《概率论与数理统计》课程教案
概率论与数理统计 教案

概率论与数理统计教案教案标题:引入概率论与数理统计的基本概念教学目标:1. 了解概率论和数理统计的基本概念和重要性;2. 掌握概率和统计的基本术语和符号;3. 能够应用概率和统计的方法解决简单问题;4. 培养学生的数学思维和分析问题的能力。
教学内容:1. 概率论的基本概念和应用;2. 数理统计的基本概念和应用;3. 概率和统计的关系和区别;4. 概率和统计在实际生活中的应用。
教学步骤:一、导入(5分钟)1. 引入概率论和数理统计的重要性和应用领域;2. 激发学生对概率和统计的兴趣。
二、概率论的基本概念(15分钟)1. 介绍概率的定义和基本性质;2. 解释概率的计算方法和应用;3. 通过例题让学生掌握概率的计算方法。
三、数理统计的基本概念(20分钟)1. 介绍统计的定义和基本性质;2. 解释统计的计算方法和应用;3. 通过例题让学生掌握统计的计算方法。
四、概率与统计的关系和区别(10分钟)1. 对比概率和统计的定义和应用;2. 强调概率和统计在实际问题中的互补性。
五、概率与统计的应用(15分钟)1. 介绍概率和统计在实际生活中的应用场景;2. 分析并解决实际问题,应用概率和统计的方法。
六、小结与展望(5分钟)1. 总结本节课学习的内容;2. 展望下节课的教学内容。
教学方法:1. 讲授法:通过讲解和示范引导学生理解概率论和数理统计的基本概念;2. 互动讨论法:通过提问和回答的方式激发学生的思考和参与度;3. 实践操作法:通过例题和实际问题的解决培养学生的应用能力。
教学评估:1. 课堂练习:布置概率和统计的练习题,检查学生对概念和方法的掌握程度;2. 课堂讨论:引导学生参与讨论,评估学生对概率和统计的理解和应用能力。
教学资源:1. 教科书和教学课件:提供基本概念和例题;2. 练习册和习题集:提供练习题和实际问题。
教学延伸:1. 指导学生进行实际调查和数据收集,应用概率和统计的方法进行分析;2. 引导学生阅读相关的科普文章和研究报告,拓宽对概率和统计的理解。
概率论与数理统计(选修)简易教案

概率论与数理统计(选修) 简易教案一、教学目标1. 了解概率论与数理统计的基本概念和原理。
2. 掌握基本的概率计算和统计方法。
3. 能够应用概率论与数理统计解决实际问题。
二、教学内容1. 概率论的基本概念:随机事件、样本空间、概率公式。
2. 条件概率和独立性:条件概率的定义和计算、独立事件的概率计算。
3. 概率分布:离散型随机变量的概率分布、连续型随机变量的概率分布。
4. 统计学基本概念:总体、样本、参数、统计量。
5. 描述性统计分析:频数、频率、图表、均值、方差等。
三、教学方法1. 讲授法:讲解概率论与数理统计的基本概念、原理和方法。
2. 案例分析法:通过实际案例讲解概率计算和统计分析的应用。
3. 练习法:学生通过练习题巩固所学知识和技能。
四、教学准备1. 教材或教学资源:概率论与数理统计教材或相关教学资源。
2. 投影仪或白板:用于展示案例和讲解。
3. 练习题:准备相关的练习题供学生练习。
五、教学过程1. 导入:引入概率论与数理统计的概念和重要性。
2. 讲解:讲解概率论与数理统计的基本概念、原理和方法。
3. 案例分析:通过实际案例讲解概率计算和统计分析的应用。
4. 练习:学生进行练习题,巩固所学知识和技能。
5. 总结:对本节课的内容进行总结和回顾。
六、教学评估1. 课堂参与度:观察学生在课堂上的积极参与程度和提问回答情况。
2. 练习题完成情况:检查学生完成练习题的正确率和解题思路。
3. 小组讨论:评估学生在小组讨论中的合作和交流能力。
七、扩展活动1. 研究项目:学生可以自主选择一个感兴趣的概率论与数理统计相关的研究项目,进行深入研究和分析。
2. 数据分析竞赛:组织学生参加数据分析竞赛,应用所学的概率论与数理统计知识解决实际问题。
八、教学反思1. 教师应在教学过程中不断反思和调整教学方法,以提高教学效果。
2. 教师应关注学生的学习反馈,及时解决学生遇到的问题。
九、教学资源1. 教材或教学资源:提供概率论与数理统计的教材或相关教学资源,供学生自主学习和参考。
概率论与数理统计教案

概率论与数理统计教案1(总58页) -本页仅作为预览文档封面,使用时请删除本页-概率论与数理统计教案讲 稿第一章 概率论的基本概念一、基本概念 1. 随机试验 2. 样本空间试验所有可能结果的全体是样本空间称为样本空间。
