概率论与数理统计教案1

合集下载

概率论与数理统计教案(48课时)

概率论与数理统计教案(48课时)

《概率论与数理统计》课程教案第一章 随机事件及其概率一.本章的教学目标及基本要求(1) 理解随机试验、样本空间、随机事件的概念;(2) 掌握随机事件之间的关系与运算,;(3) 掌握概率的基本性质以及简单的古典概率计算; 学会几何概率的计算;(4) 理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。

了解概率的公理化定义。

(5) 理解条件概率、全概率公式、Bayes 公式及其意义。

理解事件的独立性。

二.本章的教学内容及学时分配第一节 随机事件及事件之间的关系第二节 频率与概率 2学时第三节 等可能概型(古典概型) 2 学时第四节 条件概率第五节 事件的独立性 2 学时三.本章教学内容的重点和难点1) 随机事件及随机事件之间的关系;2) 古典概型及概率计算;3)概率的性质;4)条件概率,全概率公式和Bayes 公式5)独立性、n 重伯努利试验和伯努利定理四.教学过程中应注意的问题1) 使学生能正确地描述随机试验的样本空间和各种随机事件;2) 注意让学生理解事件,,,,,A B A B A B A B AB A ⊂⋃⋂-=Φ…的具体含义,理解事件的互斥关系;3) 让学生掌握事件之间的运算法则和德莫根定律;4) 古典概率计算中,为了计算样本点总数和事件的有利场合数,经常要用到排列和组合,复习排列、组合原理;5) 讲清楚抽样的两种方式——有放回和无放回;五.思考题和习题思考题:1. 集合的并运算⋃和差运算-是否存在消去律?2. 怎样理解互斥事件和逆事件?3. 古典概率的计算与几何概率的计算有哪些不同点?哪些相同点?习题:第二章 随机变量及其分布一.本章的教学目标及基本要求(1) 理解随机变量的概念,理解随机变量分布函数的概念及性质, 理解离散型和连续型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率;(2) 熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律或密度函数及性质;二.本章的教学内容及学时分配第一节 随机变量第二节 第二节 离散型随机变量及其分布离散随机变量及分布律、分布律的特征第三节 常用的离散型随机变量常见分布(0-1分布、二项分布、泊松分布) 2学时第四节 随机变量的分布函数分布函数的定义和基本性质,公式第五节 连续型随机变量及其分布连续随机变量及密度函数、密度函数的性质 2学时第六节 常用的连续型随机变量常见分布(均匀分布、指数分布、正态分布)及概率计算 2学时三.本章教学内容的重点和难点a) 随机变量的定义、分布函数及性质;b) 离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何事件的概率;c) 六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布);四.教学过程中应注意的问题a) 注意分布函数(){}F x P X x =<的特殊值及左连续性概念的理解;b) 构成离散随机变量X 的分布律的条件,它与分布函数()F x 之间的关系;c) 构成连续随机变量X 的密度函数的条件,它与分布函数()F x 之间的关系;d) 连续型随机变量的分布函数()F x 关于x 处处连续,且()0P X x ==,其中x 为任意实数,同时说明了()0P A =不能推导A =Φ。

概率论与数理统计教案(48课时)(最新整理)

概率论与数理统计教案(48课时)(最新整理)

( x, y )G
,注意二重积分运算知识点的复习。
d) 二维均匀分布的密度函数的具体表达形式。
五.思考题和习题
思考题:1. 由随机变量 X ,Y 的边缘分布能否决定它们的联合分布?
2. 条件分布是否可以由条件概率公式推导? 3. 事件的独立性与随机变量的独立性是否一致? 4.如何利用随机变量之间的独立性去简化概率计算,试举例说明。 习题:
第四章 随机变量的数字特征 一.教学目标及基本要求
(1)理解数学期望和方差的定义并且掌握它们的计算公式;
(2)掌握数学期望和方差的性质与计算,会求随机变量函数的数学期望,特别是利用
期望或方差的性质计算某些随机变量函数的期望和方差。
(3)熟记 0-1 分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的数学期
第四节 二维随机变量的函数的分布
已知(X,Y)的分布率 pij 或密度函数 (x, y) ,求 Z f ( X ,Y ) 的分布律或密度
函数Z (z) 。特别如函数形式: Z X Y , Z max( X ,Y ), Z min( X ,Y ) 。
2 学时
三.本章教学内容的重点和难点
a) 二维随机变量的分布函数及性质,与一维情形比较有哪些不同之处;
5.列举正态分布的应用。
习题:
第三章 多维随机变量及其分布
一.教学目标及基本要求
(1)了解二维随机变量概念及其联合分布函数概念和性质,了解二维离散型和连续 型随机变量定义及其概率分布和性质,了解二维均匀分布和正态分布。
(2)会用联合概率分布计算有关事件的概率,会求边缘分布。 (3)掌握随机变量独立性的概念,掌握运用随机变量的独立性进行概率计算。 (4)会求两个独立随机变量的简单函数(如函数 X+Y, max(X, Y), min(X, Y))的分布。

