600MW超临界锅炉机组汽水流程
(完整版)上汽600MW超临界汽轮机DEH说明书

600MW超临界机组DEH系统说明书1汽轮机概述超临界600/660MW中间再热凝汽式汽轮机主要技术规范注意:上表中的数据为一般数据,仅供参考,具体以项目的热平衡图为准。
由于锅炉采用直流炉,再热器布置在炉膛较高温区,不允许干烧,必须保证最低冷却流量。
这就要求在锅炉启动时,必须打开高低压旁路,蒸汽通过高旁进入再热器,再经过低旁进入凝汽器。
而引进型汽轮机中压缸在冷态启动时不参与控制,仅全开全关,所以在汽轮机冷态启动时,要求高低旁路关闭,再热调节阀全开,主蒸汽进入汽轮机高压缸做功,经高排逆止门进入再热器,经再热后送入中低压缸,再进入凝汽器。
由于汽轮机在启动阶段流量较小,在3000 r/min 时只有3-5%的流量,远远不能满足锅炉再热器最低的冷却流量。
因此,在汽轮机启动时,再热调节阀必须参加控制,以便开启高低压旁路,以满足锅炉的要求。
所以600MW 超临界汽轮机一般要求采用高中压联合启动(即bypass on)的启动方式。
2高中压联合启动高中压缸联合启动,即由高压调节汽阀及再热调节阀分别控制高压缸及中压缸的蒸汽流量,从而控制机组的转速。
高中压联合启动的要点在于高压缸及中低压缸的流量分配。
启动过程如下:2.1 盘车(启动前的要求)2.1.1主蒸汽和再热蒸汽要有56℃以上的过热度。
2.1.2 高压内缸下半第一级金属温度和中压缸第一级持环下半金属温度,大于204 ℃时,汽轮机采用热态启动模式,小于204℃时,汽轮机采用冷态启动模式,启动参数见图“主汽门前启动蒸汽参数”,及“热态起启动的建议”中规定。
冷再热蒸汽压力最高不得超过0.828MPa(a)。
高中压转子金属温度大于204℃,则汽机的启动采用热态启动方式,主蒸汽汽温和热再热汽温至少有56℃的过热度,并且分别比高压缸蒸汽室金属温度、中压缸进口持环金属温度高56℃以上,主蒸汽压力为对应主蒸汽进口温度下的压力。
第一级蒸汽温度与高压转子金属温度之差应控制在 56℃之内,热再热汽温与中压缸第一级持环金属温差也应控制在这同样的水平范围。
600MW机组超临界直流锅炉的控制策略

600MW机组超临界直流锅炉的控制策略一、超临界直流锅炉的动态特性及其控制系统设计特点与亚临界机组相比,内置式分离器超临界直流锅炉采用联合变压运行方式,在机组的起停过程中(图1)或工况发生大范围变化时,水冷壁工质压力大幅度变化,导致工质的相变点、比容、温度、汽化潜热等都发生较大变化,被控对象的动态特性复杂,控制难度大。
对象动态特性的复杂性主要表现在以下几方面。
(1)超临界压力直流锅炉机组在起至、停在过程中要经历汽水分离器湿态-干态运转的切换和亚临界与超临界压力运转工况的切换,因此动态特性随其负荷变化很大,在相同的运转工况下存有着根本性的差别,呈现很强的非线性特性和变参数特性。
当汽水分离器湿态运行时,锅炉的动态特性类似于汽包锅炉,被控参数为分离器水位并维持启动给水流量,这时给水流量的变化主必须影响的就是汽水分离器水位,燃料量的变化主要影响汽水分离器出口蒸汽流量和压力。
当汽水分离器干态运行且系统处于亚临界压力工况时,锅炉的动态特性类似于亚临界直流锅炉,所要控制的量为蒸汽温度和给水流量,此时由于直流锅炉蒸发受热面的各个区段之间无固定分界线,各参数相互之间的耦合程度远大于汽包锅炉,任何扰动都将导致锅炉出口蒸汽温度、压力和流量同时变化,给水、燃烧和汽温控制之间密切相关,特别在煤水比失调时锅炉出口汽温的变化显著大于汽包锅炉。
当锅炉处于超临界压力工况时,锅炉汽水流程上的任何环节均为单相区段,此时其动态特性类似于过热器或省煤器。
在湿态-干态切换过程中蒸汽温度可能会出现很大变化,应当特别注意操作控制。
在亚临界-超临界压力转型过程中,由于临界压力工况点附近存有着最小比热容区,工质定压比热孟显得非常大,工质温度随其焓值的变化很不脆弱,因此机组在亚临界压力向超临界压力区域切换过程中的动态特性差异非常明显。
(2)超临界直流锅炉蓄热能力小,惯性较小,对外界扰动的响应速度要快于亚临界机组,容易超温超压。
但在对电网调峰要求的适应能力、机组正常运行时的变负荷能力和快速起/停能力等方面超临界机组优于亚临界机组。
超临界锅炉汽水系统流程