通常用大写的希腊字母Ω表示(本书用S 表示)每个结果叫一个样本点. 3.随机事件Ω中的元素称为样本点,常用ω表示。
(1) 样本空间的子集称为随机事件(用A,B 表示)。
(2) 样本空间的单点子集称为基本事件。
(3) 实验结果在随机事件A 中,则称事件A 发生。
(4) 必然事件Ω。
(5) 不可能事件Φ。
(6) 完备事件组(样本空间的划分) 4.概率的定义(公理化定义) 5.古典概型随机试验具有下述特征:1)样本空间的元素(基本事件)只有有限个; 2)每个基本事件出现的可能性是相等的; 称这种数学模型为古典概型。
)(A P ===基本事件总数包含的基本事件数A n k 。
6.几何概型 的长度(面积、体积)的长度(面积、体积)Ω=A A p )(7.条件概率设事件B 的概率0)(>B p .对任意事件A ,称P(A|B)=)()(B P AB P 为在已知事件B发生的条件下事件A发生的条件概率。
8.条件概率的独立性A 、B F ∈,若P(AB)= P(A) P(B) 则称事件A 、B 是相互独立的,简称为独立的。
设三个事件A,B,C 满足 P(AB)=P(A)P(B) P(AC)=P(A)P(C) P(BC)=P(B)P(C)P(ABC)=P(A)P(B) P(C) 称A,B,C 相互独立。
二、事件的关系的关系与运算 1.事件的包含关系若事件A 发生必然导致事件B 发生,则称事件B 包含了A , 记作B A ⊂。
2. 事件的相等设A,B Ω⊂,若B A ⊂,同时有A B ⊂,称A 与B 相等,记为A=B , 3.并(和)事件与积(交)事件“A 与B 中至少有一个发生”为A 和B 的和事件或并事件。
概率论与数理统计教案(48课时)(最新整理)

( x, y )G
,注意二重积分运算知识点的复习。
d) 二维均匀分布的密度函数的具体表达形式。
五.思考题和习题
思考题:1. 由随机变量 X ,Y 的边缘分布能否决定它们的联合分布?
2. 条件分布是否可以由条件概率公式推导? 3. 事件的独立性与随机变量的独立性是否一致? 4.如何利用随机变量之间的独立性去简化概率计算,试举例说明。 习题:
第四章 随机变量的数字特征 一.教学目标及基本要求
(1)理解数学期望和方差的定义并且掌握它们的计算公式;
(2)掌握数学期望和方差的性质与计算,会求随机变量函数的数学期望,特别是利用
期望或方差的性质计算某些随机变量函数的期望和方差。
(3)熟记 0-1 分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的数学期
第四节 二维随机变量的函数的分布
已知(X,Y)的分布率 pij 或密度函数 (x, y) ,求 Z f ( X ,Y ) 的分布律或密度
函数Z (z) 。特别如函数形式: Z X Y , Z max( X ,Y ), Z min( X ,Y ) 。
2 学时
三.本章教学内容的重点和难点
a) 二维随机变量的分布函数及性质,与一维情形比较有哪些不同之处;
5.列举正态分布的应用。
习题:
第三章 多维随机变量及其分布
一.教学目标及基本要求
(1)了解二维随机变量概念及其联合分布函数概念和性质,了解二维离散型和连续 型随机变量定义及其概率分布和性质,了解二维均匀分布和正态分布。
(2)会用联合概率分布计算有关事件的概率,会求边缘分布。 (3)掌握随机变量独立性的概念,掌握运用随机变量的独立性进行概率计算。 (4)会求两个独立随机变量的简单函数(如函数 X+Y, max(X, Y), min(X, Y))的分布。
概率论与数理统计教案-随机变量及其分布

概率论与数理统计教案-随机变量及其分布一、教学目标1. 了解随机变量的概念及其重要性。
2. 掌握随机变量的分布函数及其性质。
3. 学习离散型随机变量的概率分布及其数学期望。
4. 理解连续型随机变量的概率密度及其数学期望。
5. 能够运用随机变量及其分布解决实际问题。
二、教学内容1. 随机变量的概念及分类。
2. 随机变量的分布函数及其性质。
3. 离散型随机变量的概率分布:二项分布、泊松分布、超几何分布等。
4. 连续型随机变量的概率密度:正态分布、均匀分布、指数分布等。