《概率论与数理统计电子教案第一章

《概率论与数理统计电子教案第一章

随机变量的定义
根据随机变量可能取值的性质,可以分为离散型随 机变量和连续型随机变量。
随机变量的分类
离散型随机变量分布律
分布律的定义 二项分布、泊松分布等。
常见离散型随机变量的分布 律
对于一个离散型随机变量X,其所有可能取 的值xi(i=1,2,...)与取这些值的概率 P{X=xi}(i=1,2,...)构成的表格或公式称为 离散型随机变量X的分布律。
叁 多维随机变量函数的概率密度求法
对于多维随机变量的函数,其概率密度可以通过换元法和雅可比行 列式求得。
随机变量数字特征
数学期望与方差概念
数学期望(期望值)
01
描述了随机变量取值的"平均"水平,是概率加权的平均
值。
方差
02
描述了随机变量取值的离散程度,即取值与期望值的偏
离程度。方差越大,说明随机变量的取值越分散。
大数定律应用
大数定律概念
中心极限定理内容及意义
中心极限定理内容
中心极限定理指出,大量相互独立、同分布 的随机变量之和的分布,当变量个数足够大 时,将趋于正态分布。
中心极限定理意义
中心极限定理是概率论和数理统计中的基本 定理之一,为许多统计方法的推导和应用提 供了理论基础,如置信区间、假设检验等。
棣莫弗-拉普拉斯定理
事件的独立性
计算多个事件同时发生的概率。
两个或多个事件的发生互不影响。
条件概率
在给定条件下,某事件发生的概 率。
独立试验
每次试验的结果与其他次试验的 结果无关。
随机变量及其分布
随机变量概念及分类
设随机试验的样本空间为 S={e}, X=X{e}是定义在 样本空间S上的实值单值 函数。称X=X{e}为随机变 量。

