高考物理万有引力与航天解题技巧及经典题型及练习题(含答案)
高考物理万有引力与航天解题技巧及经典题型及练习题(含答案)含解析

高考物理万有引力与航天解题技巧及经典题型及练习题(含答案)含解析一、高中物理精讲专题测试万有引力与航天1.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形.2013年6月,“神舟十号”与“天宫一号”成功对接,6月20日3位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞行器运行周期T ,地球半径为R ,地球表面的重力加速度为g ,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G .求: (1)地球的密度; (2)地球的第一宇宙速度v ; (3)“天宫一号”距离地球表面的高度. 【答案】(1)34gGRρπ=(2)v =h R = 【解析】(1)在地球表面重力与万有引力相等:2MmGmg R =, 地球密度:343M M R Vρπ==解得:34gGRρπ=(2)第一宇宙速度是近地卫星运行的速度,2v mg m R=v =(3)天宫一号的轨道半径r R h =+, 据万有引力提供圆周运动向心力有:()()2224MmGm R h TR h π=++,解得:h R =2.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度v 0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t.已知引力常量为G ,月球的半径为R ,不考虑月球自转的影响,求: (1)月球表面的重力加速度大小g 月; (2)月球的质量M ;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T .【答案】(1)02v t ;(2)202R v Gt ;(3)2【解析】【详解】(1)小球在月球表面上做竖直上抛运动,有02v t g =月月球表面的重力加速度大小02v g t=月 (2)假设月球表面一物体质量为m ,有2=MmGmg R 月 月球的质量202R v M Gt=(3)飞船贴近月球表面做匀速圆周运动,有222Mm G m R R T π⎛⎫= ⎪⎝⎭飞船贴近月球表面绕月球做匀速圆周运动的周期2T π=3.宇航员站在一星球表面上的某高处,沿水平方向抛出一小球.经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L .若抛出时的初速度增大到2倍,则抛出点.已知两落地点在同一水平面上,该星球的半径为R ,万有引力常量为G ,求该星球的质量M .【答案】223M Gt= 【解析】 【详解】两次平抛运动,竖直方向212h gt =,水平方向0x v t =,根据勾股定理可得:2220()L h v t -=,抛出速度变为2倍:2220)(2)h v t -=,联立解得:h =,g =,在星球表面:2Mm G mg R =,解得:2M =4.如图所示,A 是地球的同步卫星.另一卫星 B 的圆形轨道位于赤道平面内.已知地球自转角速度为0ω ,地球质量为M ,B 离地心距离为r ,万有引力常量为G ,O 为地球中心,不考虑A 和B 之间的相互作用.(图中R 、h 不是已知条件)(1)求卫星A 的运行周期A T (2)求B 做圆周运动的周期B T(3)如卫星B 绕行方向与地球自转方向相同,某时刻 A 、B 两卫星相距最近(O 、B 、A 在同一直线上),则至少经过多长时间,它们再一次相距最近? 【答案】(1)02A T πω=(2)32B r T GMπ=(3)03t GM r ω∆=- 【解析】 【分析】 【详解】(1)A 的周期与地球自转周期相同 02A T πω=(2)设B 的质量为m , 对B 由牛顿定律:222()BGMm m r r T π= 解得: 32B r T GMπ= (3)A 、B 再次相距最近时B 比A 多转了一圈,则有:0()2B t ωωπ-∆= 解得:03t GM r ω∆=- 点睛:本题考查万有引力定律和圆周运动知识的综合应用能力,向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用;第3问是圆周运动的的追击问题,距离最近时两星转过的角度之差为2π的整数倍.5.“嫦娥一号”探月卫星在空中的运动可简化为如图5所示的过程,卫星由地面发射后,经过发射轨道进入停泊轨道,在停泊轨道经过调速后进入地月转移轨道,再次调速后进入工作轨道.