超临界锅炉汽水系统流程The supercritical boiler steam-water system is an essential component in power plants, providing the necessary steam for electricity generation. This system involves various processes and equipment that work together to convert water into high-pressure steam. In this essay, we will explore the flow of the supercritical boiler steam-water system, discussing its significance, components, and operation.The flow of the supercritical boiler steam-water system begins with the feedwater system. This system is responsible for supplying water to the boiler at high pressure and temperature. The water is first treated to remove impurities, ensuring the smooth operation of the boiler. Then, it is pumped into the economizer, where the water is heated using the waste heat from the flue gases. This preheating process improves the overall efficiency of the system.After leaving the economizer, the preheated water enters the boiler through the water wall tubes. Inside the boiler, the water is further heated by the combustion of fuel, typically coal or natural gas. The intense heat causes the water to reach its critical point, where it transitions from a liquid to a supercritical fluid. This supercritical fluid exhibits unique properties, such as high density and absence of a distinct liquid-gas phase boundary.As the water transforms into a supercritical fluid, it absorbs significant amounts of heat energy. This high-energy fluid then enters the superheater, where it is further heated to reach the desired steam temperature. The superheater consists of a series of tubes exposed to the hot flue gases, transferring heat to the fluid. By superheating the fluid, the system ensures that the steam produced has the necessary energy to drive the turbine and generate electricity efficiently.Once the superheating process is complete, the supercritical fluid enters the steam drum, where anyremaining impurities are separated from the steam. Thesteam drum acts as a reservoir, allowing the system to maintain a constant supply of high-pressure steam. From the steam drum, the steam is then directed towards the turbine, where its energy is converted into mechanical work. The turbine drives the generator, producing electricity thatcan be distributed to consumers.After passing through the turbine, the steam enters the condenser, where it is cooled and condensed back into water. This condensed water is then pumped back to the feedwater system, completing the steam-water cycle. The cycle repeats continuously, ensuring a continuous supply of steam for power generation.In conclusion, the flow of the supercritical boiler steam-water system is a complex and vital process in power plants. It involves various components, such as the feedwater system, boiler, superheater, steam drum, turbine, and condenser, working together to generate electricity. Understanding this flow is crucial for optimizing the efficiency and reliability of power generation. Bycontinuously improving the design and operation of the supercritical boiler steam-water system, power plants can meet the increasing demand for electricity while minimizing environmental impacts.。
600MW超临界锅炉课程设计正文

