概率论与数理统计教案模板

合集下载

概率论与数理统计 教案

概率论与数理统计 教案

概率论与数理统计教案教案标题:引入概率论与数理统计的基本概念教学目标:1. 了解概率论和数理统计的基本概念和重要性;2. 掌握概率和统计的基本术语和符号;3. 能够应用概率和统计的方法解决简单问题;4. 培养学生的数学思维和分析问题的能力。

教学内容:1. 概率论的基本概念和应用;2. 数理统计的基本概念和应用;3. 概率和统计的关系和区别;4. 概率和统计在实际生活中的应用。

教学步骤:一、导入(5分钟)1. 引入概率论和数理统计的重要性和应用领域;2. 激发学生对概率和统计的兴趣。

二、概率论的基本概念(15分钟)1. 介绍概率的定义和基本性质;2. 解释概率的计算方法和应用;3. 通过例题让学生掌握概率的计算方法。

三、数理统计的基本概念(20分钟)1. 介绍统计的定义和基本性质;2. 解释统计的计算方法和应用;3. 通过例题让学生掌握统计的计算方法。

四、概率与统计的关系和区别(10分钟)1. 对比概率和统计的定义和应用;2. 强调概率和统计在实际问题中的互补性。

五、概率与统计的应用(15分钟)1. 介绍概率和统计在实际生活中的应用场景;2. 分析并解决实际问题,应用概率和统计的方法。

六、小结与展望(5分钟)1. 总结本节课学习的内容;2. 展望下节课的教学内容。

教学方法:1. 讲授法:通过讲解和示范引导学生理解概率论和数理统计的基本概念;2. 互动讨论法:通过提问和回答的方式激发学生的思考和参与度;3. 实践操作法:通过例题和实际问题的解决培养学生的应用能力。

教学评估:1. 课堂练习:布置概率和统计的练习题,检查学生对概念和方法的掌握程度;2. 课堂讨论:引导学生参与讨论,评估学生对概率和统计的理解和应用能力。

教学资源:1. 教科书和教学课件:提供基本概念和例题;2. 练习册和习题集:提供练习题和实际问题。

教学延伸:1. 指导学生进行实际调查和数据收集,应用概率和统计的方法进行分析;2. 引导学生阅读相关的科普文章和研究报告,拓宽对概率和统计的理解。

概率论与数理统计教案

概率论与数理统计教案

概率论与数理统计教案1(总58页) -本页仅作为预览文档封面,使用时请删除本页-概率论与数理统计教案讲 稿第一章 概率论的基本概念一、基本概念 1. 随机试验 2. 样本空间试验所有可能结果的全体是样本空间称为样本空间。

通常用大写的希腊字母Ω表示(本书用S 表示)每个结果叫一个样本点. 3.随机事件Ω中的元素称为样本点,常用ω表示。

(1) 样本空间的子集称为随机事件(用A,B 表示)。

(2) 样本空间的单点子集称为基本事件。

(3) 实验结果在随机事件A 中,则称事件A 发生。

(4) 必然事件Ω。

(5) 不可能事件Φ。

(6) 完备事件组(样本空间的划分) 4.概率的定义(公理化定义) 5.古典概型随机试验具有下述特征:1)样本空间的元素(基本事件)只有有限个; 2)每个基本事件出现的可能性是相等的; 称这种数学模型为古典概型。

)(A P ===基本事件总数包含的基本事件数A n k 。

6.几何概型 的长度(面积、体积)的长度(面积、体积)Ω=A A p )(7.条件概率设事件B 的概率0)(>B p .对任意事件A ,称P(A|B)=)()(B P AB P 为在已知事件B发生的条件下事件A发生的条件概率。

8.条件概率的独立性A 、B F ∈,若P(AB)= P(A) P(B) 则称事件A 、B 是相互独立的,简称为独立的。

设三个事件A,B,C 满足 P(AB)=P(A)P(B) P(AC)=P(A)P(C) P(BC)=P(B)P(C)P(ABC)=P(A)P(B) P(C) 称A,B,C 相互独立。

