(m,0),则代数式m2﹣2m+的值为() A. B. C. D.5.如图,已知矩形纸片ABCD,AD=2,AB=,以A为圆心,AD长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为()A. 1 B. C. D.6.如图,AC为⊙O的直径,AB为⊙O的弦,∠A=35°,过点C的切线与OB的延长线相交于点D,则∠D=()A. 20° B. 30° C. 40° D. 35°7.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD 交于点O,则四边形AB1OD的周长是()A. B. 2 C. 1+ D. 38.如图,小正方形的边长均为1,关于△ABC和△DEF的下列说法正确的是()A.△ABC和△DEF一定不相似B.△ABC和△DEF是位似图形C.△ABC和△DEF相似且相似比是1:2D.△ABC和△DEF相似且相似比是1:49.已知二次函数y=ax2+bx+c图象如图所示,则下面结论成立的是()A. a>0,bc<0 B. a<0,bc>0 C. a>0,bc>0 D. a<0,bc<010.如图,是一次函数y=kx+b与反比例函数的图象,则关于方程的解为()A. x1=1,x2=2 B. x1=﹣2,x2=﹣1 C. x1=1,x2=﹣2 D. x1=2,x2=﹣111.已知直线y=x﹣3与函数y=的图象相交于点(a,b),则a2+b2的值是() A. 13 B. 11 C. 7 D. 512.如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.πcm2 B.πcm2 C.cm2 D.cm2二、填空题(本大题共6小题,共15分,只要求填写最后结果,每小题填对得3分)13.把a3+ab2﹣2a2b分解因式的结果是.14.数据:1,5,6,5,6,5,6,6的众数是,中位数是,方差是.15.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=﹣x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是米.(精确到1米)16.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为度.17.把两个半径为5和一个半径为8的圆形纸片放在桌面上,使它们两两外切,若要用一个大圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.18.如图,在平面直角坐标系中,点A1是以原点O为圆心,半径为2的圆与过点(0,1)且平行于x轴的直线l1的一个交点;点A2是以原点O为圆心,半径为3的圆与过点(0,2)且平行于x 轴的直线l2的一个交点;…按照这样的规律进行下去,点A n的坐标为.三、解答题(本大题共6小题,共66分,解答要写出必要的文字说明、证明过程或演算步骤.)19.“端午节”所示我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售较好的肉馅棕、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不用口味粽子的喜爱情况,在节前对某居民区进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个恰好吃到的是C粽的概率.20.如图所示,江北第一楼﹣﹣超然楼,位于济南大明湖畔,始建于元代,是一座拥有近千年历史的名楼.某学校九年级数学课外活动小组的学生准备利用假期测量超然楼的高度,在大明湖边一块平地上,甲和乙两名同学利用所带工具测量了一些数据,下面是他们的一段对话:甲:我站在此处看楼顶仰角为45°.乙:我站在你后面37m处看楼顶仰角为30°.甲:我的身高是1.7m.乙:我的身高也是1.7m.请你根据两位同学的对话,参考右面的图形计算超然楼的高度,结果精确到1米.(请根据下列数据进行计算)21.如图,点C在以AB为直径的⊙O上,点D在AB的延长线上,∠BCD=∠A.(1)求证:CD为⊙O的切线;若CD=4,⊙O的半径为3,求BD的值.22.我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元/件)… 30 40 50 60 …每天销售量y(件)… 500 400 300 200 …(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?23.如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.(1)求BC的长;当MN∥AB时,求t的值;(3)试探究:t为何值时,△MNC为等腰三角形.24.如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(﹣6,0)、B (0,﹣8)两点.(1)求出直线AB的函数解析式;若有一抛物线的对称轴平行于y轴且经过点M,顶点C在⊙M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得S△PDE=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.山东省潍坊市中考数学模拟试卷(一)参考答案与试题解析一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.)1.计算的结果是()A. 2 B.±2 C.﹣2 D.考点:算术平方根.分析:即为4的算术平方根,根据算术平方根的意义求值.解答:解:=2.故选A.点评:本题考查了算术平方根.关键是理解算式是意义.2.地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为()A. 64×105 B. 6.4×105 C. 6.4×106 D. 6.4×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:6 400 000=6.4×106,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是五个相同的正方体组成的一个几何体,它的左视图是()A. B. C. D.考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解答:解:从左面看易得第一列有1个正方形,第二列有2个正方形.故选D.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.已知抛物线y=x2﹣2x+1与x轴的一个交点为(m,0),则代数式m2﹣2m+的值为() A. B. C. D.考点:抛物线与x轴的交点.分析:根据图象上点的坐标性质得出m2﹣2m=﹣1,进而代入求出即可.解答:解:∵抛物线y=x2﹣2x+1与x轴的一个交点为(m,0),∴m2﹣2m+1=0,∴m2﹣2m=﹣1,则代数式m2﹣2m+=﹣1+=.故选:B.点评:此题主要考查了函数图象上点的坐标性质以及整体思想的应用,求出m2﹣2m=﹣1是解题关键.5.如图,已知矩形纸片ABCD,AD=2,AB=,以A为圆心,AD长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为()A. 1 B. C. D.考点:弧长的计算;特殊角的三角函数值.专题:压轴题.分析:扇形的弧长=圆锥的底面圆的周长.利用弧长公式计算.解答:解:设圆锥底面半径为R,∵cos∠BAE==,∴∠BAE=30°,∠EAD=60°,弧DE===2πR,∴R=.故选C.点评:熟记特殊角的三角函数值和掌握弧长公式是解题的关键.6.如图,AC为⊙O的直径,AB为⊙O的弦,∠A=35°,过点C的切线与OB的延长线相交于点D,则∠D=()A. 20° B. 30° C. 40° D. 35°考点:切线的性质;圆周角定理.专题:几何图形问题.分析:连接BC,则∠ABC=90°,且∠A=35°,∠OCB=55°,又△BCO为等腰三角形,即有∠COB=70°,即可求∠D=90°﹣∠COB=20°.解答:解:连接BC,∴∠OCD=90°,∴∠OCB=55°,在△OCB中,OB=OC;即有∠COB=70°;∴∠D=90°﹣∠COB=20°.故选A.点评:本题利用了切线的概念和性质的应用以及三角形内角和为180°的知识点;在直角三角形中,同角或等角的余角相等;7.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD 交于点O,则四边形AB1OD的周长是()A. B. 2 C. 1+ D. 3考点:旋转的性质;正方形的性质.专题:计算题;压轴题.