5. 随机变量的数学期望及其性质。
三、教学方法1. 采用讲授法,系统地介绍随机变量及其分布的概念、性质和计算方法。
2. 利用案例分析,让学生了解随机变量在实际问题中的应用。
3. 借助数学软件或图形计算器,直观地展示随机变量的分布情况。
4. 开展小组讨论,培养学生合作学习的能力。
四、教学准备1. 教学PPT课件。
2. 教学案例及实际问题。
3. 数学软件或图形计算器。
4. 教材、辅导资料。
五、教学过程1. 导入:通过生活实例引入随机变量的概念,激发学生的学习兴趣。
2. 讲解随机变量的定义、分类及其重要性。
3. 讲解随机变量的分布函数及其性质,引导学生理解分布函数的概念。
4. 讲解离散型随机变量的概率分布,结合实例介绍二项分布、泊松分布、超几何分布等。
5. 讲解连续型随机变量的概率密度,介绍正态分布、均匀分布、指数分布等。
6. 讲解随机变量的数学期望及其性质,引导学生掌握数学期望的计算方法。
7. 案例分析:运用随机变量及其分布解决实际问题,提高学生的应用能力。
8. 课堂练习:布置适量练习题,巩固所学知识。
10. 作业布置:布置课后作业,巩固课堂所学。
六、教学评估1. 课堂提问:通过提问了解学生对随机变量及其分布的理解程度。
2. 课堂练习:检查学生解答练习题的情况,评估学生对知识的掌握程度。
3. 课后作业:布置相关作业,收集学生作业情况,评估学生对知识的运用能力。
《概率论与数理统计》教案

《概率论与数理统计》教案第一章:概率的基本概念1.1 随机现象与样本空间1.2 事件及其运算1.3 概率的定义与性质1.4 条件概率与独立性第二章:随机变量及其分布2.1 随机变量的概念2.2 离散型随机变量及其分布2.3 连续型随机变量及其分布2.4 随机变量的数字特征(期望、方差)第三章:多维随机变量及其分布3.1 多元随机变量的概念3.2 联合分布及其性质3.3 独立性及其检验3.4 随机向量的数字特征(协方差、相关系数)第四章:大数定律与中心极限定理4.1 大数定律4.2 中心极限定理4.3 样本均值的分布4.4 样本方差的分布第五章:假设检验与置信区间5.2 常用的检验方法5.3 置信区间的估计5.4 功效分析与错误类型第六章:抽样调查与样本分布6.1 抽样调查的基本概念6.2 随机抽样方法6.3 样本分布的性质6.4 抽样误差的估计第七章:回归分析与相关分析7.1 线性回归模型7.2 回归参数的估计7.3 回归模型的检验与诊断7.4 相关分析与判定系数第八章:时间序列分析8.1 时间序列的基本概念8.2 平稳时间序列的模型8.3 时间序列的预测8.4 季节性分析与指数平滑第九章:非参数统计与生存分析9.1 非参数统计的基本概念9.2 非参数检验方法9.4 生存函数与生存分析的估计第十章:贝叶斯统计与统计软件应用10.1 贝叶斯统计的基本原理10.2 贝叶斯参数估计与预测10.3 贝叶斯统计的应用10.4 统计软件的使用与实践重点和难点解析一、随机现象与样本空间补充说明:事件的关系与包含关系,概率的基本性质(互补性、传递性等),概率的计算方法。
二、随机变量及其分布补充说明:概率质量函数与概率密度函数的区别与联系,分布函数的性质,随机变量的期望与方差的计算。
三、多维随机变量及其分布补充说明:二维随机变量的联合分布函数,条件概率的计算,独立性的数学表述与检验方法。
四、大数定律与中心极限定理补充说明:大数定律的数学表述及其含义,中心极限定理的条件与结论,样本均值与标准差的性质。
《概率论与数理统计》(46学时)课程教学大纲1
《概率论与数理统计》(46学时)课程教学大纲一、课程的基本情况课程中文名称:概率论与数理统计课程英文名称:Probability Theory and Mathematical Statistics课程编码:0702003课程类别:学科基础课课程性质:必修总学时:46 讲课学时:46 实验学时:0学分:2.5授课对象:本科相关专业前导课程:《高等数学》《线性代数》二、教学目的概率论与数理统计是研究随机现象统计规律性的数学学科,是理工科各专业的一门重要的学科基础课。
通过本课程的学习,使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。
同时,也为一些后续课程的学习提供必要的基础。