二、事件的关系的关系与运算 1.事件的包含关系若事件A 发生必然导致事件B 发生,则称事件B 包含了A , 记作B A ⊂。

2. 事件的相等设A,B Ω⊂,若B A ⊂,同时有A B ⊂,称A 与B 相等,记为A=B , 3.并(和)事件与积(交)事件“A 与B 中至少有一个发生”为A 和B 的和事件或并事件。

概率论与数理统计教案(48课时)

概率论与数理统计教案(48课时)

概率论与数理统计教案(48课时)Chapter 1: XXX1.Learning Objectives and Basic Requirements:1) Understand the concepts of random experiments。

sample space。

and random events;2) Master the nships and ns een random events;3) Master the basic XXX。

learn how to XXX;4) Understand the concept of event frequency。

know the XXX random phenomena。

and the XXX.5) XXX。

the law of total probability。

Bayes' theorem。

and their XXX.2.Teaching Content and Time n:n 1: XXXn 2: XXX (2 hours)n 3: XXX (Classical Probability) (2 hours)n 4: XXXn 5: Independence of Events (2 hours)3.XXX:1) Random events and nships een random events;2) XXX;3) Properties of probability;4) nal probability。

the law of total probability。

and Bayes' theorem;5) XXX。

XXX。

XXX.4.XXX:1) Enable students to correctly describe the sample space of random experiments and us random events;2) Pay n to helping students understand the specific meanings of events such as A∪B。

概率论与数理统计教案(48课时)(最新整理)

概率论与数理统计教案(48课时)(最新整理)

( x, y )G
,注意二重积分运算知识点的复习。
d) 二维均匀分布的密度函数的具体表达形式。
五.思考题和习题
思考题:1. 由随机变量 X ,Y 的边缘分布能否决定它们的联合分布?
2. 条件分布是否可以由条件概率公式推导? 3. 事件的独立性与随机变量的独立性是否一致? 4.如何利用随机变量之间的独立性去简化概率计算,试举例说明。 习题:
第四章 随机变量的数字特征 一.教学目标及基本要求
(1)理解数学期望和方差的定义并且掌握它们的计算公式;
(2)掌握数学期望和方差的性质与计算,会求随机变量函数的数学期望,特别是利用
期望或方差的性质计算某些随机变量函数的期望和方差。
(3)熟记 0-1 分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的数学期
第四节 二维随机变量的函数的分布
已知(X,Y)的分布率 pij 或密度函数 (x, y) ,求 Z f ( X ,Y ) 的分布律或密度
函数Z (z) 。特别如函数形式: Z X Y , Z max( X ,Y ), Z min( X ,Y ) 。
2 学时
三.本章教学内容的重点和难点
a) 二维随机变量的分布函数及性质,与一维情形比较有哪些不同之处;
5.列举正态分布的应用。
习题:
第三章 多维随机变量及其分布
一.教学目标及基本要求
(1)了解二维随机变量概念及其联合分布函数概念和性质,了解二维离散型和连续 型随机变量定义及其概率分布和性质,了解二维均匀分布和正态分布。
(2)会用联合概率分布计算有关事件的概率,会求边缘分布。 (3)掌握随机变量独立性的概念,掌握运用随机变量的独立性进行概率计算。 (4)会求两个独立随机变量的简单函数(如函数 X+Y, max(X, Y), min(X, Y))的分布。

概率论与数理统计教案随机事件与概率

概率论与数理统计教案随机事件与概率

概率论与数理统计教案-随机事件与概率一、教学目标1. 理解随机事件的定义及其分类。

2. 掌握概率的基本性质和计算方法。

3. 能够运用概率论解决实际问题。

二、教学内容1. 随机事件的定义与分类1.1 随机事件的定义1.2 随机事件的分类1.3 事件的运算2. 概率的基本性质2.1 概率的定义2.2 概率的取值范围2.3 概率的基本性质3. 概率的计算方法3.1 古典概型3.2 条件概率3.3 独立事件的概率3.4 互斥事件的概率4. 随机事件的排列与组合4.1 排列的定义与计算4.2 组合的定义与计算5. 概率论在实际问题中的应用5.1 概率论在社会科学中的应用5.2 概率论在自然科学中的应用三、教学方法1. 讲授法:讲解随机事件的定义、分类及概率的基本性质。