分析:连接AC,由正方形的性质可知∠CAB=45°,由旋转的性质可知∠B1AB=45°,可知点B1在线段AC上,由此可得B1C=B1O,即AB1+B1O=AC,同理可得AD+DO=AC.解答:解:连接AC,∵四边形ABCD为正方形,∴∠CAB=45°,∵正方形ABCD绕点A逆时针旋转45°,∴∠B1AB=45°,∴点B1在线段AC上,易证△OB1C为等腰直角三角形,∴B1C=B1O,∴AB1+B1O=AC==,同理可得AD+DO=AC=,∴四边形AB1OD的周长为2.故选:B.点评:本题考查了正方形的性质,旋转的性质,特殊三角形的性质.关键是根据旋转角证明点B1在线段AC上.8.如图,小正方形的边长均为1,关于△ABC和△DEF的下列说法正确的是()A.△ABC和△DEF一定不相似B.△ABC和△DEF是位似图形C.△ABC和△DEF相似且相似比是1:2D.△ABC和△DEF相似且相似比是1:4考点:相似三角形的判定与性质.专题:网格型.分析:先利用勾股定理分别计算两个三角形三边的长,再计算比值,得出三条对应边成比例,利用相似三角形的判定可知两个三角形相似.解答:解:∵AB=,BC=2,AC==,DE==,DF==2,EF=4,∴===,∴△ABC∽△DEF.故选C.点评:本题考查了勾股定理、相似三角形的判定和性质.9.已知二次函数y=ax2+bx+c图象如图所示,则下面结论成立的是()A. a>0,bc<0 B. a<0,bc>0 C. a>0,bc>0 D. a<0,bc<0考点:二次函数图象与系数的关系.专题:常规题型.分析:由抛物线的开口方向判断a的符号,然后结合对称轴判断b的符号,再由抛物线与y轴的交点判断c的符号,从而得出bc的符号解答即可.解答:解:由抛物线的开口向上知a>0,与y轴的交点为在y轴的负半轴上得c<0,对称轴为x=>0,a>0,得b<0,∴bc>0.故选C.点评:本题考查了二次函数图象与系数的关系,属于基础题,关键是掌握二次函数y=ax2+bx+c系数符号的确定.10.如图,是一次函数y=kx+b与反比例函数的图象,则关于方程的解为()A. x1=1,x2=2 B. x1=﹣2,x2=﹣1 C. x1=1,x2=﹣2 D. x1=2,x2=﹣1考点:反比例函数与一次函数的交点问题.专题:计算题.分析:根据题意可知,函数图象的交点坐标即为方程的解,根据格点找到交点坐标就可找到方程的解.解答:解:由图可知,两函数图象的交点坐标为(1,2);(﹣2,﹣1);则两横坐标为1和﹣2,∵函数的交点坐标符合两个函数的解析式,∴函数的交点坐标就是方程组的解,∴x=1或x=﹣2,故选C.点评:本题考查了反比例函数与一次函数的交点问题,找到两图象的交点坐标是解题的关键.11.已知直线y=x﹣3与函数y=的图象相交于点(a,b),则a2+b2的值是() A. 13 B. 11 C. 7 D. 5考点:反比例函数与一次函数的交点问题.专题:计算题.分析:利用反比例函数与一次函数的交点问题得到b=a﹣3,b=,则a﹣b=3,ab=2,再利用完全平方公式变形得到a2+b2=(a﹣b)2+2ab,然后利用整体代入的方法计算即可.解答:解:根据题意得b=a﹣3,b=,所以a﹣b=3,ab=2,所以a2+b2=(a﹣b)2+2ab=32+2×2=13.故选A.点评:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.12.如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.πcm2 B.πcm2 C.cm2 D.cm2考点:扇形面积的计算;等腰直角三角形.专题:压轴题;探究型.分析:过点C作CD⊥OB,CE⊥OA,则△AOB是等腰直角三角形,由∠ACO=90°,可知△AOC 是等腰直角三角形,由HL定理可知Rt△OCE≌Rt△ACE,故可得出S扇形OEC=S扇形AEC,与弦OC围成的弓形的面积等于与弦AC所围成的弓形面积,S阴影=S△AOB即可得出结论.解答:解:过点C作CD⊥OB,CE⊥OA,∵OB=OA,∠AOB=90°,∴△AOB是等腰直角三角形,∵OA是直径,∴∠ACO=90°,∴△AOC是等腰直角三角形,∵CE⊥OA,∴OE=AE,OC=AC,在Rt△OCE与Rt△ACE中,∵,∴Rt△OCE≌Rt△ACE,∵S扇形OEC=S扇形AEC,∴与弦OC围成的弓形的面积等于与弦AC所围成的弓形面积,同理可得,与弦OC围成的弓形的面积等于与弦BC所围成的弓形面积,∴S阴影=S△AOB=×1×1=cm2.故选C.点评:本题考查的是扇形面积的计算与等腰直角三角形的判定与性质,根据题意作出辅助线,构造出直角三角形得出S阴影=S△AOB是解答此题的关键.二、填空题(本大题共6小题,共15分,只要求填写最后结果,每小题填对得3分)13.把a3+ab2﹣2a2b分解因式的结果是a(a﹣b)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再利用完全平方公式继续进行二次因式分解.解答:解:a3+ab2﹣2a2b,=a(a2+b2﹣2ab),=a(a﹣b)2.点评:本题主要考查提公因式法分解因式和完全平方公式分解因式,进行二次因式分解是解本题的关键.14.数据:1,5,6,5,6,5,6,6的众数是6,中位数是 5.5,方差是.考点:众数;中位数;方差.分析:根据方差,众数,中位数的定义解答.解答:解:将数据从小到大依次排列为1,5,5,5,6,6,6,6.众数是6,中位数是(5+6)÷2=5.5,平均数是(1+5×3+6×4)÷8=40÷8=5.方差为[(1﹣5)2+3(5﹣5)2+4(5﹣6)2]=.故填6,5.5,.点评:一组数据中出现次数最多的数据叫做众数.样本方差描述了一组数据围绕平均数波动的大小.把这组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.中位数把样本数据分成了相同数目的两部分.15.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=﹣x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是18米.(精确到1米)考点:二次函数的应用.专题:压轴题.分析:由题可知,E、F两点纵坐标为8,代入解析式后,可求出二者的横坐标,F的横坐标减去E 的横坐标即为EF的长.解答:解:由“在该抛物线上距水面AB高为8米的点”,可知y=8,把y=8代入y=﹣x2+10得:x=±4,∴由两点间距离公式可求出EF=8≈18(米).点评:以丽水市“古廊桥文化”为背景呈现问题,考查了现实中的二次函数问题,赋予传统试题新的活力,感觉不到“老调重弹”,在考查提取、筛选信息,分析、解决实际问题等能力的同时,发挥了让学生“熏陶文化,保护遗产”的教育功能.16.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为85度.考点:三角形内角和定理.专题:压轴题.分析:先根据∠ADF=100°求出∠MDB的度数,再根据三角形内角和定理得出∠BMD的度数即可.解答:解:∵∠ADF=100°,∠EDF=30°,∴∠MDB=180°﹣∠ADF﹣∠EDF=180°﹣100°﹣30°=50°,∴∠BMD=180°﹣∠B﹣∠MDB=180°﹣45°﹣50°=85°.故答案为:85.点评:本题考查的是三角形内角和定理,即三角形内角和是180°.17.把两个半径为5和一个半径为8的圆形纸片放在桌面上,使它们两两外切,若要用一个大圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.考点:相切两圆的性质.专题:计算题;作图题.分析:由题意作出图形,要求则这个大圆形纸片的最小半径,则在△APO中,将OA、OP分别用R表示后由勾股定理可得R值,即这个大圆形纸片的最小半径.解答:解:如图所示,⊙A、⊙B半径为5,⊙C半径为8,设⊙O半径为R.连接AB、BC、CA,则AB=10,BC=CA=13,过C作CP⊥AB,则P是AB中点.∴AP=5,在△ACP中由勾股定理CP2=AC2﹣AP2,∴CP=12,∵OC=R﹣8,∴OP=20﹣R,在△APO中,∵OA=R﹣5,AP=5,∴由勾股定理AP2=AO2﹣OP2,即52=(R﹣5)2﹣2,∴R=,则这个大圆形纸片的最小半径等于.点评:本题考查了相切圆的性质,以及勾股定理的应用,同学们应熟练掌握.18.如图,在平面直角坐标系中,点A1是以原点O为圆心,半径为2的圆与过点(0,1)且平行于x轴的直线l1的一个交点;点A2是以原点O为圆心,半径为3的圆与过点(0,2)且平行于x 轴的直线l2的一个交点;…按照这样的规律进行下去,点A n的坐标为().考点:切线的性质;勾股定理.专题:压轴题;规律型.