已知卫星在停泊轨道和工作轨道运行的半径分别为R 和R 1,地球半径为r ,月球半径为r 1,地球表面重力加速度为g ,月球表面重力加速度为.求: (1)卫星在停泊轨道上运行的线速度大小; (2)卫星在工作轨道上运行的周期.【答案】(1) (2)【解析】(1)卫星停泊轨道是绕地球运行时,根据万有引力提供向心力:解得:卫星在停泊轨道上运行的线速度;物体在地球表面上,有,得到黄金代换,代入解得; (2)卫星在工作轨道是绕月球运行,根据万有引力提供向心力有,在月球表面上,有,得,联立解得:卫星在工作轨道上运行的周期.6.“神舟”十号飞船于2013年6月11日17时38分在酒泉卫星发射中心成功发射,我国首位 80后女航大员王亚平将首次在太空为我国中小学生做课,既展示了我国在航天领域的实力,又包含着祖国对我们的殷切希望.火箭点火竖直升空时,处于加速过程,这种状态下宇航员所受支持力F 与在地球表面时重力mg 的比值后Fk mg=称为载荷值.已知地球的半径为R =6.4×106m (地球表面的重力加速度为g =9.8m/s 2)(1)假设宇航员在火箭刚起飞加速过程的载荷值为k =6,求该过程的加速度;(结论用g 表示)(2)求地球的笫一宇宙速度;(3)“神舟”十号飞船发射成功后,进入距地面300km 的圆形轨道稳定运行,估算出“神十”绕地球飞 行一圈需要的时间.(π2≈g )【答案】(1) a =5g (2)37.9210m/s v =⨯ (3)T =5420s 【解析】 【分析】(1)由k 值可得加速过程宇航员所受的支持力,进而还有牛顿第二定律可得加速过程的加速度.(2)笫一宇宙速度等于环绕地球做匀速圆周运动的速度,此时万有引力近似等于地球表面的重力,然后结合牛顿第二定律即可求出;(3)由万有引力提供向心力的周期表达式,可表示周期,再由地面万有引力等于重力可得黄金代换,带入可得周期数值. 【详解】(1)由k =6可知,F =6mg ,由牛顿第二定律可得:F -mg =ma 即:6mg -mg =ma 解得:a =5g(2)笫一宇宙速度等于环绕地球做匀速圆周运动的速度,由万有引力提供向心力得:2v mg m R=所以:37.9210m/s v ===⨯(3)由万有引力提供向心力周期表达式可得:222()Mm G m r Tπ= 在地面上万有引力等于重力:2MmGmg R=解得:5420s T ===【点睛】本题首先要掌握万有引力提供向心力的表达式,这在天体运行中非常重要,其次要知道地面万有引力等于重力.7.已知地球质量为M ,万有引力常量为G 。
高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)及解析

一、高中物理精讲专题测试万有引力与航天
1.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v0抛出一个小球,测得小球经时间t落回抛出点,已知该星球半径为R,引力常量为G,求:
(1)该星球表面的重力加速度;
(2)该星球的密度;
(3)该星球的“第一宇宙速度”.
(1)木星的质量M;
(2)木星表面的重力加速度 .
【答案】(1) (2)
【解析】
(1)由万有引力提供向心力
可得木星质量为
(2)由木星表面万有引力等于重力:
木星的表面的重力加速度
【点睛】万有引力问题的运动,一般通过万有引力做向心力得到半径和周期、速度、角速度的关系,然后通过比较半径来求解.
8.阅读如下资料,并根据资料中有关信息回答问题
(2)黑洞密度极大,质量极大,半径很小,以最快速度传播的光都不能逃离它的引力,因此我们无法通过光学观测直接确定黑洞的存在.假定黑洞为一个质量分布均匀的球形天体.
a.因为黑洞对其他天体具有强大的引力影响,我们可以通过其他天体的运动来推测黑洞的存在.天文学家观测到,有一质量很小的恒星独自在宇宙中做周期为T,半径为r0的匀速圆周运动.由此推测,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量M;
3.设地球质量为M,自转周期为T,万有引力常量为G.将地球视为半径为R、质量分布均匀的球体,不考虑空气的影响.若把一质量为m的物体放在地球表面的不同位置,由于地球自转,它对地面的压力会有所不同.
(1)若把物体放在北极的地表,求该物体对地表压力的大小F1;
(2)若把物体放在赤道的地表,求该物体对地表压力的大小F2;
2.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤 是从高度为h处下落,经时间t落到月球表面.已知引力常量为G,月球的半径为R.