概率论与数理统计(选修)简易教案

概率论与数理统计(选修)简易教案

概率论与数理统计(选修)-简易教案第一章:概率的基本概念1.1 随机现象与样本空间随机现象的定义样本空间的定义样本空间的表示方法1.2 事件与概率事件的定义事件的表示方法概率的定义与性质常用概率公式1.3 条件概率与独立事件条件概率的定义与性质独立事件的定义与性质贝叶斯定理第二章:随机变量及其分布2.1 随机变量的概念随机变量的定义随机变量的表示方法随机变量的类型2.2 离散型随机变量的分布律伯努利随机变量的分布律二项分布几何分布负二项分布2.3 连续型随机变量的概率密度连续型随机变量的定义概率密度的定义与性质均匀分布正态分布第三章:随机变量的数字特征3.1 随机变量的期望值期望值的定义与性质离散型随机变量的期望值连续型随机变量的期望值3.2 随机变量的方差方差的定义与性质离散型随机变量的方差连续型随机变量的方差3.3 随机变量的协方差与相关系数协方差的定义与性质相关系数的定义与性质独立性与协方差的关系第四章:大数定律与中心极限定理4.1 大数定律大数定律的定义与意义弱大数定律强大数定律4.2 中心极限定理中心极限定理的定义与意义中心极限定理的证明思路中心极限定理的应用第五章:假设检验与置信区间5.1 假设检验的基本概念假设检验的定义与目的检验统计量的选择显著性水平与检验结论5.2 常用的假设检验方法单样本t检验双样本t检验卡方检验5.3 置信区间的估计置信区间的定义与意义置信区间的估计方法置信区间的性质与评价第六章:多变量数据分析6.1 多元随机变量的概念多元随机变量的定义多元随机变量的类型多元随机变量的联合分布6.2 协方差与相关矩阵协方差的定义与性质相关矩阵的定义与性质独立性与协方差的关系6.3 多元数据的描述统计多元均值的计算多元方差的计算多元数据的标准化处理第七章:线性回归分析7.1 线性回归模型的基本概念线性回归模型的定义线性回归模型的形式线性回归模型的参数估计7.2 线性回归模型的检验与优化模型的显著性检验模型的参数优化模型的拟合度评价7.3 线性回归模型的应用预测与预报线性回归模型的局限性第八章:方差分析与协方差分析8.1 方差分析的基本概念方差分析的定义与目的方差分析的类型方差分析的统计推断8.2 协方差分析的基本概念协方差分析的定义与目的协方差分析的方法协方差分析的应用8.3 方差分析与协方差分析的应用实例实际问题的提出数据收集与预处理方差分析与协方差分析的实施第九章:时间序列分析9.1 时间序列的基本概念时间序列的定义时间序列的类型时间序列的预处理9.2 时间序列的平稳性检验平稳性的定义与意义平稳性检验的方法平稳性检验的应用实例9.3 时间序列的模型构建与预测时间序列模型的类型模型参数的估计与优化时间序列的预测方法第十章:非参数统计与贝叶斯统计10.1 非参数统计的基本概念非参数统计的定义与特点非参数统计的方法非参数统计的应用10.2 贝叶斯统计的基本概念贝叶斯统计的定义与特点贝叶斯统计的方法贝叶斯统计的应用10.3 非参数统计与贝叶斯统计的应用实例实际问题的提出数据收集与预处理非参数统计与贝叶斯统计的实施重点和难点解析重点关注环节:1. 随机现象与样本空间2. 事件与概率3. 条件概率与独立事件4. 随机变量的期望值5. 随机变量的方差6. 随机变量的协方差与相关系数7. 大数定律与中心极限定理8. 假设检验与置信区间9. 多元随机变量的概念10. 协方差与相关矩阵11. 多元数据的描述统计12. 线性回归模型的基本概念13. 线性回归模型的检验与优化14. 线性回归模型的应用15. 方差分析与协方差分析的基本概念16. 方差分析与协方差分析的应用实例17. 时间序列的基本概念18. 时间序列的平稳性检验19. 时间序列的模型构建与预测20. 非参数统计与贝叶斯统计的基本概念21. 非参数统计与贝叶斯统计的应用实例重点环节详细补充和说明:1. 随机现象与样本空间:随机现象是指在相同条件下可能出现不同结果的现象。

概率论与数理统计教案

概率论与数理统计教案

概率论与数理统计教案【篇一:概率论与数理统计教案】《概率论与数理统计》课程教案第一章随机事件及其概率一.本章的教学目标及基本要求(1) 理解随机试验、样本空间、随机事件的概念; (2) 掌握随机事件之间的关系与运算,;(3) 掌握概率的基本性质以及简单的古典概率计算; 学会几何概率的计算; (4) 理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。

了解概率的公理化定义。

(5) 理解条件概率、全概率公式、bayes 公式及其意义。

理解事件的独立性。

二.本章的教学内容及学时分配第一节随机事件及事件之间的关系第二节频率与概率 2学时第三节等可能概型(古典概型) 2 学时第四节条件概率第五节事件的独立性 2 学时三.本章教学内容的重点和难点1)随机事件及随机事件之间的关系; 2)古典概型及概率计算;3)概率的性质;4)条件概率,全概率公式和bayes公式 5)独立性、n 重伯努利试验和伯努利定理四.教学过程中应注意的问题1)使学生能正确地描述随机试验的样本空间和各种随机事件;2)注意让学生理解事件a?b,a?b,a?b,a?b,ab??,a…的具体含义,理解事件的互斥关系;3)让学生掌握事件之间的运算法则和德莫根定律;4)古典概率计算中,为了计算样本点总数和事件的有利场合数,经常要用到排列和组合,复习排列、组合原理;5)讲清楚抽样的两种方式——有放回和无放回;五.思考题和习题思考题:1. 集合的并运算?和差运算-是否存在消去律?2. 怎样理解互斥事件和逆事件?3. 古典概率的计算与几何概率的计算有哪些不同点?哪些相同点?习题:第二章随机变量及其分布一.本章的教学目标及基本要求(1) 理解随机变量的概念,理解随机变量分布函数的概念及性质, 理解离散型和连续型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率; (2) 熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律或密度函数及性质;二.本章的教学内容及学时分配第一节随机变量第二节第二节离散型随机变量及其分布离散随机变量及分布律、分布律的特征第三节常用的离散型随机变量常见分布(0-1分布、二项分布、泊松分布) 2学时第四节随机变量的分布函数分布函数的定义和基本性质,公式第五节连续型随机变量及其分布连续随机变量及密度函数、密度函数的性质 2学时第六节常用的连续型随机变量常见分布(均匀分布、指数分布、正态分布)及概率计算 2学时三.本章教学内容的重点和难点a) 随机变量的定义、分布函数及性质;b) 离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何事件的概率;c) 六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布);四.教学过程中应注意的问题a) 注意分布函数f(x)?p{x?x}的特殊值及左连续性概念的理解; b)构成离散随机变量x的分布律的条件,它与分布函数f(x)之间的关系;c) 构成连续随机变量x的密度函数的条件,它与分布函数f(x)之间的关系; d) 连续型随机变量的分布函数f(x)关于x处处连续,且p(x?x)?0,其中x为任意实数,同时说明了p(a)?0不能推导a??。