分析:根据题意,可以首先求得A1(,1),A2(,2),A3(,3).根据这些具体值,不难发现:A n的纵坐标是n,横坐标是.解答:解:∵点A1是以原点O为圆心,半径为2的圆与过点(0,1)且平行于x轴的直线l1的一个交点,∴A1的纵坐标为1,横坐标为:=,即A1(,1);同理可求:A2(,2),A3(,3)∴根据这些具体值,得出规律:A n的纵坐标是n,横坐标是.即A n的坐标为().故答案为:().点评:此题可以首先求得几个具体值,然后进一步发现坐标和脚码的规律.三、解答题(本大题共6小题,共66分,解答要写出必要的文字说明、证明过程或演算步骤.)19.“端午节”所示我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售较好的肉馅棕、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不用口味粽子的喜爱情况,在节前对某居民区进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个恰好吃到的是C粽的概率.考点:列表法与树状图法.分析:(1)利用频数÷百分比=总数,求得总人数;根据条形统计图先求得C类型的人数,然后根据百分比=频数÷总数,求得百分比,从而可补全统计图;(3)用居民区的总人数×40%即可;(4)首先画出树状图,然后求得所有的情况以及他第二个恰好吃到的是C粽的情况,然后利用概率公式计算即可.解答:解:(1)60÷10%=600(人)答:本次参加抽样调查的居民由600人;600﹣180﹣60﹣240=120,120÷600×100%=20%,100%﹣10%﹣40%﹣20%=30%补全统计图如图所示:(3)8000×40%=3200(人)答:该居民区有8000人,估计爱吃D粽的人有3200人.(4)如图:P(C粽)=.点评:本题主要考查的是条形统计图、扇形统计图以及概率的计算,掌握画树状图或列表求概率的方法是解题的关键.20.如图所示,江北第一楼﹣﹣超然楼,位于济南大明湖畔,始建于元代,是一座拥有近千年历史的名楼.某学校九年级数学课外活动小组的学生准备利用假期测量超然楼的高度,在大明湖边一块平地上,甲和乙两名同学利用所带工具测量了一些数据,下面是他们的一段对话:甲:我站在此处看楼顶仰角为45°.乙:我站在你后面37m处看楼顶仰角为30°.甲:我的身高是1.7m.乙:我的身高也是1.7m.请你根据两位同学的对话,参考右面的图形计算超然楼的高度,结果精确到1米.(请根据下列数据进行计算)考点:解直角三角形的应用-仰角俯角问题.分析:首先利用CE为超然楼的高度,构造直角三角形,进而利用锐角三角函数关系tan30°=得出CD的长,进而得出EC的长即可得出答案.解答:解:设根据题意画出图形得出:AB=37m,AM=BF=1.7m,∠CAD=30°,∠CBD=45°,故CD=BD,AM=DE=1.7m,∵tan30°====,∴解得:DC===≈50.5(m),则CE=DC+DE=50.5+1.7=52.2≈52(m),答:超然楼的高度为52m.点评:此题主要考查了解直角三角形中仰角问题的应用,根据锐角三角函数的关系得出CD的长是解题关键.21.如图,点C在以AB为直径的⊙O上,点D在AB的延长线上,∠BCD=∠A.(1)求证:CD为⊙O的切线;若CD=4,⊙O的半径为3,求BD的值.考点:切线的判定;圆周角定理;相似三角形的判定与性质.分析:(1)连接OC,根据等腰三角形的性质求出∠OCB=∠OBC,根据AB是直径得出∠ABC=90°,求出∠A+∠ABC=90°,代入求出∠OCB+∠BCD=90°,根据切线的判定推出即可;证△DCB∽△DAC,得出CD2=BD×DA,代入即可求出BD.解答:(1)证明:连接OC,∵OB=OC,∴∠OBC=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠A+∠ABC=90°,又∵∠BCD=∠A,∴∠OCB+∠BCD=90°,∴∠OCD=90°,即OC⊥CD又∵点C在⊙O上,∴CD是⊙O的切线.解:∵∠BCD=∠A,∠D=∠D,∴△BCD∽△CAD,∴,即CD2=AD•BD又∵CD=4,AO=OB=3,∴16=(BD+6)BD,解得:BD=2.点评:本题考查了切线的判定,圆周角定理,相似三角形的性质和判定,等腰三角形的性质等知识点,主要考查学生综合运用性质进行推理的能力,题目比较典型,难度适中.22.我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元/件)… 30 40 50 60 …每天销售量y(件)… 500 400 300 200 …(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?考点:二次函数的应用;一次函数的应用.专题:压轴题;图表型.分析:(1)描点,由图可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性;利润=销售总价﹣成本总价=单件利润×销售量.据此得表达式,运用性质求最值;(3)根据自变量的取值范围结合函数图象解答.解答:解:(1)画图如图;由图可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0)∵这个一次函数的图象经过(30,500)(40,400)这两点,∴解得∴函数关系式是:y=﹣10x+800(0≤x≤80)设工艺厂试销该工艺品每天获得的利润是W元,依题意得W=(x﹣20)(﹣10x+800)=﹣10x2+1000x﹣16000=﹣10(x﹣50)2+9000∴当x=50时,W有最大值9000.所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.(3)对于函数W=﹣10(x﹣50)2+9000,当x≤45时,W的值随着x值的增大而增大,∴销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.点评:根据函数解析式求出的最值是理论值,与实际问题中的最值不一定相同,需考虑自变量的取值范围.23.如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.(1)求BC的长;当MN∥AB时,求t的值;(3)试探究:t为何值时,△MNC为等腰三角形.考点:解直角三角形;等腰三角形的性质;勾股定理;梯形;相似三角形的判定与性质.专题:压轴题.分析:(1)作梯形的两条高,根据直角三角形的性质和矩形的性质求解;平移梯形的一腰,根据平行四边形的性质和相似三角形的性质求解;(3)因为三边中,每两条边都有相等的可能,所以应考虑三种情况.结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.解答:解:(1)如图①,过A、D分别作AK⊥BC于K,DH⊥BC于H,则四边形ADHK是矩形.∴KH=AD=3.在Rt△ABK中,AK=AB•sin45°=4•=4,BK=AB•cos45°=4=4.在Rt△CDH中,由勾股定理得,HC==3.∴BC=BK+KH+HC=4+3+3=10.如图②,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形.∵MN∥AB,∴MN∥DG.∴BG=AD=3.∴GC=10﹣3=7.由题意知,当M、N运动到t秒时,CN=t,CM=10﹣2t.∵DG∥MN,∴∠NMC=∠DGC.又∵∠C=∠C,∴△MNC∽△GDC.∴,即.解得,.(3)分三种情况讨论:①当NC=MC时,如图③,即t=10﹣2t,∴.②当MN=NC时,如图④,过N作NE⊥MC于E.解法一:由等腰三角形三线合一性质得:EC=MC=(10﹣2t)=5﹣t.在Rt△CEN中,cosC==,又在Rt△DHC中,cosC=,∴.解得t=.解法二:∵∠C=∠C,∠DHC=∠NEC=90°,∴△NEC∽△DHC.∴,即.∴t=.③当MN=MC时,如图⑤,过M作MF⊥CN于F点.FC=NC=t.解法一:(方法同②中解法一),解得.解法二:∵∠C=∠C,∠MFC=∠DHC=90°,∴△MFC∽△DHC.∴,即,∴.综上所述,当t=、t=或t=时,△MNC为等腰三角形.点评:注意梯形中常见的辅助线:平移一腰、作两条高.构造等腰三角形的时候的题目,注意分情况讨论.此题的知识综合性较强,能够从中发现平行四边形、等腰三角形等,根据它们的性质求解.24.如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(﹣6,0)、B (0,﹣8)两点.(1)求出直线AB的函数解析式;若有一抛物线的对称轴平行于y轴且经过点M,顶点C在⊙M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得S△PDE=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)利用待定系数法即可求解;首先根据抛物线的顶点在圆上且与y轴平行即可确定抛物线的顶点坐标,再根据待定系数法求函数解析式;(3)三角形ABC的面积为15,所以假设三角形PDE的面积为1,因为DE长为2,所以P到DE 的距离为1,则P的坐标是(x,1),代入抛物线解析式即可求解.解答:解:(1)设直线AB的解析式为y=kx+b,。