高考物理万有引力与航天解题技巧及经典题型及练习题(含答案)含解析

高考物理万有引力与航天解题技巧及经典题型及练习题( 含答案 ) 含分析一、高中物理精讲专题测试万有引力与航天1. 如下图,质量分别为m 和 M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 二者中心之间距离为L .已知A 、B 的中心和O 三点一直共线,A 和B 分别在 O 的双侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ;(2)两星球做圆周运动的周期.M L, r= m L,( 2) 2πL 3【答案】 (1) R=m Mm MG M m【分析】(1)令 A 星的轨道半径为R , B 星的轨道半径为 r ,则由题意有 L r R两星做圆周运动时的向心力由万有引力供给,则有:GmM 4 2 4 2L 2mR2Mr2TT 可得R=M,又由于 LR rrm因此能够解得: M L , rm L ;RMmMm(2)依据( 1)能够获得 : GmM4 2 4 2ML 2m2 Rm2MLTTm4 2L32L 3则: Tm GG m MM点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不可以把它们的距离当作轨道半径 .2.“天宫一号 ”是我国自主研发的目标飞翔器,是中国空间实验室的雏形.2013年 6 月,“神舟十号 ”与 “天宫一号 ”成功对接, 6 月 20 日 3 位航天员为全国中学生上了一节生动的物 理课.已知 “天宫一号 ”飞翔器运转周期 T ,地球半径为 R ,地球表面的重力加快度为g , “天宫一号 ”围绕地球做匀速圆周运动,万有引力常量为 G .求:(1)地球的密度;(2)地球的第一宇宙速度v ;(3) 天“宫一号 ”距离地球表面的高度.【答案】 (1)3g (2) vgR (3) h3gT 2 R 2 R4 GR42【分析】(1)在地球表面重力与万有引力相等:GMmmg ,R 2M M 地球密度:V4 R 33解得:3g4 GR(2)第一宇宙速度是近地卫星运转的速度,mgmvgRv 2R(3)天宫一号的轨道半径 r Rh ,Mmm R h42据万有引力供给圆周运动向心力有:G 22,R hT解得: h3gT 2 R 2 R243. 地球同步卫星,在通信、导航等方面起到重要作用。
高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)

⾼考物理万有引⼒与航天常见题型及答题技巧及练习题(含答案)⾼考物理万有引⼒与航天常见题型及答题技巧及练习题(含答案)⼀、⾼中物理精讲专题测试万有引⼒与航天1.如图所⽰,返回式⽉球软着陆器在完成了对⽉球表⾯的考察任务后,由⽉球表⾯回到绕⽉球做圆周运动的轨道舱.已知⽉球表⾯的重⼒加速度为g ,⽉球的半径为R ,轨道舱到⽉球中⼼的距离为r ,引⼒常量为G ,不考虑⽉球的⾃转.求:(1)⽉球的质量M ;(2)轨道舱绕⽉飞⾏的周期T .【答案】(1)GgR M 2=(2)2r rT R gπ=【解析】【分析】⽉球表⾯上质量为m 1的物体,根据万有引⼒等于重⼒可得⽉球的质量;轨道舱绕⽉球做圆周运动,由万有引⼒等于向⼼⼒可得轨道舱绕⽉飞⾏的周期;【详解】解:(1)设⽉球表⾯上质量为m 1的物体,其在⽉球表⾯有:112Mm Gm g R = 112Mm G m g R = ⽉球质量:GgR M 2=(2)轨道舱绕⽉球做圆周运动,设轨道舱的质量为m由⽜顿运动定律得: 22Mm 2πG m r r T ??=222()Mm G m rr T π= 解得:2rr T R gπ=2.2018年是中国航天⾥程碑式的⾼速发展年,是属于中国航天的“超级2018”.例如,我国将进⾏北⽃组⽹卫星的⾼密度发射,全年发射18颗北⽃三号卫星,为“⼀带⼀路”沿线及周边国家提供服务.北⽃三号卫星导航系统由静⽌轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.图为其中⼀颗静⽌轨道卫星绕地球飞⾏的⽰意图.已知该卫星做匀速圆周运动的周期为T ,地球质量为M 、半径为R ,引⼒常量为G .(1)求静⽌轨道卫星的⾓速度ω;(2)求静⽌轨道卫星距离地⾯的⾼度h1;(3)北⽃系统中的倾斜同步卫星,其运转轨道⾯与地球⾚道⾯有⼀定夹⾓,它的周期也是T,距离地⾯的⾼度为h2.视地球为质量分布均匀的正球体,请⽐较h1和h2的⼤⼩,并说出你的理由.【答案】(1)2π=T ω;(2)2312=4GMTh Rπ-(3)h1= h2【解析】【分析】(1)根据⾓速度与周期的关系可以求出静⽌轨道的⾓速度;(2)根据万有引⼒提供向⼼⼒可以求出静⽌轨道到地⾯的⾼度;(3)根据万有引⼒提供向⼼⼒可以求出倾斜轨道到地⾯的⾼度;【详解】(1)根据⾓速度和周期之间的关系可知:静⽌轨道卫星的⾓速度ω(2)静⽌轨道卫星做圆周运动,由⽜顿运动定律有:21212π=()()()MmG m R hR h T++解得:2312=4πGMTh R-(3)如图所⽰,同步卫星的运转轨道⾯与地球⾚道共⾯,倾斜同步轨道卫星的运转轨道⾯与地球⾚道⾯有夹⾓,但是都绕地球做圆周运动,轨道的圆⼼均为地⼼.