2. 案例分析法:分析实际问题,引导学生运用概率论解决。

3. 互动教学法:提问、讨论,提高学生对知识点的理解和掌握。

四、教学准备1. 教案、教材、课件等教学资源。

2. 计算器、黑板、粉笔等教学工具。

3. 实际问题案例库。

五、教学评价1. 课堂问答:检查学生对随机事件定义、分类和概率基本性质的理解。

2. 课后作业:布置有关概率计算和方法的应用题,检验学生掌握程度。

3. 课程报告:让学生选择一个实际问题,运用概率论进行分析,评价其应用能力。

4. 期末考试:设置有关概率论与数理统计的综合题,全面评估学生学习效果。

六、教学内容6. 大数定律与中心极限定理6.1 大数定律6.2 中心极限定理7. 随机变量及其分布7.1 随机变量的概念7.2 离散型随机变量7.3 连续型随机变量7.4 随机变量分布函数8. 随机变量的数字特征8.1 数学期望8.2 方差8.3 协方差与相关系数9. 抽样分布与抽样误差9.1 抽样分布的概念9.2 抽样误差的估计9.3 抽样方案的设计10. 估计量的性质与假设检验10.1 估计量的性质10.2 假设检验的基本概念10.3 常用的假设检验方法七、教学方法1. 讲授法:讲解大数定律、中心极限定理、随机变量及其分布等概念。