人教版中考语文模拟试卷及答案(一)

人教版中考语文模拟试卷及答案(一)研究必备,人教版中考语文模拟试题(一)及答案一、积累及运用(每题3分,共18分)1.下列各项中字形和加点字字音全都正确的一项是()B、仄歪(zè)嶙峋(xún)干涸(gù)唯妙唯肖(xiào)2.下列词语中,没有错别字的一项是()D.亵赌鸿鹄睥睨独具XXX3.下列各句中,加点的成语使用恰当的一项是()D.近年来,在种种灾害面前,各级政府防患未然,及时启动应急预案,力争把人民的生命财产损失降到最低限度。
4.下列句子中没有语病的一项是()A.参加第二十一届冬奥会的中国体育代表团载誉归来,勇夺五金实现历史突破。
5.填入下面横线上的句子,排列恰当的一项是()要取得成功,首先要学会低头。
因此,你再优秀,再有名,也没有人愿意与你合作。
②这恰如演奏一支高昂的曲子,起首往往是低调的。
④低头,既是正确,也是对他人的一种尊重。
③什么时候都高昂着头,实际上是抬高自己,看低别人。
①你瞧不起别人,人家干吗要瞧得起你呢?B.②③④①6.下列关于名著中人物的表述,不正确的一项是()(文章中没有这道题目)研究必备,人教版中考语文模拟试题(一)及答案一、积累及运用(每题3分,共18分)1.下列各项中,字形和加点字的字音全都正确的一项是()B、仄歪(zè)嶙峋(xún)干涸(gù)唯妙唯肖(xiào)2.下列词语中,没有错别字的一项是()D.亵赌鸿鹄睥睨独具XXX3.下列各句中,加点的成语使用恰当的一项是()D.近年来,在种种灾害面前,各级政府防患未然,及时启动应急预案,力争把人民的生命财产损失降到最低限度。
4.下列句子中没有语病的一项是()A.参加第二十一届冬奥会的中国体育代表团载誉归来,勇夺五金实现历史突破。
5.填入下面横线上的句子,排列恰当的一项是()要取得成功,首先要学会低头。
因此,你再优秀,再有名,也没有人愿意与你合作。
2023年黑龙江省哈尔滨市香坊区中考模拟(一)语文试题

2023年黑龙江省哈尔滨市香坊区中考模拟(一)语文试题学校:___________姓名:___________班级:___________考号:___________一、选择题1.下列词语中加点字的注音完全正确的一项是()A.捷.报(jié)钦.差(qīn)追溯.(shù)B.校.对(xiào)粗犷.(guǎng)窠.巢(kē)C.翌.日(yì)恪.守(gé)应.酬(yìng)D.亢.奋(kàng)纶.巾(guān)鼎.盛(dǐng)2.下列词语中没有错别字的一项是()A.行之有效望眼欲穿金璧辉煌B.振聋发溃妙手偶得慷慨激昂C.自圆其说喜出望外大庭广众D.如释重负不其而至酣然入梦3.对下列病句的修改不正确的一项是()A.通过“满城冰雪”“满城冰场”等活动,使哈尔滨成为独具魅力的冬季旅游城市。
删掉“通过”或“使”。
B.春节档电影《满江红》讲述了一群具有民族大义的小人物形象。
将“讲述”改为“叙述”。
C.为迎接世界读书日,同学们制作并设计了各种书签。
将“制作”与“设计”调换位置。
D.能否保持乐观的心态,是生活幸福的重要因素之一。
将“能否”删去。
4.下列信息表述不正确的一项是()A.我国古代将《大学》《中庸》《孟子》《诗经》称为四书。
B.《木兰诗》选自宋代郭茂倩编的《乐府诗集》,是南北朝时期北方的一首乐府民歌。
C.柳宗元,字子厚,唐代文学家,“唐宋八大家”之一。
D.《红星照耀中国》记录了埃德加·斯诺1936年在陕北进行实地采访的所见所闻。
5.下面情境下,语言表达最准确、得体的一项是()【情境】小明在家里准备打印线上考试的试卷,偏巧这时打印机发生故障,还有十分钟考试就将正式开始,万分焦急的小明想到居民微信群里向邻居求助,希望帮忙打印试卷,他可以这样说:A.亲爱的邻居们,远亲不如近邻,我现在有困难需要帮忙,谁能帮助我?B.亲爱的邻居们,我家打印机突然发生故障,哪位邻居可以帮帮我?C.亲爱的邻居们,谁家里有打印机,可以帮我打印一份卷子吗?D.亲爱的邻居们,我马上就要考试,打印机突发故障,请问现在谁能帮我打印一份试卷?6.结合语境,填入下面横线处最恰当的一项是()拼搏,需要超越自我的淬炼。
2024年中考模拟英语检测卷一(含答案)

中考模拟试题一(满分为110分,时间为100分钟)姓名___________得分:一.单项选择题(每小题1分,满分10分)( ) 1.The Internet is so closely connected with our daily life. Can you ________a life without it.A. imagineB. expectC. understandD. influence( ) 2. My mother often tells me It’s impolite to hit an empty bowl ____chopsticks.A. inB. byC. onD. with( ) 3.They have been friends ___________ they first met.A. sinceB. whileC. beforeD. after( ) 4.You look the same now as you looked ten years ago. You’ve _________changed.A. completelyB. greatlyC. hardlyD. already( ) 5.—Would you like a cup of coffee or a bottle of orange, Jim?--- _________. Just water.A.EitherB. NeitherC. BothD. None( ) 6. The lake is very big, and it __________ three quarters of the whole school.A takes off B. takkes away C. take up D. take down( ) 7. Paper ______________ in ancient China more than 2,000 years agoA. will be inventedB. was inventedC.was inventingD. is invented ( ) 8.When we are ________, it’s important to calm ourselves down.A. in timeB. in dangerC. in personD. in public( ) 9. – I feel a little nervous about giving a speech in front of so many people.--- __________. I believe you can make it.A. Never mindB. Well doneC. Take it easyD. That depends ( ) 10.Please read the poem below. Which word is the most suitable for the二.完形填空(每小题1分,满分15分)阅读短文,从各题所给A、B、C、D 四个选项中选出一个最佳答案In the closing years(595--605) of the Sui Dynasty, a terrible flood happened on the Xiao River outside the city of Zhaozhou. The flood brought down a large 11 bridge. People had 12 the bridge many times. 