由于它的周期也是T,根据⽜顿运动定律,22222=()()()MmG m R h+解得:23224GMTh Rπ因此h1= h2.故本题答案是:(1)2π=T ω;(2)1h R (3)h 1= h 2 【点睛】对于围绕中⼼天体做圆周运动的卫星来说,都借助于万有引⼒提供向⼼⼒即可求出要求的物理量.3.⼀宇航员在某未知星球的表⾯上做平抛运动实验:在离地⾯h ⾼处让⼩球以某⼀初速度⽔平抛出,他测出⼩球落地点与抛出点的⽔平距离为x 和落地时间t ,⼜已知该星球的半径为R ,⼰知万有引⼒常量为G ,求:(1)⼩球抛出的初速度v o (2)该星球表⾯的重⼒加速度g (3)该星球的质量M(4)该星球的第⼀宇宙速度v (最后结果必须⽤题中⼰知物理量表⽰)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2【解析】(1)⼩球做平抛运动,在⽔平⽅向:x=vt ,解得从抛出到落地时间为:v 0=x/t(2)⼩球做平抛运动时在竖直⽅向上有:h=12gt 2,解得该星球表⾯的重⼒加速度为:g=2h/t 2;(3)设地球的质量为M ,静⽌在地⾯上的物体质量为m ,由万有引⼒等于物体的重⼒得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2);(4)设有⼀颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由⽜顿第⼆定律得: 22Mm v G m R R=重⼒等于万有引⼒,即mg=2MmGR ,解得该星球的第⼀宇宙速度为:v ==4.2018年11⽉,我国成功发射第41颗北⽃导航卫星,被称为“最强北⽃”。
高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)含解析

高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试万有引力与航天1.如图所示是一种测量重力加速度g 的装置。
在某星球上,将真空长直管沿竖直方向放置,管内小球以某一初速度自O 点竖直上抛,经t 时间上升到最高点,OP 间的距离为h ,已知引力常量为G ,星球的半径为R ;求:(1)该星球表面的重力加速度g ; (2)该星球的质量M ; (3)该星球的第一宇宙速度v 1。
【答案】(1)22hg t= (2)222hR Gt (32hR 【解析】(1)由竖直上抛运动规律得:t 上=t 下=t由自由落体运动规律: 212h gt = 22h g t=(2)在地表附近: 2MmGmg R= 2222gR hR M G Gt ==(3)由万有引力提供卫星圆周运动向心力得: 212v Mm G m R R=12GMhRv R t== 点睛:本题借助于竖直上抛求解重力加速度,并利用地球表面的重力与万有引力的关系求星球的质量。
2.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求:(1)该星球表面的重力加速度; (2)该星球的密度; (3)该星球的第一宇宙速度v ;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T . 【答案】(1)02tan v t α;(2)03tan 2v GRt απ;02tanav R t;(4)02tan Rt v α【解析】 【分析】 【详解】(1) 小球落在斜面上,根据平抛运动的规律可得:20012tan α2gt y gt x v t v ===解得该星球表面的重力加速度:02tan αv g t=(2)物体绕星球表面做匀速圆周运动时万有引力提供向心力,则有:2GMmmg R= 则该星球的质量:GgR M 2= 该星球的密度:33tan α34423v M gGR GRt R ρπππ===(3)根据万有引力提供向心力得:22Mm v G m R R= 该星球的第一宙速度为:02tana v R GMv gR R t===(4)人造卫星绕该星球表面做匀速圆周运动时,运行周期最小,则有:2RT vπ=所以:0022tan αtan t RtT Rv R v ππα==点睛:处理平抛运动的思路就是分解.重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.3.2018年11月,我国成功发射第41颗北斗导航卫星,被称为“最强北斗”。
高考物理万有引力与航天答题技巧及练习题(含答案)及解析