第1章设计任务书设计题目:600MW等级超临界压力煤粉锅炉原始资料如下:锅炉蒸发量:D sh=1913t/h过热蒸汽压力:p sh''=25.4MPa(表压)过热蒸汽温度:t sh''=571℃再热蒸汽流量:D rh=1586t/h再热蒸汽入口压力:p rh'=4.35MPa(表压)再热蒸汽入口温度:t rh'=310℃再热蒸汽出口压力:p rh''=4.16MPa(表压)再热蒸汽出口温度:t rh''=569℃给水压力:p fw=29.35MPa给水温度:t fw=282℃周围环境温度:t ca=20℃排烟温度:v exg=126℃制粉系统:直吹式、中速磨(1)燃料名称:神府东胜煤(2)煤的收到基成分(%):C ar=57.33, H ar=3.62,O ar=9.94, N ar=0.70,S ar=0.41, A ar=15.00, M ar=13.00(3)煤的干燥无灰基挥发分:V daf=33.64%(4)煤的收到基低位发热量:Q net,ar=21805kj/kg(5)灰熔点:DT、ST、FT>1500℃第2章燃料的数据校核和煤种判别2.1 燃料的数据校核计算列于表2-1。
表2-1 燃料的数据校核和煤种判别2.2 煤种判别:由燃料特性得知:因为V daf =33.64% ,10%<V daf<37%所以煤种为烟煤第3章锅炉整体布置的确定3.1 炉整体的外型--选Π型布置选择Π形布置的理由如下:(1)锅炉排烟口在下方送、引风机及除尘器等设备均可布置在地面,锅炉结构和厂房较低,烟囱也建在地面上;(2)对流竖井中,烟气下行流动便于清灰,具有自身除尘的能力;(3)各受热面易于布置成逆流的方式,以加强对流换热;(3)机炉之间的连接管道不长。
3.2 受热面的布置在炉膛内壁面,全部布置水冷壁受热面,其他受热面的布置主要受蒸汽参数、锅炉容量和燃料性质的影响。
哈锅600MW锅炉系统图

录
16 一次风机润滑油系统 17 锅炉空预器油循环系统 18 锅炉火检系统 19 暖风器疏水系统 20 锅炉蒸汽吹灰系统 21 锅炉脉冲吹灰系统 22 锅炉炉管泄漏系统 23 除渣及石子煤系统 24 除灰系统一 25 除灰系统二 26 除灰系统三 27 锅炉侧闭式循环冷却水系统 28 二期锅炉图例符号 29 除灰系统图例符号
600MW 超超临界机组
锅炉系统图册
目
01 锅炉主、再热系统 02 主、再热系统流程图 03 汽水系统流程(带热工表计)(哈锅提供) 04 再热器系统流程粉系统 07 燃烧器立面图 08 锅炉烟气系统 09 锅炉风系统 10 锅炉燃油系统 11 锅炉再循环泵系统 12 锅炉疏水、放水系统 13 磨煤机润滑油系统 14 送风机润滑油系统 15 引风机润滑油系统
2×600MW超超临界燃煤发电机组水汽监督及化学加药处理运行规程

2×600MW超超临界燃煤发电机组水汽监督及化学加药处理运行规程Operating regulations for waste water treatment(试行)编制:审核:批准:1 主题内容和适用范围本规程规定了化学水汽岗位的工作内容、要求和标准,本规程适用于化学运行对水汽监督及涉及的处理、分析和监督。
本规程适用于化学试验、运行。
本规程还适用于值长、集控运行人员及其他部门有关专业人员。
2 引用标准电力工业技术管理法规(1980年版)DL/T 561-98 化学监督制度SD135--86 火力发电厂水汽质量标准3概述3.1热力系统流程阚山发电公司2×600MW超超临界机组,热力系统流程如下:500T水箱凝结水输送泵凝汽器凝结水泵给水加氨、加氧轴加低压加热器除氧器给水泵高压加热器省煤器启动分离器过热器高压缸再热器中压缸低压缸凝汽器3.2水汽取样系统介绍3.2.1汽水取样及检漏取样装置的形式每台机组设置一套汽水取样装置和一套凝汽器检漏装置,水汽取样装置包括降温减压架(高温盘)、取样仪表屏(低温盘);凝汽器检漏装置包括检漏取样架、检漏仪表屏。
样品水首先到高温盘经减压冷却后,再至低温盘,低温盘上设有恒温装置、分析仪表及手操取样阀。
凝汽器检漏装置:每台机组凝汽器共设8个检漏点,A/B侧各4个,其中每4个检漏点为一组,共设置2台取样泵,取样泵单元均布置在凝汽器下。
8个取样点共配置1台在线导电度表。
正常情况下,该系统不运行。
凝汽器检漏装置由检漏取样架和检漏仪表盘两部分组成,整套装置至少包含2台取样泵、相关的阀门、电导池、发送器、导电度表、人工取样器及实现报警、信号传送功能全部部件、管路、电气、控制部件等组成。
3.2.2高温高压架:为完成高压高温的水汽样品减压和初冷而设,至少包括减压阀,冷却器,阀门等整套的设施和部件。
3.2.3低温仪表取样装置:由低温仪表盘和手工取样架两部分合二为一。
至少由实现样品测试、取样、报警、信号传送及自动保护等功能全部部件、管路、电气、控制、阀门等组装而成。
超临界锅炉汽水系统流程