三、教学基本要求第一章概率论的基本概念1.1 随机试验1.2 样本空间、随机事件1.3 频率与概率1.4 等可能概型(古典概型)1.5 条件概率1.6 独立性基本要求:1. 理解随机试验、样本空间、随机事件的概念并掌握事件的关系与运算2. 掌握概率的定义与基本性质3. 理解古典概型的概念,掌握古典概率的计算方法4. 理解条件概率的定义,熟练掌握乘法定理、全概率公式与贝叶斯公式并会灵活应用5. 理解事件独立性的概念,熟练掌握相互独立事件的性质及有关概率的计算重点与难点:1. 重点:随机事件;概率的基本性质及其应用;乘法定理、全概率公式与贝叶斯公式事件的独立性2. 难点:概率的公理化定义、条件概率概念的建立、全概率公式与贝叶斯公式的应用第二章随机变量及其分布2.1 随机变量2.2 离散型随机变量及其分布律2.3 随机变量的分布函数2.4 连续型随机变量及其概率密度2.5 随机变量的函数的分布 基本要求:1. 理解随机变量的概念;掌握离散型随机变量和连续型随机变量的描述方法2. 掌握分布律、分布函数、概率密度函数的概念及性质;掌握由概率分布计算相关事件的概率的方法3. 熟练掌握二项分布、泊松(Poisson )分布、正态分布、指数分布和均匀分布,特别是正态分布的性质并能灵活运用;熟练掌握伯努利概型概率的计算方法4. 熟练掌握一些简单的随机变量函数的概率分布的求法 重点与难点:1. 重点:随机变量、分布律、密度函数和分布函数的概念;二项分布、均匀分布的概念和性质2. 难点:二项分布的推导及应用;随机变量函数的概率分布第三章 多维随机变量及其分布 3.1 二维随机变量 3.2 边缘分布 3.3 条件分布3.4 相互独立的随机变量3.5 两个随机变量的函数的分布 基本要求:1. 正确理解二维随机变量的定义,掌握二维随机变量的联合分布律、联合分布函数、联合概率密度函数及条件分布的概念2. 熟练掌握由联合分布求事件的概率,求边缘分布及条件分布的基本方法3. 理解随机变量独立性的概念,掌握随机变量独立性的判别方法4. 了解求二维随机变量函数分布的基本思路,会求,max{,},min{,}X Y X Y X Y 的分布 重点与难点:1. 重点:由联合分布求概率,求边缘分布及条件分布的方法2. 难点:求离散型随机变量联合分布律的方法,条件密度的导出,随机变量函数的分布第四章 随机变量的数字特征 4.1 数学期望 4.2 方差4.3 协方差及相关系数 4.4 矩、协方差矩阵 基本要求:1. 掌握随机变量及随机变量函数的数学期望的计算公式,熟悉数学期望的性质并能灵活运用2. 掌握方差的概念和性质;熟悉二项分布、泊松分布、正态分布、指数分布和均匀分布的数学期望和方差;了解切比雪夫(Chebyshev )不等式3. 掌握协方差和相关系数的定义和性质,并会灵活应用4. 掌握矩、协方差矩阵的定义 重点与难点:1. 重点:数学期望、方差、相关系数与协方差的计算公式及性质2. 难点:随机变量函数的数学期望的计算,利用数学期望的性质计算数学期望,相关系数的含义第五章大数定律及中心极限定理5.1 大数定律5.2 中心极限定理基本要求:1. 掌握依概率收敛的概念及贝努利大数定律和契比雪夫大数定律2. 掌握独立同分布的中心极限定理和德莫佛-拉普拉斯(De Moivre-Laplace)极限定理3. 掌握应用中心极限定理计算有关事件的概率近似值的方法重点与难点:1. 重点:用中心极限定理计算概率的近似值的方法2. 难点:依概率收敛的概念第六章样本及抽样分布6.1 随机样本6.2 抽样分布基本要求:1. 理解总体、个体、样本容量、简单随机样本以及样本观察值的概念2. 理解统计量的概念;熟悉数理统计中最常用的统计量(如样本均值、样本方差)的计算方法及其分布χ-分布,t-分布,F-分布的定义并会查表计算3. 掌握24. 熟悉正态总体的某些常用统计量的分布并能运用这些统计量进行计算重点与难点:χ-分布, t-分布, F-分布的定义与分位点的查表;正态总体常用统计量的分布1. 重点:2χ-分布, t-分布, F-分布的定义与分位点的查表2. 难点:2第七章参数估计7.1 点估计7.3 估计量的评选标准7.4 区间估计7.5 正态总体均值与方差的区间估计7.7 单侧置信区间基本要求:1. 理解参数的点估计(矩估计、最大似然估计)的计算方法2. 掌握参数点估计的评选标准:无偏性,有效性和相合性3. 