高考物理万有引力与航天答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试万有引力与航天1.从在某星球表面一倾角为θ的山坡上以初速度v 0平抛一物体,经时间t 该物体落到山坡上.已知该星球的半径为R ,一切阻力不计,引力常量为G ,求: (1)该星球表面的重力加速度的大小g (2)该星球的质量M .【答案】(1) 02tan v t θ (2) 202tan v R Gtθ【解析】 【分析】(1)物体做平抛运动,应用平抛运动规律可以求出重力加速度.(2)物体在小球的表面受到的万有引力等于物体的重力,由此即可求出. 【详解】(1)物体做平抛运动,水平方向:0x v t =,竖直方向:212y gt = 由几何关系可知:02y gt tan x v θ== 解得:02v g tan tθ=(2)星球表面的物体受到的重力等于万有引力,即:2MmGmg R = 可得:2202v R tan gR M G Gtθ==【点睛】本题是一道万有引力定律应用与运动学相结合的综合题,考查了求重力加速度、星球自转的周期,应用平抛运动规律与万有引力公式、牛顿第二定律可以解题;解题时要注意“黄金代换”的应用.2.已知地球同步卫星到地面的距离为地球半径的6倍,地球半径为R ,地球视为均匀球体,两极的重力加速度为g ,引力常量为G ,求: (1)地球的质量;(2)地球同步卫星的线速度大小.【答案】(1) GgR M 2= (2)v = 【解析】 【详解】(1)两极的物体受到的重力等于万有引力,则2GMmmg R = 解得GgR M 2=; (2)地球同步卫星到地心的距离等于地球半径的7倍,即为7R ,则()2277GMmv m RR =而2GM gR =,解得v =.3.2019年4月20日22时41分,我国在西昌卫星发射中心用“长征三号”乙运载火箭,成功发射第四十四颗北斗导航卫星,卫星入轨后绕地球做半径为r 的匀速圆周运动。
高考物理万有引力与航天解题技巧及练习题(含答案)

高考物理万有引力与航天解题技巧及练习题(含答案)一、高中物理精讲专题测试万有引力与航天 1. 如下图,A 是地球的同步卫星,另一卫星B 的圆形轨道位于赤道平面内,离地面高度为 h.已知地球半径为R ,地球自转角速度为ω0,地球表面的重力加快度为g ,O 为地球中心.(1)求卫星B 的运转周期.(2)如卫星B 绕行方向与地球自转方向同样,某时辰A 、B 两卫星相距近来(O 、B 、 A 在同一直线上),则起码经过多长时间,它们再一次相距近来?(R + h) 3t2【答案】 (1) T B = 2p(2)gR2gR 2( Rh)3【分析】【详解】Mm m 4 2R h ① , GMm(1)由万有引力定律和向心力公式得G2 2 mg ②R hT B R 2R3联立①②解得 : T B h③ 2R 2 g(2)由题意得0 t 2 ④ ,由③得BgR 2 ⑤BR3ht2R 2g代入④得3R h2. 据每天邮报 2014 年 4 月 18 日报导,美国国家航空航天局当前宣告初次在太阳系外发现“类地 ”行星 .若是宇航员乘坐宇宙飞船抵达该行星,进行科学观察:该行星自转周期为T ;宇航员在该行星 “北极 ”距该行星地面邻近 h 处自由开释 -个小球 ( 引力视为恒力 ),落地时间为 t. 已知该行星半径为 R ,万有引力常量为 G ,求:1 该行星的第一宇宙速度;2 该行星的均匀密度.2h2 ? 3h【答案】1 2 R ?2 .t2Gt R【分析】【剖析】依据自由落体运动求出星球表面的重力加快度,再依据万有引力供给圆周运动向心力,求M 出质量与运动的周期,再利用,进而即可求解.V【详解】1 依据自由落体运动求得星球表面的重力加快度h1 gt 22解得: g 2h2t则由 mgm v 2R求得:星球的第一宇宙速度 vgR2hR ,t 22 由 G Mm 2hR 2 mg m t 2有: M2hR 2Gt2M3h所以星球的密度2Gt 2 RV【点睛】此题重点是经过自由落体运动求出星球表面的重力加快度,再依据万有引力供给圆周运动向心力和万有引力等于重力争解.3. 如下图,宇航员站在某质量散布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0 抛出一个小球,测得小球经时间 t 落到斜坡上另一点 Q ,斜面的倾角为 α,已知该星球半径为 R ,万有引力常量为G ,求:(1) 该星球表面的重力加快度; (2) 该星球的质量。
高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)

高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试万有引力与航天1.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GMR【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMm mv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:22122GM GMv v R h R=+-+; (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R = 则探测器离开飞船时的速度(相对于地心)至少是:32GMv R=. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.2.