13 it was still washed away over and over again."What's wrong with it?” Li Chun, the most famous local 14 at that time, asked himself. He worked day and night at the drawing of the bridge and found out that the stone supports(支柱)couldn't 15 the force of the flood.One day, 16 came into his mind! He thought of building bow-shaped arches(拱)17 stone supports. And there would be only one big arch, supported at each end by 18 small ones. When floods came, the waters would run 19 the four small arches, bringing 20 influence on the bridge. He was greatly 21 by the idea, and danced happily right at his desk.A new Zhaozhou Bridge was built, It was 22 and beautiful. The local people of Zhaozhou were very glad that the problem of the stone bridge was finally 23 . Now, this great stone bridge with a history of over 24 years has become a classical example of China's arched bridges. It shows the wisdom and 25 of the Chinese people. ( )11. A.wooden B. stone C. Steel D. plastic( )12. A. fixed B. break C. set D. rebuilt( )13. A.But B. And C. So D. Or( )14. A.engineer B.inventor C.manager D. director( )15. A. stop B. reduce C.inerease D. stand( )16. A.a fact B. an idea C. a dream D. a picture( )17. A. together with B, except for C. instead of D.similar to( )18. A.one B, two C. three D.four( )19. A. through B. over C. acrons D.past( )20. A. great B. little C. few D. deep( )21. A.disappointed B. surprised C. excited D.satisfied( )22. A.heavy B. straight C. safe D. hard( )23. A. found out B. tumed out C. put out D. worked out( )24. A.1,200 B.1,300 C. 1,400 D.1,500( )25. A. creativity B. bravery C. honesty D.beauty三.阅读理解(每小题2分。
中考数学模拟测试题(附有答案)

中考数学模拟测试题(附有答案)(满分:120分考试时间120分钟)第Ⅰ卷(选择题共30分)一选择题:本大题共10小题共30.0分。
在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来.每小题选对得3分选错不选或选出的答案超过一个均记零分. 211.下列实数中有理数是()A. √12B. √13C. √14D. √152.下列计算正确的是()A. a3+a2=a5B. a3÷a2=aC. 3a3⋅2a2=6a6D. (a−2)2=a2−43.如图AB//CD点E F在AC边上已知∠CED=70°∠BFC=130°则∠B+∠D的度数为()A. 40°B. 50°C. 60°D. 70°(第3题图)4.如图是我们数学课本上采用的科学计算器面板利用该型号计算器计算√23cos35°按键顺序正确的是()A.B.C.D.5.如图二次函数y=ax2+bx+c的图象的对称轴为x=−12且经过点(−2,0)下列说法错误的是()A. bc<0B. a=bC. 当x1>x2≥−12时D. 不等式ax 2+bx +c <0的解集是−2<x <32(第5题图)6. 《九章算术》是古代中国第一部自成体系的数学专著 其中《卷第八方程》记载:“今有甲乙二人持钱不知其数 甲得乙半而钱五十 乙得甲太半而亦钱五十 问甲 乙持钱各几何?”译文是:今有甲 乙两人持钱不知道各有多少 甲若得到乙所有钱的12 则甲有50钱 乙若得到甲所有钱的23 则乙也有50钱.问甲 乙各持钱多少?设甲持钱数为x 钱 乙持钱数为y 钱 列出关于x y 的二元一次方程组是( )A. {x +2y =5032x +y =50B. {x +12y =5023x +y =50B. C. {x +12y =5032x +y =50D. {x +23y =5012x +y =507. 如图 直角坐标系中 以5为半径的动圆的圆心A 沿x 轴移动 当⊙A 与直线l :y =512x 只有一个公共点时 点A 的坐标为( )A. (−12,0)B. (−13,0)C. (±12,0)D. (±13,0)(第7题图)8. 已知反比例函数y =bx 的图象如图所示 则一次函数y =cx +a 和二次函数y =ax 2+bx +c 在同一平面直角坐标系中的图象可能是( )A. B.C. D.9. 对于任意的有理数a b 如果满足a 2+b 3=a+b 2+3那么我们称这一对数a b 为“相随数对” 记为(a,b).若(m,n)是“相随数对” 则3m +2[3m +(2n −1)]=( ) A. −2B. −1C. 2D. 310. 如图 在正方形ABCD 中 E F 分别是AB BC 的中点 CE DF 交于点G 连接AG.下列结论:①CE =DF ②CE ⊥DF ③∠AGE =∠CDF.其中正确的结论是( ) A. ①② B. ①③ C. ②③ D. ①②③(第10题图)第Ⅱ卷(非选择题 共90分)二 填空题:本大题共8小题 其中11-14题每小题3分 15-18题每小题4分 共28分.只要求填写最后结果.11. “先看到闪电 后听到雷声” 那是因为在空气中光的传播速度比声音快.科学家发现 光在空气里的传播速度约为3×108米/秒 而声音在空气里的传播速度大约为3×102米/秒 在空气中声音的速度是光速的_______倍.(用科学计数法表示) 12. 分解因式:ax 2+2ax +a =______.13. “共和国勋章”获得者 “杂交水稻之父”袁隆平为世界粮食安全作出了杰出贡献.全球共有40多个国家引种杂交水稻 中国境外种植面积达800万公顷.某村引进了甲 乙两种超级杂交水稻品种 在条件(肥力 日照 通风…)不同的6块试验田中同时播种并核定亩产 统计结果为:x 甲−=1042kg/亩 s 甲2=6.5 x 乙−=1042kg/亩 s 乙2=1.2 则______ 品种更适合在该村推广.(填“甲”或“乙”)14. 从不等式组{x −3(x −2)≤42+2x 3≥x −1的所有整数解中任取一个数 它是偶数的概率是______.15. 如图 △ABC 中 ∠B =30° 以点C 为圆心 CA 长为半径画弧 交BC 于点D 分别以点A D 为圆心大于12AD 的长为半径画弧两弧相交于点E 作射线CE 交AB 于点F FH ⊥AC 于点H.若FH =√2 则BF 的长为______.16.如图从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形则此扇形的面积为______dm2.17.如图在Rt△OAB中∠AOB=90°OA=OB AB=1作正方形A1B1C1D1使顶点A1B1分别在OA OB上边C1D1在AB上类似地在Rt△OA1B1中作正方形A2B2C2D2在Rt△OA2B2中作正方形A3B3C3D3…依次作下去则第n个正方形A n B n C n D n的边长是______.(15题图)(16题图)(17题图)18.已知正方形ABCD的边长为3E为CD上一点连接AE并延长交BC的延长线于点F过点D作DG⊥AF交AF于点H交BF于点G N为EF的中点M为BD上一动点分别连接MC MN.若S△DCGS△FCE =14则MN+MC的最小值为______.(18题图)三解答题:本大题共7小题共62分.解答要写出必要的文字说明证明过程或演算步骤.19.(本题满分8分第(1)题3分第(2)题5分)(1)计算:(π−2021)0−3tan30°+|1−√3|+(12)−2.(2)先化简再求值:x−3x2−8x+16÷x−3x2−16−xx−4其中x=√2+4.20.