超临界锅炉汽水系统流程Supercritical boiler steam-water system is a critical component in power generation plants. It plays a vital role in converting water into steam to drive turbines that generate electricity. 超临界锅炉汽水系统是发电厂中至关重要的组成部分,它在将水转化为蒸汽,驱动涡轮发电的过程中发挥着关键作用。
One of the key features of a supercritical boiler steam-water system is its high efficiency in converting water into steam. The system operates at pressures higher than the critical pressure of water, resulting in better heat transfer efficiency and improved power generation. 超临界锅炉汽水系统的一个关键特点是其在将水转化为蒸汽时的高效率。
该系统运行在高于水的临界压力的压力下,从而产生更好的传热效率,提高发电效率。
In addition, the supercritical boiler steam-water system is known for its compact design and reduced environmental impact. The system requires less space compared to traditional boilers, making it suitable for modern power plants with limited space. Moreover, the system produces lower emissions, helping power plants comply withenvironmental regulations. 此外,超临界锅炉汽水系统以其紧凑的设计和减少的环境影响而闻名。
600MW锅炉概述解析

目录
锅炉总体简介 锅炉本体布置 锅炉汽水流程 锅炉启动循环系统 锅炉的设计和结构特色
锅炉总体简介
锅炉型式
我厂锅炉为超临界压力、循环泵式启动系统、前后墙对
冲低NOX轴向旋流燃烧器、一次中间再热、单炉膛平衡 通风、固态排渣、全钢构架的变压本生直流炉。呈“П” 型布置方式,设计有固定的膨胀中心,受热面采用全悬 吊结构
数值 1.373MW/㎡
31 ℃ 23 ℃
284 ℃ 307 ℃ 1.19 1.19 227.7t/h 83.0KW/m3 4.29MW/㎡
锅炉设计条件
锅炉燃煤设计煤种为神府东胜煤,校核煤种1为混煤,校
核煤种2为锅大炉同点煤火。及煤助质燃分析用数油据为如#下0:轻柴油
项目
符号
单位
设计煤种 校核煤种1
锅炉负荷百分比
锅炉负荷效率曲线
锅炉本体布置
锅炉及炉后剖面图
锅炉本体
脱硫塔
电除尘
输煤皮带 制粉系统
锅炉整体布置图
末级过热器 屏式过热器
燃烧器 炉膛及水冷壁
冷灰斗
高温再热器 低温再热器 一级过热器 省煤器
空预器
省煤器序号项 Nhomakorabea目
单位
数
值
在1双烟省道煤器的设计下压部力(均B布MC置R )有省煤器,MP省a 煤器以顺列31.布5 置,以
吊7 挂管受热,面积用(于蛇形吊管挂/悬尾吊管部)烟道中的水m2 平过热器和1917水8/2平670再热器
吊8 挂管省煤的器压规降格( 为BMφCR5)1×9mm、材M料Pa为SA-213 T10.215。吊挂管
名称 过热蒸汽流量 过热器出口蒸汽压力 过热器出口蒸汽温度 再热蒸汽流量 再热器进口蒸汽压力 再热器出口蒸汽压力 再热器进口蒸汽温度 再热器出口蒸汽温度