如图所示,A 是地球的同步卫星.另一卫星 B 的圆形轨道位于赤道平面内.已知地球自转角速度为0ω ,地球质量为M ,B 离地心距离为r ,万有引力常量为G ,O 为地球中心,不考虑A 和B 之间的相互作用.(图中R 、h 不是已知条件)(1)求卫星A 的运行周期A T (2)求B 做圆周运动的周期B T(3)如卫星B 绕行方向与地球自转方向相同,某时刻 A 、B 两卫星相距最近(O 、B 、A 在同一直线上),则至少经过多长时间,它们再一次相距最近? 【答案】(1)02A T πω=(2)32B rT GM=3)03t GM r ω∆=-【解析】 【分析】 【详解】(1)A 的周期与地球自转周期相同 02A T πω=(2)设B 的质量为m , 对B 由牛顿定律:222()BGMm m r r T π= 解得:2B T = (3)A 、B 再次相距最近时B 比A 多转了一圈,则有:0()2B t ωωπ-∆=解得:t ∆=点睛:本题考查万有引力定律和圆周运动知识的综合应用能力,向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用;第3问是圆周运动的的追击问题,距离最近时两星转过的角度之差为2π的整数倍.3.假设在月球上的“玉兔号”探测器,以初速度v 0竖直向上抛出一个小球,经过时间t 小球落回抛出点,已知月球半径为R ,引力常数为G . (1)求月球的密度.(2)若将该小球水平抛出后,小球永不落回月面,则抛出的初速度至少为多大? 【答案】(1)032v GRt π (2【解析】 【详解】(1)由匀变速直线运动规律:02gtv = 所以月球表面的重力加速度02v g t=由月球表面,万有引力等于重力得2GMmmg R= GgR M 2= 月球的密度03=2v M V GRtρπ= (2)由月球表面,万有引力等于重力提供向心力:2v mg m R=可得:v =4.利用万有引力定律可以测量天体的质量. (1)测地球的质量英国物理学家卡文迪许,在实验室里巧妙地利用扭秤装置,比较精确地测量出了引力常量的数值,他把自己的实验说成是“称量地球的质量”.已知地球表面重力加速度为g ,地球半径为R ,引力常量为G .若忽略地球自转的影响,求地球的质量. (2)测“双星系统”的总质量所谓“双星系统”,是指在相互间引力的作用下,绕连线上某点O 做匀速圆周运动的两个星球A 和B ,如图所示.已知A 、B 间距离为L ,A 、B 绕O 点运动的周期均为T ,引力常量为G ,求A 、B 的总质量.(3)测月球的质量若忽略其它星球的影响,可以将月球和地球看成“双星系统”.已知月球的公转周期为T 1,月球、地球球心间的距离为L 1.你还可以利用(1)、(2)中提供的信息,求月球的质量.【答案】(1)2gR G;(2)2324L GT π;(3)2321214L gR GT G π-. 【解析】 【详解】(1)设地球的质量为M ,地球表面某物体质量为m ,忽略地球自转的影响,则有2Mm G mg R =解得:M =2gR G; (2)设A 的质量为M 1,A 到O 的距离为r 1,设B 的质量为M 2,B 到O 的距离为r 2, 根据万有引力提供向心力公式得:2121122()M M G M r L Tπ=, 2122222()M M GM r L T π=, 又因为L =r 1+r 2解得:231224L M M GTπ+=; (3)设月球质量为M 3,由(2)可知,2313214L M M GT π+=由(1)可知,M =2gR G解得:23213214L gR M GT Gπ=-5.根据我国航天规划,未来某个时候将会在月球上建立基地,若从该基地发射一颗绕月卫星,该卫星绕月球做匀速圆周运动时距月球表面的高度为h ,绕月球做圆周运动的周期为T ,月球半径为R ,引力常量为G .求: (1)月球的密度ρ;(2)在月球上发射绕月卫星所需的最小速度v .【答案】(1)3233()R h GT R π+(2 【解析】 【详解】(1)万有引力提供向心力,由牛顿第二定律得:G 2()Mm R h =+m 224Tπ(R +h ), 解得月球的质量为:2324()R h M GTπ+=; 则月球的密度为:3233()M R h V GT Rπρ+==; (2)万有引力提供向心力,由牛顿第二定律得:G 2Mm R =m 2v R,解得:v =6.已知地球的半径为R ,地面的重力加速度为g ,万有引力常量为G 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理万有引力与航天解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试万有引力与航天1.据每日邮报2014年4月18日报道,美国国家航空航天局目前宣布首次在太阳系外发现“类地”行星.假如宇航员乘坐宇宙飞船到达该行星,进行科学观测:该行星自转周期为T ;宇航员在该行星“北极”距该行星地面附近h 处自由释放-个小球(引力视为恒力),落地时间为.t 已知该行星半径为R ,万有引力常量为G ,求:()1该行星的第一宇宙速度; ()2该行星的平均密度.