概率论与数理统计教案-随机变量及其分布

概率论与数理统计教案-随机变量及其分布

概率论与数理统计教案-随机变量及其分布一、教学目标1. 了解随机变量的概念及其重要性。

2. 掌握随机变量的分布函数及其性质。

3. 学习离散型随机变量的概率分布及其数学期望。

4. 理解连续型随机变量的概率密度及其数学期望。

5. 能够运用随机变量及其分布解决实际问题。

二、教学内容1. 随机变量的概念及分类。

2. 随机变量的分布函数及其性质。

3. 离散型随机变量的概率分布:二项分布、泊松分布、超几何分布等。

4. 连续型随机变量的概率密度:正态分布、均匀分布、指数分布等。

5. 随机变量的数学期望及其性质。

三、教学方法1. 采用讲授法,系统地介绍随机变量及其分布的概念、性质和计算方法。

2. 利用案例分析,让学生了解随机变量在实际问题中的应用。

3. 借助数学软件或图形计算器,直观地展示随机变量的分布情况。

4. 开展小组讨论,培养学生合作学习的能力。

四、教学准备1. 教学PPT课件。

2. 教学案例及实际问题。

3. 数学软件或图形计算器。

4. 教材、辅导资料。

五、教学过程1. 导入:通过生活实例引入随机变量的概念,激发学生的学习兴趣。

2. 讲解随机变量的定义、分类及其重要性。

3. 讲解随机变量的分布函数及其性质,引导学生理解分布函数的概念。

4. 讲解离散型随机变量的概率分布,结合实例介绍二项分布、泊松分布、超几何分布等。

5. 讲解连续型随机变量的概率密度,介绍正态分布、均匀分布、指数分布等。

6. 讲解随机变量的数学期望及其性质,引导学生掌握数学期望的计算方法。

7. 案例分析:运用随机变量及其分布解决实际问题,提高学生的应用能力。

8. 课堂练习:布置适量练习题,巩固所学知识。

10. 作业布置:布置课后作业,巩固课堂所学。

六、教学评估1. 课堂提问:通过提问了解学生对随机变量及其分布的理解程度。

2. 课堂练习:检查学生解答练习题的情况,评估学生对知识的掌握程度。

3. 课后作业:布置相关作业,收集学生作业情况,评估学生对知识的运用能力。

《概率论与数理统计》教案

《概率论与数理统计》教案

《概率论与数理统计》教案第一章:概率的基本概念1.1 随机现象与样本空间1.2 事件及其运算1.3 概率的定义与性质1.4 条件概率与独立性第二章:随机变量及其分布2.1 随机变量的概念2.2 离散型随机变量及其分布2.3 连续型随机变量及其分布2.4 随机变量的数字特征(期望、方差)第三章:多维随机变量及其分布3.1 多元随机变量的概念3.2 联合分布及其性质3.3 独立性及其检验3.4 随机向量的数字特征(协方差、相关系数)第四章:大数定律与中心极限定理4.1 大数定律4.2 中心极限定理4.3 样本均值的分布4.4 样本方差的分布第五章:假设检验与置信区间5.2 常用的检验方法5.3 置信区间的估计5.4 功效分析与错误类型第六章:抽样调查与样本分布6.1 抽样调查的基本概念6.2 随机抽样方法6.3 样本分布的性质6.4 抽样误差的估计第七章:回归分析与相关分析7.1 线性回归模型7.2 回归参数的估计7.3 回归模型的检验与诊断7.4 相关分析与判定系数第八章:时间序列分析8.1 时间序列的基本概念8.2 平稳时间序列的模型8.3 时间序列的预测8.4 季节性分析与指数平滑第九章:非参数统计与生存分析9.1 非参数统计的基本概念9.2 非参数检验方法9.4 生存函数与生存分析的估计第十章:贝叶斯统计与统计软件应用10.1 贝叶斯统计的基本原理10.2 贝叶斯参数估计与预测10.3 贝叶斯统计的应用10.4 统计软件的使用与实践重点和难点解析一、随机现象与样本空间补充说明:事件的关系与包含关系,概率的基本性质(互补性、传递性等),概率的计算方法。

二、随机变量及其分布补充说明:概率质量函数与概率密度函数的区别与联系,分布函数的性质,随机变量的期望与方差的计算。

三、多维随机变量及其分布补充说明:二维随机变量的联合分布函数,条件概率的计算,独立性的数学表述与检验方法。

四、大数定律与中心极限定理补充说明:大数定律的数学表述及其含义,中心极限定理的条件与结论,样本均值与标准差的性质。

概率论与数理统计教案

概率论与数理统计教案

概率论与数理统计教案【篇一:概率论与数理统计教案】《概率论与数理统计》课程教案第一章随机事件及其概率一.本章的教学目标及基本要求(1) 理解随机试验、样本空间、随机事件的概念; (2) 掌握随机事件之间的关系与运算,;(3) 掌握概率的基本性质以及简单的古典概率计算; 学会几何概率的计算; (4) 理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。

了解概率的公理化定义。

(5) 理解条件概率、全概率公式、bayes 公式及其意义。

理解事件的独立性。

二.本章的教学内容及学时分配第一节随机事件及事件之间的关系第二节频率与概率 2学时第三节等可能概型(古典概型) 2 学时第四节条件概率第五节事件的独立性 2 学时三.本章教学内容的重点和难点1)随机事件及随机事件之间的关系; 2)古典概型及概率计算;3)概率的性质;4)条件概率,全概率公式和bayes公式 5)独立性、n 重伯努利试验和伯努利定理四.教学过程中应注意的问题1)使学生能正确地描述随机试验的样本空间和各种随机事件;2)注意让学生理解事件a?b,a?b,a?b,a?b,ab??,a…的具体含义,理解事件的互斥关系;3)让学生掌握事件之间的运算法则和德莫根定律;4)古典概率计算中,为了计算样本点总数和事件的有利场合数,经常要用到排列和组合,复习排列、组合原理;5)讲清楚抽样的两种方式——有放回和无放回;五.思考题和习题思考题:1. 集合的并运算?和差运算-是否存在消去律?2. 怎样理解互斥事件和逆事件?3. 古典概率的计算与几何概率的计算有哪些不同点?哪些相同点?习题:第二章随机变量及其分布一.本章的教学目标及基本要求(1) 理解随机变量的概念,理解随机变量分布函数的概念及性质, 理解离散型和连续型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率; (2) 熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律或密度函数及性质;二.本章的教学内容及学时分配第一节随机变量第二节第二节离散型随机变量及其分布离散随机变量及分布律、分布律的特征第三节常用的离散型随机变量常见分布(0-1分布、二项分布、泊松分布) 2学时第四节随机变量的分布函数分布函数的定义和基本性质,公式第五节连续型随机变量及其分布连续随机变量及密度函数、密度函数的性质 2学时第六节常用的连续型随机变量常见分布(均匀分布、指数分布、正态分布)及概率计算 2学时三.本章教学内容的重点和难点a) 随机变量的定义、分布函数及性质;b) 离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何事件的概率;c) 六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布);四.教学过程中应注意的问题a) 注意分布函数f(x)?p{x?x}的特殊值及左连续性概念的理解; b)构成离散随机变量x的分布律的条件,它与分布函数f(x)之间的关系;c) 构成连续随机变量x的密度函数的条件,它与分布函数f(x)之间的关系; d) 连续型随机变量的分布函数f(x)关于x处处连续,且p(x?x)?0,其中x为任意实数,同时说明了p(a)?0不能推导a??。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定义若X的分布律为P(X=x i)=p i,i=1,2…
当级数绝对收敛时(即收敛)
就说是离散型随机变量X的说明:(1)若X取值为有限个x1,x2,…,x n