概率论与数理统计(选修)简易教案

概率论与数理统计(选修)简易教案

概率论与数理统计(选修) 简易教案第一章:概率论基础1.1 概率的基本概念介绍概率的定义和符号表示解释必然事件、不可能事件和随机事件探讨概率的取值范围和概率的基本性质1.2 排列组合介绍排列和组合的概念讲解排列数的计算公式和组合数的计算公式练习排列组合的计算问题1.3 概率的计算探讨互斥事件的概率计算公式讲解独立事件的概率计算公式介绍条件概率和全概率公式第二章:随机变量及其分布2.1 随机变量的概念定义随机变量的概念和分类解释离散随机变量和连续随机变量的区别探讨随机变量的期望和方差的定义和性质2.2 离散随机变量的概率分布讲解二项分布、泊松分布和几何分布的定义和性质练习离散随机变量的概率分布的计算问题2.3 连续随机变量的概率密度介绍连续随机变量的概率密度函数的概念讲解均匀分布和正态分布的概率密度函数及其性质探讨连续随机变量的期望和方差的计算方法第三章:数理统计基础3.1 统计量和样本介绍统计量的概念和分类解释样本均值、样本方差和样本标准差的定义和性质探讨样本均值和样本方差的抽样分布3.2 估计量的性质讲解无偏性、有效性和一致性的概念和判定方法探讨估计量的选择原则和方法3.3 假设检验介绍假设检验的基本概念和步骤讲解正态分布检验和卡方检验的方法和应用探讨假设检验的类型和错误第四章:线性回归与相关分析4.1 线性回归方程介绍线性回归方程的概念和性质讲解最小二乘法的原理和计算方法探讨线性回归方程的参数估计和检验方法4.2 相关系数探讨相关系数的性质和应用4.3 线性回归模型的诊断和改善介绍线性回归模型的诊断方法讲解如何通过改进模型来改善拟合效果第五章:时间序列分析5.1 时间序列的基本概念介绍时间序列的定义和分类解释时间序列的平稳性和非平稳性5.2 自回归模型和移动平均模型讲解自回归模型和移动平均模型的概念和性质探讨自回归模型和移动平均模型的应用和预测方法5.3 指数平滑模型介绍指数平滑模型的概念和性质讲解指数平滑模型的应用和预测方法第六章:多变量分析6.1 多元随机变量介绍多元随机变量的概念和分类解释多元随机变量的分布和联合概率探讨多元随机变量的期望和方差的性质6.2 协方差和相关系数讲解协方差的概念和性质探讨多元随机变量之间的相关性分析6.3 多元线性回归分析讲解多元线性回归方程的概念和性质介绍最小二乘法的原理和计算方法探讨多元线性回归方程的参数估计和检验方法第七章:非参数统计7.1 非参数统计的基本概念介绍非参数统计的定义和适用场景解释非参数统计方法的优点和局限性7.2 非参数检验方法讲解符号检验、秩和检验和Kruskal-Wallis检验的方法和应用探讨非参数检验的适用条件和结论解释7.3 非参数回归分析介绍非参数回归模型的概念和性质讲解非参数回归分析的方法和应用第八章:贝叶斯统计8.1 贝叶斯统计的基本概念介绍贝叶斯统计的原理和特点解释贝叶斯定理及其应用8.2 贝叶斯参数估计讲解贝叶斯参数估计的方法和步骤探讨贝叶斯参数估计的性质和比较8.3 贝叶斯假设检验介绍贝叶斯假设检验的方法和步骤探讨贝叶斯假设检验的优势和局限性第九章:统计决策理论9.1 决策问题的基本概念介绍决策问题的类型和决策过程解释决策者的偏好和效用函数9.2 极大似然估计和最大后验概率估计讲解极大似然估计的概念和性质介绍最大后验概率估计的方法和应用9.3 贝叶斯决策规则讲解贝叶斯决策规则的定义和条件探讨贝叶斯决策规则的应用和效果第十章:应用案例分析10.1 统计软件的使用介绍常用统计软件的功能和操作方法解释如何使用统计软件进行数据分析10.2 实际案例分析分析实际案例数据,应用所学的统计方法和模型进行解释和预测探讨案例分析的结果和启示10.3 综合应用练习提供综合应用练习题,让学生综合运用所学的知识和方法解决实际问题指导和解答学生的练习问题,帮助巩固和提高统计分析和应用能力重点解析概率论的基本概念和计算方法是概率论与数理统计的基础,理解必然事件、不可能事件和随机事件的概念,以及掌握排列组合的计算方法对于进一步学习概率论至关重要。