理解参数的区间估计的概念,熟悉对单个正态总体和两个正态总体的均值与方差进行区间估计的方法及步骤重点与难点:1. 重点:点估计的矩法、最大似然估计法;正态总体参数的区间估计2. 难点:最大似然估计法,两个正态总体的参数的区间估计四、课程内容与学时分配五、教材参考书教材:盛骤谢式千潘承毅《概率论与数理统计》(第三版)高等教育出版社2001. 参考书:[1] 茆诗松《概率论与数理统计教程》(第一版)高教出版社2004.[2] 王展青李寿贵《概率论与数理统计》(第一版)科学出版社2000.六、教学方式和考核方式1.教学方式:以课堂讲授为主,辅以答疑、课后作业。
概率论与数理统计教案
概率论与数理统计教案【篇一:概率论与数理统计教案】《概率论与数理统计》课程教案第一章随机事件及其概率一.本章的教学目标及基本要求(1) 理解随机试验、样本空间、随机事件的概念; (2) 掌握随机事件之间的关系与运算,;(3) 掌握概率的基本性质以及简单的古典概率计算; 学会几何概率的计算; (4) 理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。
了解概率的公理化定义。
(5) 理解条件概率、全概率公式、bayes 公式及其意义。
理解事件的独立性。
二.本章的教学内容及学时分配第一节随机事件及事件之间的关系第二节频率与概率 2学时第三节等可能概型(古典概型) 2 学时第四节条件概率第五节事件的独立性 2 学时三.本章教学内容的重点和难点1)随机事件及随机事件之间的关系; 2)古典概型及概率计算;3)概率的性质;4)条件概率,全概率公式和bayes公式 5)独立性、n 重伯努利试验和伯努利定理四.教学过程中应注意的问题1)使学生能正确地描述随机试验的样本空间和各种随机事件;2)注意让学生理解事件a?b,a?b,a?b,a?b,ab??,a…的具体含义,理解事件的互斥关系;3)让学生掌握事件之间的运算法则和德莫根定律;4)古典概率计算中,为了计算样本点总数和事件的有利场合数,经常要用到排列和组合,复习排列、组合原理;5)讲清楚抽样的两种方式——有放回和无放回;五.思考题和习题思考题:1. 集合的并运算?和差运算-是否存在消去律?2. 怎样理解互斥事件和逆事件?3. 古典概率的计算与几何概率的计算有哪些不同点?哪些相同点?习题:第二章随机变量及其分布一.本章的教学目标及基本要求(1) 理解随机变量的概念,理解随机变量分布函数的概念及性质, 理解离散型和连续型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率; (2) 熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律或密度函数及性质;二.本章的教学内容及学时分配第一节随机变量第二节第二节离散型随机变量及其分布离散随机变量及分布律、分布律的特征第三节常用的离散型随机变量常见分布(0-1分布、二项分布、泊松分布) 2学时第四节随机变量的分布函数分布函数的定义和基本性质,公式第五节连续型随机变量及其分布连续随机变量及密度函数、密度函数的性质 2学时第六节常用的连续型随机变量常见分布(均匀分布、指数分布、正态分布)及概率计算 2学时三.本章教学内容的重点和难点a) 随机变量的定义、分布函数及性质;b) 离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何事件的概率;c) 六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布);四.教学过程中应注意的问题a) 注意分布函数f(x)?p{x?x}的特殊值及左连续性概念的理解; b)构成离散随机变量x的分布律的条件,它与分布函数f(x)之间的关系;c) 构成连续随机变量x的密度函数的条件,它与分布函数f(x)之间的关系; d) 连续型随机变量的分布函数f(x)关于x处处连续,且p(x?x)?0,其中x为任意实数,同时说明了p(a)?0不能推导a??。
《概率论与数理统计》课程教案
现在2=363. 37-360=3.37,k=4,20.1(4-1)=6. 251>3.37,故接受H0,认为两性状符合孟德尔遗传规律中9:3:3:1的遗传比例.