(本题满分8分)为引导学生知史爱党知史爱国某中学组织全校学生进行“党史知识”竞赛该校德育处随机抽取部分学生的竞赛成绩进行统计将成绩分为四个等级:优秀良好一般不合格并绘制成两幅不完整的统计图.(第20题图)根据以上信息解答下列问题:(1)德育处一共随机抽取了______名学生的竞赛成绩在扇形统计图中表示“一般”的扇形圆心角的度数为______(2)将条形统计图补充完整(3)该校共有1400名学生估计该校大约有多少名学生在这次竞赛中成绩优秀?(4)德育处决定从本次竞赛成绩前四名学生甲乙丙丁中随机抽取2名同学参加全市“党史知识”竞赛请用树状图或列表法求恰好选中甲和乙的概率.21.(本题满分8分)如图△ABC内接于⊙O AB是⊙O的直径E为AB上一点BE=BC延长CE交AD于点D AD=AC.(1)求证:AD是⊙O的切线(2)若tan∠ACE=1OE=3求BC的长.3(第21题图)22.(本题满分8分)某工厂生产并销售A B两种型号车床共14台生产并销售1台A型车床可以获利10万元如果生产并销售不超过4台B型车床则每台B型车床可以获利17万元如果超出4台B型车床则每超出1台每台B型车床获利将均减少1万元.设生产并销售B型车床x台.(1)当x>4时完成以下两个问题:①请补全下面的表格:②若生产并销售B型车床比生产并销售A型车床获得的利润多70万元问:生产并销售B型车床多少台?(2)当0<x≤14时设生产并销售A B两种型号车床获得的总利润为W万元如何分配生产并销售AB两种车床的数量使获得的总利润W最大?并求出最大利润.23.(本题满分8分)如图在景区新建了一座垂直观光电梯.某测绘兴趣小组为测算电梯AC的高度测得斜坡AB=105米坡度i=1:2在B处测得电梯顶端C的仰角α=45°求观光电梯AC的高度.(参考数据:√2≈1.41√3≈1.73√5≈2.24.结果精确到0.1米)(第23题图)24.(本题满分10分)已知正方形ABCD E F为平面内两点.(第24题图)【探究建模】(1)如图1当点E在边AB上时DE⊥DF且B C F三点共线.求证:AE=CF【类比应用】(2)如图2当点E在正方形ABCD外部时DE⊥DF AE⊥EF且E C F三点共线.猜想并证明线段AE CE DE之间的数量关系【拓展迁移】(3)如图3当点E在正方形ABCD外部时AE⊥EC AE⊥AF DE⊥BE且D F E三点共线DE与AB交于G点.若DF=3AE=√2求CE的长.x2+bx+c与坐标轴交于A(0,−2)B(4,0) 25.(本题满分12分)如图在平面直角坐标系中抛物线y=12两点直线BC:y=−2x+8交y轴于点C.点D为直线AB下方抛物线上一动点过点D作x轴的垂线垂足为G DG分别交直线BC AB于点E F.x2+bx+c的表达式(1)求抛物线y=12(2)当GF=1时连接BD求△BDF的面积2(3)①H是y轴上一点当四边形BEHF是矩形时求点H的坐标②在①的条件下第一象限有一动点P满足PH=PC+2求△PHB周长的最小值.(第25题图)参考答案与解析1.【答案】C【解析】解:A.√12=√22不是有理数不合题意B.√13=√33不是有理数不合题意C.√14=12是有理数符合题意D.√15=√55不是有理数不合题意故选:C.2.【答案】B【解析】解:a3a2不是同类项因此不能用加法进行合并故A项不符合题意根据同底数幂的除法运算法则a3÷a2=a故B项符合题意根据单项式乘单项式的运算法则可得3a3⋅2a2=6a5故C项不符合题意根据完全平方公式展开(a−2)2=a2−4a+4故D项不符合题意.故选:B.3.【答案】C【解析】解:∵∠BFC=130°∴∠BFA=50°又∵AB//CD∴∠A+∠C=180°∵∠B+∠A+∠BFA+∠D+∠C+∠CED=360°∴∠B+∠D=60°故选:C.4.【答案】B【解析】解:根据计算器功能键正确的顺序应该是B.故选:B.5.【答案】D【解析】解:由图象可得b>0c<0则bc<0故选项A正确∵该函数的对称轴为x=−12∴−b2a =−12化简得b=a故选项B正确∵该函数图象开口向上 该函数的对称轴为x =−12 ∴x ≥−12时 y 随x 的增大而增大当x 1>x 2≥−12时 y 1>y 2 故选项C 正确 ∵图象的对称轴为x =−12 且经过点(−2,0) ∴图象与x 轴另一个交点为(1,0)不等式ax 2+bx +c <0的解集是−2<x <1 故选项D 错误 故选:D .6.【答案】B【解析】解:设甲 乙的持钱数分别为x y 根据题意可得:{x +12y =5023x +y =50故选:B .7.【答案】D【解析】解:当⊙A 与直线l :y =512x 只有一个公共点时 直线l 与⊙A 相切 设切点为B 过点B 作BE ⊥OA 于点E 如图∵点B 在直线y =512x 上 ∴设B(m,512m) ∴OE =−m在Rt △OEB 中 tan∠AOB =BEOE =512. ∵直线l 与⊙A 相切 ∴AB ⊥BO .在Rt△OAB中tan∠AOB=ABOB =512.∵AB=5∴OB=12.∴OA=√AB2+OB2=√52+122=13.∴A(−13,0).同理在x轴的正半轴上存在点(13,0).故选:D.8.【答案】D【解析】解:∵反比例函数的图象在二四象限∴b<0A∵二次函数图象开口向上对称轴在y轴右侧交y轴的负半轴∴a>0b<0c<0∴一次函数图象应该过第一二四象限A错误B∵二次函数图象开口向下对称轴在y轴右侧∴a<0b>0∴与b<0矛盾B错误C∵二次函数图象开口向下对称轴在y轴右侧∴a<0b>0∴与b<0矛盾C错误D∵二次函数图象开口向上对称轴在y轴右侧交y轴的负半轴∴a>0b<0c<0∴一次函数图象应该过第一二四象限D正确.故选:D.9.【答案】A【解析】解:因为(m,n)是“相随数对”所以m2+n3=m+n2+3所以3m+2n6=m+n5即9m+4n=0所以3m+2[3m+(2n−1)]=3m+2[3m+2n−1]=3m+6m+4n−2=9m+4n−2=0−2=−2故选:A.10.【答案】D【解析】解:∵四边形ABCD是正方形∴AB=BC=CD=AD∠B=∠BCD=90°∵E F分别是AB BC的中点∴BE=12AB CF=12BC∴BE=CF在△CBE与△DCF中{BC=CD∠B=∠BCD BE=CF∴△CBE≌△DCF(SAS)∴∠ECB=∠CDF CE=DF故①正确∵∠BCE+∠ECD=90°∴∠ECD+∠CDF=90°∴∠CGD=90°∴CE⊥DF故②正确∴∠EGD=90°在Rt△CGD中取CD边的中点H连接AH交DG于K ∴HG=HD=12CD∴Rt△ADH≌Rt△AGH(HL)∴AG=AD∴∠AGD=∠ADG∵∠AGE+∠AGD=∠ADG+∠CDF=90°∴∠AGE=∠CDF故③正确故选:D .11.【答案】1×10−6【解析】【解答】解:3×102米/秒÷(3×108)米/秒=10−6故答案为1×10−6.12.【答案】a(x +1)2【解析】解:ax 2+2ax +a=a(x 2+2x +1)--(提取公因式)=a(x +1)2.--(完全平方公式)13.【答案】乙【解析】解:∵x 甲−=1042kg/亩 x 乙−=1042kg/亩 s 甲2=6.5s 乙2=1.2∴x 甲−=x 乙− S 甲2>S 乙2∴产量稳定 适合推广的品种为乙故答案为:乙.14.【答案】25 【解析】解:∵{x −3(x −2)≤4①2+2x3≥x −1②由①得:x ≥1由②得:x ≤5∴不等式组的解集为:1≤x ≤5∴整数解有:1 2 3 4 5∴它是偶数的概率是25.故答案为25.15.【答案】2√2【解析】解:过F 作FG ⊥BC 于G由作图知 CF 是∠ACB 的角平分线∵FH ⊥AC 于点H.FH =√2∴FG=FH=√2∵∠FGB=90°∠B=30°.∴BF=2FG=2√2故答案为:2√2.16.【答案】2π【解析】解:连接AC∵从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形即∠ABC=90°∴AC为直径即AC=4dm AB=BC(扇形的半径相等)∵AB2+BC2=22∴AB=BC=2√2dm∴阴影部分的面积是90⋅π⋅(2√2)2360=2π(dm2).故答案为:2π.17.【答案】13n【解析】解:法1:过O作OM⊥AB交AB于点M交A1B1于点N如图所示:∵A1B1//AB∴ON⊥A1B1∵△OAB为斜边为1的等腰直角三角形∴OM=12AB=12又∵△OA1B1为等腰直角三角形∴ON=12A1B1=12MN∴ON:OM=1:3∴第1个正方形的边长A1C1=MN=23OM=23×12=13同理第2个正方形的边长A2C2=23ON=23×16=132则第n个正方形A n B n D n C n的边长13n法2:由题意得:∠A=∠B=45°∴AC1=A1C1=C1D1=B1D1=BD1AB=1∴C1D1=13AB=13同理可得:C2D2=13A1B1=132AB=132依此类推C n D n=13n.