【答案】(()231 2?2hGt R π. 【解析】 【分析】根据自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力,求出质量与运动的周期,再利用MVρ=,从而即可求解. 【详解】()1根据自由落体运动求得星球表面的重力加速度212h gt =解得:22h g t=则由2v mg m R=求得:星球的第一宇宙速度v ==()2由222Mm hG mg m Rt==有:222hR M Gt= 所以星球的密度232M h V Gt R ρπ== 【点睛】本题关键是通过自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力和万有引力等于重力求解.2.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求:(1)该星球表面的重力加速度; (2)该星球的质量。
【答案】(1)02tan v g t θ=(2)202tan v R Gtθ【解析】 【分析】平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度;根据万有引力等于重力求出星球的质量; 【详解】(1)根据平抛运动知识可得200122gt y gt tan x v t v α===解得02v tan g tα=(2)根据万有引力等于重力,则有2GMmmg R= 解得2202v R tan gR M G Gtα==3.如图所示是一种测量重力加速度g 的装置。
在某星球上,将真空长直管沿竖直方向放置,管内小球以某一初速度自O 点竖直上抛,经t 时间上升到最高点,OP 间的距离为h ,已知引力常量为G ,星球的半径为R ;求:(1)该星球表面的重力加速度g ; (2)该星球的质量M ; (3)该星球的第一宇宙速度v 1。
【答案】(1)22hg t= (2)222hR Gt (32hR【解析】(1)由竖直上抛运动规律得:t 上=t 下=t 由自由落体运动规律: 212h gt = 22h g t=(2)在地表附近: 2MmGmg R= 2222gR hR M G Gt== (3)由万有引力提供卫星圆周运动向心力得: 212v Mm G m R R=12GMhRv R == 点睛:本题借助于竖直上抛求解重力加速度,并利用地球表面的重力与万有引力的关系求星球的质量。
4.宇航员在某星球表面以初速度2.0m/s 水平抛出一小球,通过传感器得到如图所示的运动轨迹,图中O 为抛出点。
若该星球半径为4000km ,引力常量G =6.67×10﹣11N•m 2•kg ﹣2.试求:(1)该行星表面处的重力加速度的大小g 行; (2)该行星的第一宇宙速度的大小v ;(3)该行星的质量M 的大小(保留1位有效数字)。
【答案】(1)4m/s 2(2)4km/s(3)1×1024kg 【解析】 【详解】(1)由平抛运动的分位移公式,有:x =v 0t y =12g 行t 2 联立解得:t =1s g 行=4m/s 2;(2)第一宇宙速度是近地卫星的运行速度,在星球表面重力与万有引力相等,据万有引力提供向心力有:22mM v G mg m R R行== 可得第一宇宙速度为:34400010m/s 4.0km/s v g R =⨯⨯=行=(3)据2mMGmg R 行= 可得:23224114400010kg 110kg 6(.)6710g R M G -⨯⨯==≈⨯⨯行5.宇航员在某星球表面以初速度v 0竖直向上抛出一个物体,物体上升的最大高度为h .已知该星球的半径为R ,且物体只受该星球的引力作用.求: (1)该星球表面的重力加速度;(2)从这个星球上发射卫星的第一宇宙速度.【答案】(1)202v h(2) 02v R h【解析】本题考查竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则202v g h ='解得,该星球表面的重力加速度202v g h'=(2) 卫星贴近星球表面运行,则2v mg m R'=解得:星球上发射卫星的第一宇宙速度02R v g R v h=='6.地球同步卫星,在通讯、导航等方面起到重要作用。
已知地球表面重力加速度为g ,地球半径为R ,地球自转周期为T ,引力常量为G ,求: (1)地球的质量M ;(2)同步卫星距离地面的高度h 。
【答案】(1) (2)【解析】 【详解】(1)地球表面的物体受到的重力等于万有引力,即:mg=G解得地球质量为:M=;(2)同步卫星绕地球做圆周运动的周期等于地球自转周期T ,同步卫星做圆周运动,万有引力提供向心力,由牛顿第二定律得:解得:;【点睛】本题考查了万有引力定律的应用,知道地球表面的物体受到的重力等于万有引力,知道同步卫星的周期等于地球自转周期、万有引力提供向心力是解题的前提,应用万有引力公式与牛顿第二定律可以解题.7.在某一星球上,宇航员在距离地面h 高度处以初速度v 0沿水平方向抛出一个小球,小球落到星球表面时与抛出点的水平距离为x ,已知该星球的半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度g ; (2)该星球的质量M ; (3)该星球的第一宇宙速度v 。