第三部分分布族的2拟合检验法(40分钟)
(二)分布族的2拟合检验
在(一)中要检验的原假设是H0:总体X的分布函数是F(x),其中F(x)是已知的,这种情况是不多的.我们经常遇到的所需检验的原假设是
H0:总体X服从泊松分布
解因在H0中参数未具体给出,所以先估计.由最大似然估计法得 .在H0假设下,即在X服从泊松分布的假设下,X所有可能取的值为Ω ={0,1,2,…},将Ω分成如表8-4所示的两两不相交的子集A0,A1,…A12.则P{X=i}有估计
例如
表8-5例3的2拟合检验计算表
Ai
fi
A0
皮尔逊定理及其应用
教学方法
提问、讲授、启发、讨论
工具仪器
多媒体教具、教材、教案、教学课件、考勤表、平时成绩登记表
教学安排
考勤、复习相关知识点、新课内容概述、组织教学、布置作业、课后小结
教学过程
教学组织、具体教学内容及教学方法、手段、时间分配及其它说明
备 注
第一部分:旧知识点复习和新课内容概述(5分钟)
(6.2)
的统计量来度量样本与H0中所假设的分布的吻合程度,其中Ci(i=1,2,…k)为给定的常数。皮尔逊证明,如果选取Ci=n/pi(i=1,2,…k),则由(6.2)定义的统计量具有下述定理中所述的简单性质。于是我们就采用
2= = (6.3)
作为检验统计量。
定理若n充分大,则当H0为真时统计量(6.3)近似服从2(k-1)分布。(证略)
表8-3例2的2检验计算表
大学概率论与数理统计教案
课程名称:概率论与数理统计授课对象:大学本科学生课时安排:2课时教学目标:1. 使学生掌握概率论与数理统计的基本概念、基本原理和基本方法。
2. 培养学生运用概率论与数理统计方法解决实际问题的能力。
3. 增强学生对数学理论的应用意识和创新思维。
教学内容:一、概率论的基本概念1. 随机事件2. 概率3. 条件概率4. 独立性5. 全概率公式与贝叶斯公式二、随机变量及其分布1. 离散型随机变量2. 连续型随机变量3. 常见分布4. 多维随机变量及其分布教学过程:第一课时一、导入1. 介绍概率论与数理统计在各个领域的应用,激发学生学习兴趣。
2. 阐述本课程的教学目标和重要性。
二、基本概念讲解1. 随机事件:通过举例说明随机事件的概念,如掷骰子、抽签等。
2. 概率:讲解概率的定义、性质及计算方法,如古典概率、几何概率等。
3. 条件概率:讲解条件概率的定义、性质及计算方法,如贝叶斯公式。
4. 独立性:讲解独立性概念、性质及判断方法。
三、课堂练习1. 学生独立完成课堂练习题,巩固所学知识。
2. 教师巡视指导,解答学生疑问。
第二课时一、随机变量及其分布讲解1. 离散型随机变量:讲解离散型随机变量的定义、性质及常见分布,如二项分布、泊松分布等。
2. 连续型随机变量:讲解连续型随机变量的定义、性质及常见分布,如均匀分布、正态分布等。
3. 常见分布:讲解常见分布的应用,如正态分布、指数分布等。
4. 多维随机变量及其分布:讲解多维随机变量的定义、性质及常见分布,如二维正态分布、二维均匀分布等。
二、课堂练习1. 学生独立完成课堂练习题,巩固所学知识。
2. 教师巡视指导,解答学生疑问。
三、总结1. 总结本节课所学内容,强调重点和难点。
2. 鼓励学生在课后进行复习和巩固。
教学评价:1. 课堂练习:通过课堂练习,检验学生对基本概念、基本原理和基本方法的掌握程度。
2. 课后作业:布置课后作业,巩固所学知识,提高学生运用概率论与数理统计方法解决实际问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最基本的数学模型:首个非常重要的概念,是研究概率的重要的基础性工具。
自然界和社会上发生的现象是多种多样的,在观察、分析、研究各种现象时,通常我们将它们分为两类:
(1)可事前预言的,即在准确地重复某些条件下,它的结果总是肯定的,或者根据它过去的状况,在相同条件下完全可以预言将来的发展,称这一类现象为确定性现象或必然现象。
具备以上三个特点(简而言之:过程的可重复性、可能结果的确定性、实际结果的不确定性)的试验,称为随机试验
随机试验的作用:通过随机试验来研究随机现象
第三部分:样本空间,随机事件,随机事件的关系与事件运算(40分钟)
(一)样本空间
由随机试验的3个特点可知,每次试验的所有可能结果是已知的。
样本空间:将随机试验E的所有可能结果组成一个集合,称为E的样本空间,记为S (space)。
随机试验的任一种可能结果构成一个基本事件,比如A={s5}
基本事件的总数:等于集合S的基数
注意区别:样本点和基本事件,是元素和集合的关系
2)必然事件(Certain Event):样本空间S作为一个子集,S S,它作为事件时总会发生
3)不可能事件(Impossible Event):用空集Φ表示,不包含任何样本点,也有Φ S,每次试验都不发生
样本点:样本空间中的元素,即E的每个结果。
例:设前述试验E1~E7的样本空间S1~S7如下:(保留)
S1:{H,T}
S2:{HHH,HHT,HTH,HTT,THH,THT,TTH,TTT}
S3:{0,1,2,3}
S4:{1,2,3,4,5,6}
S5:{0,1,2,3,…}
S6:{t|t≥0}
S7:{(x,y)|T0≤x≤y≤T1,T0表示该地区最低温,T1表示最高温}
定义:由事件A与事件B中公共的样本点组成的新事件称为事件A与B的积/交。
(1)数学表述为:A∩B=AB= {x|x∈A且x∈B};
(2)当且仅当A与B同时发生时,A∩B才发生。
例.抛一粒骰子,事件A= “出现点数不超过3”,事件B= “出现偶数点”,
则A={1,2,3},B={2,4,6},所以,A∩B={2}.