《概率论与数理统计》教案

《概率论与数理统计》教案

《概率论与数理统计》教案第一章:概率论的基本概念1.1 随机现象与样本空间1.2 事件及其运算1.3 概率的定义与性质1.4 条件概率与独立性第二章:随机变量及其分布2.1 随机变量的概念2.2 离散型随机变量的概率分布2.3 连续型随机变量的概率密度2.4 随机变量函数的分布第三章:多维随机变量及其分布3.1 二维随机变量的联合分布3.2 边缘分布与条件分布3.3 随机变量的独立性3.4 多维随机变量函数的分布第四章:大数定律与中心极限定理4.1 大数定律4.2 中心极限定理4.3 样本均值的分布4.4 样本方差的估计第五章:数理统计的基本概念5.1 统计量与抽样分布5.2 参数估计与点估计5.3 置信区间与置信水平5.4 假设检验与p值第六章:参数估计6.1 总体参数与样本参数6.2 估计量的性质6.3 最大似然估计6.4 点估计与区间估计第七章:假设检验7.1 假设检验的基本概念7.2 检验的错误与功效7.3 常用检验方法7.4 似然比检验与正态分布检验第八章:回归分析8.1 线性回归模型8.2 回归参数的估计8.3 回归模型的检验与诊断8.4 多元线性回归分析第九章:方差分析9.1 方差分析的基本概念9.2 单因素方差分析9.3 多因素方差分析9.4 协方差分析与重复测量方差分析第十章:时间序列分析10.1 时间序列的基本概念10.2 平稳性检验与时间序列模型10.3 自回归模型与移动平均模型10.4 指数平滑模型与状态空间模型第十一章:非参数统计11.1 非参数统计的基本概念11.2 非参数检验方法11.3 非参数回归分析11.4 非参数时间序列分析第十二章:生存分析12.1 生存分析的基本概念12.2 生存函数与生存曲线12.3 生存分析的统计方法12.4 生存分析的应用实例第十三章:贝叶斯统计13.1 贝叶斯统计的基本原理13.2 贝叶斯参数估计13.3 贝叶斯假设检验13.4 贝叶斯回归分析第十四章:多变量分析14.1 多变量数据分析的基本概念14.2 多元散点图与主成分分析14.3 因子分析与聚类分析14.4 判别分析与典型相关分析第十五章:统计软件与应用15.1 统计软件的基本使用方法15.2 R语言与Python在统计分析中的应用15.3 统计软件的实际操作案例15.4 统计分析在实际领域的应用重点和难点解析本《概率论与数理统计》教案涵盖了概率论的基本概念、随机变量及其分布、多维随机变量、大数定律与中心极限定理、数理统计的基本概念、参数估计、假设检验、回归分析、方差分析、时间序列分析、非参数统计、生存分析、贝叶斯统计、多变量分析以及统计软件与应用等多个方面。

概率论与数理统计教案(课时)#

概率论与数理统计教案(课时)#

《概率论与数理统计》课程教案第一章随机事件及其概率一.本章的教学目标及基本要求(1) 理解随机试验、样本空间、随机事件的概念;(2) 掌握随机事件之间的关系与运算,;(3) 掌握概率的基本性质以及简单的古典概率计算; 学会几何概率的计算;(4) 理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。