【答案】(1) 2022hv g x = (2) 22022hv R M Gx = (3) 02v v hR x=【解析】(1)由平抛运动规律得:水平方向0x v t = 竖直方向212h g t =' 解得: 2022hv g x '=(2)星球表面上质量为m 的物体受到万有引力近似等于它的重力,即2GMmmg R =' 得: 2g R M G='代入数据解得: 22022hv R M Gx =(3)2v mg m R'=;解得v g R ='代入数据得: 02v v hR x=点睛:平抛运动与万有引力联系的桥梁是重力加速度g .运用重力等于万有引力,得到g=GM/R 2,这个式子常常称为黄金代换式,是求解天体质量常用的方法,是卡文迪许测量地球质量的原理.8.“场”是除实物以外物质存在的另一种形式,是物质的一种形态.可以从力的角度和能量的角度来描述场.反映场力性质的物理量是场强.(1)真空中一个孤立的点电荷,电荷量为+Q ,静电力常量为k ,推导距离点电荷r 处的电场强度E 的表达式.(2)地球周围存在引力场,假设地球是一个密度均匀的球体,质量为M ,半径为R ,引力常量为G .a .请参考电场强度的定义,推导距离地心r 处(其中r ≥R )的引力场强度E 引的表达式.b .理论上已经证明:质量分布均匀的球壳对壳内物体的引力为零.推导距离地心r 处(其中r <R )的引力场强度E 引的表达式. 【答案】(1)2kQE r =(2)a . 2GM E r =引 b . 3GM E r R =引【解析】 【详解】 (1)由F E q =,2qQ F k r= ,得 2kQE r = (2)a .类比电场强度定义,F E m=万引,由2GMmF r =万, 得 2GME r=引 b .由于质量分布均匀的球壳对其内部的物体的引力为0,当r <R 时,距地心r 处的引力场强是由半径为r 的“地球”产生的.设半径为r 的“地球”质量为M r ,33334433r M r M r MR Rππ=⨯=. 得23r GM GME r r R==引9.已知“天宫一号”在地球上空的圆轨道上运行时离地面的高度为h 。
地球半径为R ,地球表面的重力加速度为g ,万有引力常量为G .求: (1)“天宫一号”在该圆轨道上运行时速度v 的大小; (2)“天宫一号”在该圆轨道上运行时重力加速度g’的大小;【答案】(1)v =2)22gR g R h ='+() 【解析】 【详解】(1)地球表面质量为m 0的物体,有:002Mm Gm g R=①“天宫一号”在该圆轨道上运行时万有引力提供向心力:22Mm v G mR h R h=++()② 联立①②两式得:飞船在圆轨道上运行时速度:2gR v R h=+(2)根据2MmGmg R h '=+()③ 联立①③解得:22gR g R h ='+()10.2017年4月20日19时41分天舟一号货运飞船在文昌航天发射中心由长征七号遥二运载火箭成功发射升空。
22日12时23分,天舟一号货运飞船与天宫二号空间实验室顺利完成首次自动交会对接。
中国载人航天工程已经顺利完成“三步走”发展战略的前两步,中国航天空间站预计2022年建成。
建成后的空间站绕地球做匀速圆周运动。
已知地球质量为M ,空间站的质量为m 0,轨道半径为r 0,引力常量为G ,不考虑地球自转的影响。
(1)求空间站线速度v 0的大小;(2)宇航员相对太空舱静止站立,应用物理规律推导说明宇航员对太空舱的压力大小等于零;(3)规定距地球无穷远处引力势能为零,质量为m 的物体与地心距离为r 时引力势能为Ep=-GMmr。
由于太空中宇宙尘埃的阻力以及地磁场的电磁阻尼作用,长时间在轨无动力运行的空间站轨道半径慢慢减小到r 1(仍可看作匀速圆周运动),为了修正轨道使轨道半径恢复到r 0,需要短时间开动发动机对空间站做功,求发动机至少做多少功。
【答案】(1) 00GMv r =;(2)0;(3) 1022GMm GMm W r r =-【解析】 【详解】解:(1)空间站在万有引力作用下做匀速圆周运动,则有:2000200GMm m v r r = 解得:00GMv r =(2)宇航员相对太空舱静止,即随太空舱一起绕地球做匀速圆周运动,轨道半径与速度和太空舱相同,此时宇航员受万有引力和太空舱的支持力,合力提供向心力设宇航员质量为m ,所受支持力为N F ,则有:2000200N GMm m v F r r -= 解得:0N F =根据牛顿第三定律,宇航员对太空舱的压力大小等于太空舱对宇航员的支持力,故宇航员对太空舱的压力大小等于零(3) 在空间站轨道由1r 修正到0r 的过程中,根据动能定理有:22011122W W mv mv +=-万 而:10()GMm GMmW r r =---万 21211mv GMm r r = 联立上述方程解得:1022GMm GMmW r r =-。