教学安排
考勤、复习相关知识点、新课内容概述、组织教学、布置作业、课后小结
教学过程
教学组织、具体教学内容及教学方法、手段、时间分配及其它说明
备 注
第一部分:新课内容概述(10分钟)
授课教师向学生做自我介绍,介绍本课程课时设置、作业要求、成绩计算方法。
首先介绍《概率论与数理统计》的发展历史背景、该课程的主要学习内容、本课程与通信工程专业的联系与重要性。
多个事件的积事件: 为n个事件A1,A2,…,An的积事件。
2.必然事件在每一次试验中都发生,对任何一个随机事件A都有φAS。
(2)相等关系(Equivalent Relation)
定义:若属于A的样本点必属于B,且属于B的样本点必属于A,则称事件A与事件B相等,记为A=B。即:若A B且A B,则有A=B。
3.2事件的运算(Operation of Events)
E5:记录电话交换台一分钟内接到的呼叫次数
E6:在一批灯泡中任意抽取一次,测试它的寿命
E7:记录某地一昼夜地最高温度和最低温度
以上试验有以下三个特点:
(1)可以在相同条件下重复地进行;
(2)每次试验地可能结果不止一个,并且能事先明确试验的所有可能结果;
(3)进行一次试验之前,不能确定哪一个结果会出现,
数理统计—应用概率论研究大量随机现象的规律性;对通过科学安排的一定数量的实验所得到的统计方法给出严格的理论证明;目标是使我们能从一组样本来判定是否能以相当大的概率来保证某一判断是正确的,并控制发生错误的概率。(对应第5、6章内容)
统计手段—以上提供的方法在各种具体问题中的应用,它不去注意这些方法的理论根据、数学论证。(对应第7、8章内容)
随着18、19世纪工业革命和科学的发展,人们注意到某些生物、物理和社会现象与机会游戏相似,从而由机会游戏起源的概率论被应用到这些领域中,也大大推动了概率论本身发展:
18世纪,法国人布丰在《概率算术试验》中导入“投针问题”;
19世纪,概率论有了飞跃的进展:
1812年拉普拉斯出版的经典著作《分析的概率理论》总结了这一时代概率论的研究,提出了概率古典定义;
(一)概率论的缘起:概率论产生于17世纪,由银行和保险事业发展而产生,但是来自赌博者的请求,却是数学家们思考概率论问题的源泉。
最早书面记载为:1654年,贵族赌徒德.梅勒向法国数学家帕斯卡和费尔马提出了一个使他苦恼了很久的问题:“两个赌徒相约赌若干局,谁先赢m局就算获胜,全部赌本就归胜者,但是当其中一个人甲赢了a(a<m)局的时候,赌博中止,问赌本应当如何分配才算合理?”。这就是著名的分赌注问题。
1657年,荷兰数学家惠更斯企图解决这一问题,写成了《论机会游戏中的计算》一书,是迄今被认为是最早的概率论著作。早期概率论真正创立者是:帕斯卡、费尔马和惠更斯,该时期被称为组合概率时期。
瑞士数学家雅可布·贝努利等在前人基础上,继续分析赌博中的其他问题,给出了“赌徒输光问题”和“圣彼得堡问题”的详尽解法,证明了被称为“大数定律”的一个定理,1713年,其著作《猜度术》出版。
S中不同事件的总数:记S中基本事件的个数为|S|,则总数为2|S|
例1:随机试验E2:将一枚硬币抛掷三次,观察其正面和反面出现的情况
S2={HHH,HHT,HTH,HTT,THH,THT,TTH,TTT}
事件A1:“第一次出现的是正面H”A1={HHH,HHT,HTH,HTT }
A2:“三次出现同一面”A2={HHH,TTT}
设:试验E的样本空间为S,A,B,Ak(k=1,2,..)是S的子集
3.1事件的关系
(1)包含关系(Inclusion Relation)
定义:若属于A的样本点必属于B,则称事件B包含事件A,记为AB,即事件A发生必然导致事件B发生。
注意:
1.事件A是B的子事件即AB,换一说法:如果事件B不发生必导致事件A也不发生,反之则不成立;
(2)在个别试验中呈现不确定的结果,而在相同条件下大量重复试验中呈现规律性的现象称为随机现象(或偶然现象)。