(2)若X取值为可列无限多个x1,x2,…,x n…

这时才要求无穷级数绝对收敛。

很明显,X的期望EX体现随机变量X取值的平均概念,
所以EX也叫X的均值。

4.1.2 下面介绍几种重要离散型随机变量的数学期望。

1.两点分布
随机变量X的分布律为
分布EX
X~(0,1)X~B(n,p)X~P(λ)p np
4.1.3下面介绍离散型随机变量函数的数学期望。

定理4-1 设离散型随机变量X的分布律为
P{X=x k}=p k,k=1,2,…。

令Y=g(X),若级数绝对收敛,则随机变量Y的特别情形
4.1.4 连续型随机变量的期望
对于连续型随机变量的期望,形式上可类似于离散型随机
变量的期望给予定义,只需将和式中的x i改变x,p i改变
为f(x)dx(其中f(x)为连续型随机变量的概率密度函数)
以及和号“Σ”演变为积分号“∫”即可。

定义4-2 设连续型随机变量X的概率密度为f(x),若广义
积分绝对
收敛,则称该积分为随机变量X的数学期望(简称期望或均值),记为EX,即
1.均匀分布
设随机变量X在[a,b]上服从均匀分布,其概率密度为

在区间[a,b]上服从均匀分布的随机变量的期望是该区间中点。

2.指数分布
设随机变量X服从参数为λ>0的指数分布,其概率密度为
解:在微积分中有
即指数分布的数学期望为参数λ的倒数。

3.正态分布
设其概率密度为
则X的期望
E(X)=μ。

(不证)
上面三种情况列表如下(可以作为公式使用)
分布EX
X~U(a,b)
X~E(λ)
X~N(μ,σ2)μ
下面介绍连续型随机变量函数的数学期望。

定理4-2 设X为连续型随机变量,其概率密度为f X(x),
又随机变量Y=g(X),则
当收敛时,有
4.1.5二维随机变量函数的期望
定理4-3 (1)若(X,Y)为离散型随机变量,若其分布
律为p ij=P{X=x i,Y=y i},
边缘分布律为

(2)其(X,Y)为二维连续型随机变量,f(x,y),f x(x),f (X,Y)的概率密度与边缘概率密度,则
证明略。

定理4-4 设g(X,Y)为连续函数,对于二维随机变量
(X,Y)的函数g(X,Y),
(1)若(X,Y)为离散型随机变量,级数
收敛,则
(2)若(X,Y)为连续型随机变量,且积分
收敛,则
4.1.6期望的性质
期望有许多重要性质,利用这些性质可以进行期望的运算。

下面列举的这些性质对离散型随机变量和连续型随机变量而言,都可以利用随机变量函数的期望与二维随机变量函数的期
望公式加以证明。

性质4-1 常数的期望等于这个常数,即
E(C)=C,其中C为常数。

证明常数C作为随机变量,它只可能取一个值C,即
P{X=C}=1,所以
E(C)=C·1=C
性质4-2 常数与随机变量X乘积的期望等于该常数与随机
变量X的期望的乘积,即
E(CX)=C·E(X)。