故答案为13n.18.【答案】2√10【解析】解:∵四边形ABCD是正方形∴A点与C点关于BD对称∴CM=AM∴MN+CM=MN+AM≥AN∴当A M N三点共线时MN+CM的值最小∵AD//CF∴∠DAE=∠F∵∠DAE+∠DEH=90°∵DG⊥AF∴∠CDG+∠DEH=90°∴∠DAE=∠CDG∴∠CDG=∠F∴△DCG∽△FCE∵S△DCGS△FCE =14∴CDCF =12∵正方形边长为3∴CF=6∵AD//CF∴ADCF =DECE=12∴DE=1CE=2在Rt△CEF中EF2=CE2+CF2∴EF=√22+62=2√10∵N是EF的中点∴EN=√10在Rt△ADE中EA2=AD2+DE2∴AE=√32+12=√10∴AN=2√10∴MN+MC的最小值为2√10故答案为:2√10.19.(1)【答案】解:(π−2021)0−3tan30°+|1−√3|+(12)−2=1−3×√33+√3−1+4=1−√3+√3−1+4=4.(2)【答案】解:原式=x−3(x−4)2⋅(x+4)(x−4)x−3−xx−4=x+4x−4−xx−4=4x−4.把x=√2+4代入原式=√2+4−4=2√2.20.【答案】40108°【解析】解:(1)德育处一共随机抽取的学生人数为:16÷40%=40(名)则在条形统计图中成绩“一般”的学生人数为:40−10−16−2=12(名)∴在扇形统计图中成绩“一般”的扇形圆心角的度数为:360°×1240=108°故答案为:40108°(2)把条形统计图补充完整如下:(3)1400×1040=350(名)即估计该校大约有350名学生在这次竞赛中成绩优秀(4)画树状图如图:共有12种等可能的结果恰好选中甲和乙的结果有2种∴恰好选中甲和乙的概率为212=16.21.【答案】解:(1)∵AB是⊙O的直径∴∠ACB=90°即∠ACE+∠BCE=90°∵AD=AC BE=BC∴∠ACE=∠D∠BCE=∠BEC又∵∠BEC=∠AED∴∠AED+∠D=90°∴∠DAE=90°即AD⊥AE∵OA是半径∴AD是⊙O的切线(2)由tan∠ACE=13=tan∠D可设AE=a则AD=3a=AC ∵OE=3∴OA=a+3AB=2a+6∴BE=a+3+3=a+6=BC在Rt△ABC中由勾股定理得AB2=BC2+AC2即(2a+6)2=(a+6)2+(3a)2解得a1=0(舍去)a2=2∴BC=a+6=8.22.【答案】解:(1)①由题意得生产并销售B型车床x台时生产并销售A型车床(14−x)台当x>4时每台B型车床可以获利[17−(x−4)]=(21−x)万元.故答案应为:14−x21−x②由题意得方程10(14−x)+70=[17−(x−4)]x解得x1=10x2=21(舍去)答:生产并销售B型车床10台(2)当0<x≤4时总利润W=10(14−x)+17x整理得W=7x+140∵7>0∴当x=4时总利润W最大为7×4+140=168(万元)当x>4时总利润W=10(14−x)+[17−(x−4)]x整理得W=−x2+11x+140∵−1<0=5.5时总利润W最大∴当x=−112×(−1)又由题意x只能取整数∴当x=5或x=6时∴当x=5时总利润W最大为−52+11×5+140=170(万元)又∵168<170∴当x=5或x=6时总利润W最大为170万元而14−5=914−6=8答:当生产并销售A B两种车床各为9台5台或8台6台时使获得的总利润W最大最大利润为170万元.23.【答案】解:过B作BM⊥水平地面于M BN⊥AC于N如图所示:则四边形AMBN是矩形∴AN=BM BN=MA∵斜坡AB=105米坡度i=1:2=BMAM∴设BM=x米则AM=2x米∴AB=√BM2+AM2=√x2+(2x)2=√5x=105∴x=21√5∴AN=BM=21√5(米)BN=AM=42√5(米)在Rt△BCN中∠CBN=α=45°∴△BCN是等腰直角三角形∴CN=BN=42√5(米)∴AC=AN+CN=21√5+42√5=63√5≈141.1(米)答:观光电梯AC的高度约为141.1米.24.【答案】(1)证明:如图1中∵四边形ABCD是正方形∴DA=DC∠A=∠ADC=∠DCB=∠DCF=90°∵DE⊥DF∴∠EDF=∠ADC=90°∴∠ADE=∠CDF在△DAE和△DCF中{∠ADE=∠CDF DA=DC∠A=∠DCF∴△DAE≌△DCF(ASA)∴AE=CF.(2)解:结论:EA+EC=√2DE.理由:如图2中连接AC交DE于点O过点D作DK⊥EC于点K DJ⊥EA交EA的延长线于点J.∵四边形ABCD是正方形△DEF是等腰直角三角形∴∠DAO=∠OEC=45°∵∠AOD=∠EOC∴△AOD∽△EOC∴AOEO =ODOC∴AOOD =OEOC∵∠AOE=∠DOC∴△AOE∽△DOC∴∠AEO=∠DCO=45°∴∠DEJ=∠DEK∵∠J=∠DKE=90°ED=ED∴△EDJ≌△EDK(AAS)∴EJ=EK DJ=DK∵∠J=∠DKC=90°DJ=DK DA=DC∴Rt△DJA≌Rt△DKC(HL)∴AJ=CK∴EA+EC=EJ−AJ+EK+CK=2EJ∵DE=√2EJ∴EA+EC=√2DE.(3)解:如图3中连接AC取AC的中点O连接OE OD.∵四边形ABCD是正方形AE⊥EC∴∠AEC=∠ADC=90°∵OA=OC∴OD=OA=OC=OE∴A E C D四点共圆∴∠AED=∠ACD=45°∴∠AEC=∠DEC=45°由(2)可知AE+EC=√2DE∵AE⊥AF∴∠EAF=90°∴∠AEF=∠AFE=45°∴AE=AF=√2∴EF=√2AE=2∵DF=3∴DE=5∴√2+EC=5√2∴EC=4√2.25.【答案】解:(1)∵抛物线y=12x2+bx+c过A(0,−2)B(4,0)两点∴{c=−28+4b+c=0解得{b=−32 c=−2∴y=12x2−32x−2.(2)∵B(4,0)A(0,−2)∴OB=4OA=2∵GF⊥x轴OA⊥x轴在Rt△BOA和Rt△BGF中tan∠ABO=OAOB =GFGB即24=12GB∴GB=1∴OG=OB−GB=4−1=3当x=3时y D=12×9−32×3−2=−2∴D(3,−2)即GD=2∴FD=GD−GF=2−12=32∴S△BDF=12⋅DF⋅BG=12×32×1=34.(3)①如图1中过点H作HM⊥EF于M ∵四边形BEHF是矩形∴EH//BF EH=BF∴∠HEF=∠BFE∵∠EMH=∠FGB=90°∴△EMH≌△FGB(AAS)∴MH=GB EM=FG∵HM=OGOB=2∴OG=GB=12∵A(0,−2)B(4,0)x−2∴直线AB的解析式为y=12a−2)设E(a,−2a+8)F(a,12由MH=BG得到a−0=4−a∴a=2∴E(2,4)F(2,−1)∴FG=1∵EM=FG∴4−y H=1∴y H=3∴H(0,3).②如图2中BH=√OH2+OB2=√32+42=5∵PH=PC+2∴△PHB的周长=PH+PB+HB=PC+2+PB+5=PC+PB+7要使得△PHB的周长最小只要PC+PB的值最小∵PC+PB≥BC∴当点P在BC上时PC+PB=BC的值最小∵BC=√OC2+OB2=√82+42=4√5∴△PHB的周长的最小值为4√5+7.第21页共21页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
佛山中学2020中考模拟试题(一)`本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(表述题)两部分,第Ⅰ卷1至6页,第Ⅱ卷6至8页。
满分150分,考试时间120分钟。
注意事项:1.答题前,请考生仔细阅读答题纸上的注意事项,并务必按照相关要求作答。
2.考试结束后,监考人员将本试卷和答题纸一并收回。
第Ⅰ卷(选择题共48分)1.下列句子中加点字的字音和字形完全正确的一项是()A.我想起幽.(yōu)远的车铃,晴天里马儿带.着串铃在溜(liū)直的大道上跑着,狐仙姑深夜的澜.语,原野上怪诞.的狂风。
B.跟着我去踩田圃.(Pǔ)的泥土将润如油膏.(gāo),去牧场就要抽发忍.冬的新苗。
C.那朵红莲,被那繁密.(mì)的雨点,打得左右攲.(qī)斜。
在无遮庇.的天空之下,我不敢下阶去,也无法可想。
D.这批无恶不做.的法官,他们媚.(mèi)上欺下,俯伏于国王之前,凌(líng)驾于人民之上。
2.下列句子中加点的词语运用不恰当的一项是()A.他本来识字不多,但几十年游历各处,又代写无数封书信,实际文化程度在几位教师中显得拔尖,教起国文来也惟妙惟肖....。
B.经验证明,有许多书看一遍两遍还不懂得,读三遍四遍就懂得了;或者一本书读了前面有许多不懂的地方,读到后面才豁然贯通....。
C.无边落木萧萧下,不尽长江滚滚来!......有这种诗人灵魂的传统的民族,应该有气吞斗牛....的表现才对。