长期观察和实践表明:随机现象在个别的试验中,1.偶然性起着支配作用,呈现出不确定性;2.但在相同条件下的大量重复试验中,却呈现出某种规律性。随机现象的这种规律性称之为统计规律性,概率论与数理统计就是研究和揭示随机现象的统计规律性的一门学科。
随机试验(Random Experiment)包括各种各样的科学试验,甚至对某一事务的某一特征的观察,也认为是一种试出现的情况
E2:将一枚硬币抛掷三次,观察正面H,反面T出现的情况
E3:将一枚硬币抛掷三次,观察出现正面的次数
E4:抛一颗骰子,观察出现的点数
2.对随机现象数学描述的理解和建模,理解概率的定义和性质
教学重点
基于集合论中集合之间的关系和集合运算来处理事件之间的关系;
公理化概率的定义与基本性质。
教学难点
理解概率在统计意义上的定义与基本性质;
“频率是概率的稳定值”的意义,伯努利大数定律的初步解释。
教学方法
提问、讲授、启发、讨论
工具仪器
多媒体教具、教材、教案、教学课件、考勤表、平时成绩登记表
《概率论与数理统计》课程教案
主讲教师__________所在单位______________
授课班级____________专业_____________________撰写时间_________________
教案编号
1-0101
教案内容
1.1随机实验;1.2样本空间与随机事件
1.3频率与概率
学时
(1)事件的和/并(Union of Events)
定义:由事件A与事件B中所有样本点(相同的样本点只计入一次)所组成的新事件称为事件A与B的和/并。
(1)数学表述为:A∪B={x|x∈A或x∈B};
(2)当且仅当A,B中至少有一个发生时,事件A∪B发生。
例.抛一粒骰子,事件A=“出现点数不超过3”,事件B=“出现偶数点”。
高斯则奠定了最小二乘法和误差论的基础;
泊松推广了“大数定律”,引入了十分重要的“泊松分布”;
切比雪夫和其的学生马尔可夫分别创建了“大数定律”和“马尔可夫链”。
1934年苏联数学家辛钦提出一种在时间中均匀进行着的平稳过程理论;
柯尔莫戈洛夫以勒贝格的测度论为基础,给出了一套完整的概率论公理体系。
如何把概率论建立在严谨的逻辑基础上,这是从概率诞生时起人们就关注的问题,许多数学家进行过尝试,经过了300年的发展才最终得以圆满解决!
(二)概率论的应用与发展:严谨实用的学科
概率论伴随着工程技术科学的发展而发展起来,经过18、19世纪的长期探索,逐步在20世纪初成为一门完整、严谨的学科。它在物理、化学、生物、生态、天文、地质、医学等专业,在控制论、信息论、电子技术、预报、运筹、金融经济等工程技术领域有广泛的应用。
最新的相关学科发展:博弈论、大数据发掘与分析、预测学。
2
教学目标
基本要求
(1)了解概率论与数理统计学科的历史背景、发展;了解概率论与数理统计作为通信专业数学理论基础的地位;
(2)理解样本空间、随机事件的概念,掌握事件的关系与运算;熟练运用事件的和,积,差运算表示未知的事件;
(3)了解概率的公理化体系及基本性质。
能力要求
1.培养能力要求:
a)掌握概率论和数理统计中的基本概念和性质并能够运用到复杂工程问题的适当表述之中;
科幻电影、小说:阿西莫夫《基地》系列—心理史学(预测未来发展);
电影《少数派报告》----犯罪行为的短时预测。
(三)概率论与通信理论的发展
概率论对通信数学理论发展的最大贡献:基于概率论而创建的“信息论(Information Theory)”,导致了数字通信的兴起与繁荣。信息论将数字通信理论进行重建:利用概率和统计分布等数学语言,构建通信系统中信源编码、信道调制、传输信道、信道信源解调等各个传输环节的分析描述模型,采用基于统计学原理的分析研究方法对整个通信系统进行构架和剖析,指导了诸如信源编码、纠错码、无线信道建模分析等多个分支学科的出现,间接导致当代各类宽带高速移动通信的出现。