证明设X是连续型随机变量,其概率密度为f(x),则有
当X为离散型随机变量时,请读者自证。

∴有E(CX+b)=CEX+b
性质4-3随机变量和的期望等于随机变量期望之和,即
E(X+Y)=E(X)+E(Y)。

证明不妨设(X,Y)为二维随机变量,其概率密度为f (x,y),Z=X+Y是(X,Y)的函数,有
=E(X)+E(Y)。

这一性质可作如下推广:
E(C1X+C2Y)=C1E(X)+C2E(Y),其中C1,C2为常数。

结合性质4-2与性质4-3可证此性质。

一般地,设X1,X2,…,X n为n个随机变量,则有
E(X1+X2+…+X n)= EX1+ EX2+…+ E X n
E(C1X1+C2X2+…+C n X n)=C1EX1+C2EX2+…+ C n EX n
性质4-4两个相互独立的随机变量乘积的期望等于期望的乘积相互独立的随机变量,则E(XY)=E(X)E(Y)。

证明仅证连续型情况,因为X,Y相互独立,所以
f(x,y)=f X(x)f Y(y),
=E(X)E(Y)
由数学归纳法可证得:当X1,X2,…,X n相互独立时有
E(X1X2…X n)=E(X1)E(X2)…E(X n)。

4.2.1方差的概念
定义4-3设随机变量的期望存在,则称
为随机变量X的方差,
记作D(X),即D(X)=
称为X的标准差(或均方差)。

从随机变量的函数的期望看,随机变量X的方差D(X)即
是X的函数的期望。

由方差定义可知,当随机变量的取值相对集中在期望附近
时,方差较小;取值相对分散时,方差较大,并且总有
.
若X为离散型随机变量,其分布律为
则(4.2.1)
若X为连续型随机变量,其概率密度为f(x),则
(4.2.2)
在计算方差时,用下面的公式有时更为简便;
即X的方差等于的期望减去X的期望的平方。

当X是离散型随机变量时,
(4.2.4)
当X是连续型随面变量时,
(4.2.5) 4.2.2常见随机变量的方差
1.0-1分布
设X的分布律为
其中0<P<1,则X的方差
D(X)=P(1-P).
因为


(2)二项分布
设X~B(n,p) 则有(不证)
(3)泊松分布
设X~P(),则有(不证)
(4)均匀分布
设X~U(a,b),则有
(5)指数分布

(6)正态分布
可以证明,若
下表是六种常见分布的期望和方差的结果。

要求大家熟记下面公式。

4.2.3方差的性质
性质4-5常数的方差等于零,随机变量与常数之和的方差
等于随机变量的方差,即
D(C)=0,D(X+C)=D(X).
性质4-6常数与随机变量乘积的方差等于这个常数的
平方与随机变量方差的乘积,即,其中C为常数
性质4-7两个独立随机变量之和的方差等于它们方差之
和,即若X,Y相互独立,则
D(X+Y)=D(X)+D(Y)
上式最后一项
E[(X-E(X))(Y-E(Y))]=E[XY-XE(Y)-
YE(X)+E(X)E(Y)]
=E(XY)-E(X)E(Y)-
E(Y)E(X)+E(X)E(Y)
=E(XY)-E(X)E(Y),
因为X与Y相互独立,有E(XY)=E(X)E(Y),因而上式为

因此D(X+Y)=D(X)+D(Y)
注意:证明过程中得到有用结论
E[(X-E(X))(Y-E(Y))]=E(XY)-E(X)E(Y)
这一性质也可推广到n个相互独立的随机变量情况:若
相互独立,则
将这一性质应用于二项分布可知,二项分布随机变量X能
表示成n个相互独立的两点分布随机变量之和:
pq,k=1,2,…,n,则
4.3协方差与相关系数
对二维随机变量(X,Y),我们除了讨论X与Y的期望和
方差之外,还需讨论X与Y之间相互关系的数字特征,本节主
要讨论这方面的数字特征。

4.3.1协方差
定义4-4设有二维随机变量(X,Y),且E(X),
E(Y)存在,如果
存在,
则称此值为X与Y的协方差,记,即
新课
定义(4.3.1)当(X,Y)为二维离散型随机变量时,其分布律为
则(4.3.
当(X,Y)为二维连续型随机变量时,为(X,Y)的概
(4.
协方差有下列计算公式:
(4.3.4
4.3.2相关系数
定义4-5若,称为X与Y 即
知识拓展:
练习或训练课后小结布置作业。

相关文档
最新文档