D.突然间,我恍然大悟....,有一种神奇的感觉在我脑中激荡,我一下子理解了语言文字的奥秘,知道了“水”这个字就是正在我手上流过的这种清凉而奇妙的东西。
3.下列句子中加点词语的意思解释错误的一项是()A.①夕日欲颓.(坠落),沉麟竞跃。
(《答谢中书书》)②怀怒未发,休祲.(不详)降于天,与臣而将四矣。
(《唐雎不辱使命》)B.①潭中鱼可百许.(大约)头,皆若空游无所依。
(《小石潭记》)②至于夏水襄陵,沿溯.(逆流而上)阻绝。
(《三峡》)C.①知困,然后能自强.(勉励)也。
(《虽有佳肴》)②人有百口,口有百舌,不能名.(说出)其一处也。
(《口技》)D.①惩.(戒,这里是苦于的意思)山北之塞,出入之迂也。
(《愚公移山》)②子固非鱼也,子之不知鱼之乐全.(完全,确实是)矣!(《庄子与惠子游于濠梁》)4、下列各句中有语病的一项是()A. 央视纪录片《大国重器》,报道了中建三局的智能顶升系统——中国首创的新一代“空中造楼机”不断地刷新城市天际线。
B. 今年5月30日,南航将开通武汉—伦敦直飞航线,这是继直飞巴黎、莫斯科、旧金山、罗马、悉尼之后,武汉开通的第6条洲际航线。
C. 电影经济、互联网业态、手机APP服务的兴起,催生出电影顾问、网约车司机、导航地图编辑、机器人调试员等新兴岗位出现在各大公开招聘会上。
D. 民营企业的领军人物马云亲率众民营企业家来武汉共建中国新民营经济创新区,这次新探索将吸引更多民营企业来汉发展,助力武汉新民营经济再出发。
5.下列各句标点符号使用不规范的一项是()A. 古代中国是诗歌的国度,“诗乐舞混沌不分”,歌唱性是中国古典诗词与生俱来的文化基因。
诗词与音乐水乳交融,浑然一体,在浅唱低吟中做到了雅俗共赏。
B. 文化综艺节目《国家宝藏》将纪录片和综艺两种创作手法融合应用,以文化的内核、综艺的外壳、纪录的气质,创造了一种全新的表达方式。
C. “百部经典”书目上起先秦,下至辛亥革命,突破传统经、史、子、集四部分类法,力求做到广纳百家、百花齐放,充分展现中华传统文化的广泛性和多样性。
D. 纪录片《舌尖上的中国》通过平淡的小事,勾起了人对故乡的思念、对亲朋好友的回忆;它没有商业片的噱头和造势、浮华与张扬;有的只是人与人之间持久存在的爱和尊重。
6.下列有关文学常识和文化常识表述有错误的一项是()A. 《伊索寓言》是世界上最古老的一部寓言故事集,相传为公元前六世纪古希腊的伊索所写。
B. 《朝花夕拾》是鲁迅唯一一本散文集。
全书十篇文章,是鲁迅回忆童年、少年和青年时期不同生活经历与体验的文字。
我们学过其中的《从百草园到三味书屋》《阿长与<山海经>》《社戏》等。
C. 成语“豁然开朗”“扑朔迷离”“鸿鹄之志”“心旷神怡”分别出自《桃花源记》《木兰诗》《陈涉世家》《岳阳楼记》。
D. 古人说的“弱冠”指的是男子20岁,“桑梓”指的是故乡,“鸿雁”常用来喻指书信。
二、(12分,每小题3分)阅读下面的文字,完成7~10题。
父亲突然很狼狈,低声嘟哝着:"出大乱子了!"母亲突然很暴怒起来,说:"我就知道这个贼是不会有出息的,早晚会回来重新拖累我们的。
现在把钱交给若瑟夫,叫他去把牡蛎钱付清。
已经够倒楣的了,要是被那个讨饭的认出来,这船上可就热闹了。
咱们到那头去,注意别叫那人挨近我们!"她说完就站起来,给了我一个5法郎的银币,就走开了。
我问那个卖牡蛎的人:"应该付您多少钱,先生?"他答道:"2法郎50生丁。
"我把5法郎的银币给了他,他找了钱。
我看了看他的手,那是一只满是皱痕的水手的手。
我又看了看他的脸,那是一张又老又穷苦的脸,满脸愁容,狼狈不堪。
我心里默念道:"这是我的叔叔,父亲的弟弟,我的亲叔叔。
"我给了他10个铜子的小费。
他赶紧谢我:"上帝保佑您,我的年轻的先生!等我把2法郎交给父亲,母亲诧异起来,就问:"吃了3个法郎?这是不可能的。
" 我说:"我给了他10个铜子的小费。
" 我母亲吓了一跳,直望着我说:"你简直是疯了!拿10个铜子给这个人,给这个流氓!"她没再往下说,因为父亲指着女婿对她使了个眼色。
后来大家都不再说话。
在我们面前,天边远处仿佛有一片紫色的阴影从海里钻出来。
那就是哲尔赛岛了。
我们回来的时候改乘圣玛洛船,以免再遇见他。
7.对选文内容的理解,完全正确的一项是()A. 文中写吃牡蛎一节的主要作用是让“我”看得清父母虚伪的真面目。
B. 刻画人物有明有暗,有虚有实,有详有略,写出了层次,突出了重点。
C. 第一个“狼狈”写出了菲利普“受窘的样子”,第二个“狼狈”指于勒在“我”面前感到很难堪。
D. 于勒得到十个铜子的小费,就“赶紧致谢”的细节说明于勒已经认出了“我”,用“感谢”掩饰内心不安。
8.对文中画横线句子理解错误的一项是()A. 烘托了人物失望、沮丧的心情,与刚上船时的美好心情形成鲜明的对比。
B. “紫色的阴影”语义双关,既实指哲尔赛岛,又象征蒙在菲利普夫妇心头的阴影。
C. 用景物描写表现菲利普夫妇希望化为泡影的失望透顶的内心世界。
D. “紫色的阴影”暗示资本主义社会令人窒息的家庭关系。
9.对文中人物分析不完全正确的一项是()A. 小说的人物刻画,特色鲜明。
小说人物寥寥,但手法多样。
B. 作品中的菲利普是个既可鄙又可怜的形象。
C. 小说中的“我”,作为叙事的主体贯穿全篇,因而着墨较多D. 菲利普的女儿、女婿等人物,一笔带过,只起陪衬烘托作用10.下面对这篇小说的表现手法的分析不正确的一项是()A. 小说的人物,在语言动作中有内心世界的表露。
B. 小说的情节,在平铺直叙中有波澜起伏。
C. 小说的描写,在冷峻奢华中有锋芒。
D. 小说的幽默,在轻浅素淡中有辛辣。
四、(12分,每小题3分)阅读下面的文字,完成11~14题。
醉翁亭记宋·欧阳修环滁皆山也。
其西南诸峰,林壑尤美,望之蔚然而深秀者,琅琊也。
山行六七里,渐闻水声潺潺而泻出于两峰之间者,酿泉也。
峰回路转,有亭翼然临于泉上者,醉翁亭也。
作亭者谁?山之僧智仙也。
名之者谁?太守自谓也。
太守与客来饮于此,饮少辄醉,而年又最高,故自号曰醉翁也。
醉翁之意不在酒,在乎山水之间也。
山水之乐,得之心而寓之酒也。
若夫日出而林霏开,云归而岩穴暝,晦明变化者,山间之朝暮也。
野芳发而幽香,佳木秀而繁阴,风霜高洁,水落而石出者,山间之四时也。
朝而往,暮而归,四时之景不同,而乐亦无穷也。
至于负者歌于途,行者休于树,前者呼,后者应,伛偻提携,往来而不绝者,滁人游也。
临溪而渔,溪深而鱼肥,酿泉为酒,泉香而酒洌,山肴野蔌,杂然而前陈者,太守宴也。
宴酣之乐,非丝非竹,射者中,弈者胜,觥筹交错,起坐而喧哗者,众宾欢也。
苍颜白发,颓然乎其间者,太守醉也。
已而夕阳在山,人影散乱,太守归而宾客从也。
树林阴翳,鸣声上下,游人去而禽鸟乐也。
然而禽鸟知山林之乐,而不知人之乐;人知从太守游而乐,而不知太守之乐其乐也。
醉能同其乐,醒能述以文者,太守也。
太守谓谁?庐陵欧阳修也。
11.下列加点词解释有误的一项是()A. 有亭翼.然临于泉上者翼:翅膀B. 得之心而寓.之酒也寓:寄托C. 树林阴翳.翳:遮盖D. 而不知太守之乐.其乐也乐:以……为乐12.下列各项中加点词意义和用法相同的一项是()A. 望之蔚然而.深秀者/中峨冠而.多髯者为东坡B. 在乎..山水之间也/王侯将相宁有种乎..C. 至于负者.歌于途/然操遂能克绍,以弱为强者..D. 醒能述以.文者/皆以.美于徐公13.下列对选文理解有误的一项是()A. 文章“醉”是表象,“乐”为实质,“醉”“乐”统一,表现“与民同乐”的主旨。
B. 文章最后一段写日暮醉归,将描写、叙事、抒情和议论融合,卒章显志。
C. 本文写景动静结合,多感官结合,骈散结合,参差多变。
D. 文中多用“也”字结句,贯通全篇,灵动之中有赘烦之感,具有一唱三叹的风韵。
14.下列对句子翻译有误的一项是()A.山水之乐,得之心而寓之酒也。
(译文:欣赏山水的乐趣,领会在心里而寄托在喝酒上罢了。
)B. 负者歌于途,行者休于树。
(译文:下棋输了的人在路上歌唱,走路的人在树下休息。
)C.伛偻提携,往来而不绝者,滁人游也。
(译文:老老小小的人们,来来往往,络绎不绝的,是滁州人在出游。
)D. 其西南诸峰。
林壑尤美,望之蔚然而深秀者,琅琊也。
(译文:它西南方向的各个山峰,树林和山谷尤其优美,远远望去树木茂盛、又幽深又秀丽的,是琅琊山。
)五、(6分,每小题3分)阅读下面的文字,完成15~16题。
渔家傲.秋思塞下秋来风景异,衡阳雁去无留意。
四面边声连角起。
千嶂里,长烟落日孤城闭。
浊酒一杯家万里,燕然未勒归无计。
羌管悠悠霜满地。
人不寐,将军白发征夫泪。
15.下面对词的赏析不正确的一项是。
()A. 词的上片着重抒情,而情中有景;下片着重写景,而景中有情。
B. “衡阳雁去无留意”以南归大雁景径去不返,反衬出边地的荒凉,这是托物寄兴。
C. “燕然未勒归无计”化用典故,表明战争没有取得胜利,还乡之计无从谈起。
D. 全词情调苍凉悲壮,感情陈挚抑郁,一扫花间派柔靡无骨、嘲风弄月的词风,成为后来苏轼、辛弃疾豪放词派的先声。