了解概率的公理化定义。

(5) 理解条件概率、全概率公式、Bayes 公式及其意义。

理解事件的独立性。

二.本章的教学内容及学时分配第一节随机事件及事件之间的关系第二节频率与概率 2学时第三节 等可能概型(古典概型) 2 学时第四节 条件概率第五节 事件的独立性 2 学时三.本章教学内容的重点和难点1) 随机事件及随机事件之间的关系;2) 古典概型及概率计算;3)概率的性质;4)条件概率,全概率公式和Bayes 公式5)独立性、n 重伯努利试验和伯努利定理四.教学过程中应注意的问题1) 使学生能正确地描述随机试验的样本空间和各种随机事件;2) 注意让学生理解事件,,,,,A B A B A B A B AB A ⊂⋃⋂-=Φ…的具体含义,理解事件的互斥关系;3) 让学生掌握事件之间的运算法则和德莫根定律;4) 古典概率计算中,为了计算样本点总数和事件的有利场合数,经常要用到排列和组合,复习排列、组合原理;5) 讲清楚抽样的两种方式——有放回和无放回;五.思考题和习题思考题:1. 集合的并运算⋃和差运算-是否存在消去律?2. 怎样理解互斥事件和逆事件?3. 古典概率的计算与几何概率的计算有哪些不同点?哪些相同点?习题:第二章随机变量及其分布一.本章的教学目标及基本要求(1) 理解随机变量的概念,理解随机变量分布函数的概念及性质, 理解离散型和连续型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率;(2) 熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律或密度函数及性质;二.本章的教学内容及学时分配第一节 随机变量第二节 第二节离散型随机变量及其分布离散随机变量及分布律、分布律的特征第三节 常用的离散型随机变量常见分布(0-1分布、二项分布、泊松分布) 2学时第四节 随机变量的分布函数分布函数的定义和基本性质,公式第五节连续型随机变量及其分布连续随机变量及密度函数、密度函数的性质 2学时第六节 常用的连续型随机变量常见分布(均匀分布、指数分布、正态分布)及概率计算 2学时三.本章教学内容的重点和难点a) 随机变量的定义、分布函数及性质;b) 离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何事件的概率;c) 六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布);四.教学过程中应注意的问题a) 注意分布函数(){}F x P X x =<的特殊值及左连续性概念的理解;b) 构成离散随机变量X 的分布律的条件,它与分布函数()F x 之间的关系;c) 构成连续随机变量X 的密度函数的条件,它与分布函数()F x 之间的关系;d) 连续型随机变量的分布函数()F x 关于x 处处连续,且()0P X x ==,其中x 为任意实数,同时说明了()0P A =不能推导A =Φ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计教案讲 稿第一章 概率论的基本概念一、基本概念 1. 随机试验 |2. 样本空间试验所有可能结果的全体是样本空间称为样本空间。

通常用大写的希腊字母Ω表示(本书用S 表示)每个结果叫一个样本点. 3.随机事件Ω中的元素称为样本点,常用ω表示。

(1) 样本空间的子集称为随机事件(用A,B 表示)。

(2) 样本空间的单点子集称为基本事件。

(3) 实验结果在随机事件A 中,则称事件A 发生。

(4) 必然事件Ω。

(5) | (6) 不可能事件Φ。

(7) 完备事件组(样本空间的划分) 4.概率的定义(公理化定义) 5.古典概型随机试验具有下述特征:1)样本空间的元素(基本事件)只有有限个; 2)每个基本事件出现的可能性是相等的; 称这种数学模型为古典概型。

;)(A P ===基本事件总数包含的基本事件数A n k 。

6.几何概型的长度(面积、体积)的长度(面积、体积)Ω=A A p )(7.条件概率设事件B 的概率0)(>B p .对任意事件A ,称P(A|B)=)()(B P AB P 为在已知事件B发生的条件下事件A发生的条件概率。

8.条件概率的独立性A 、B F ∈,若P(AB)= P(A) P(B) 则称事件A 、B 是相互独立的,简称为独立的。

设三个事件A,B,C 满足 .P(AB)=P(A)P(B)P(AC)=P(A)P(C) P(BC)=P(B)P(C)P(ABC)=P(A)P(B) P(C) 称A,B,C 相互独立。

二、事件的关系的关系与运算 1.事件的包含关系若事件A 发生必然导致事件B 发生,则称事件B 包含了A , 记作B A ⊂。

2. 事件的相等 、设A,B Ω⊂,若B A ⊂,同时有A B ⊂,称A 与B 相等,记为A=B ,3.并(和)事件与积(交)事件“A 与B 中至少有一个发生”为A 和B 的和事件或并事件。

记作B A ⋃ . “A 与B 同时发生”这一事件为A 和B 的积事件或交事件。

记作B A ⋅或B A ⋂ 4.差事件“A 发生B 不发生”这一事件为A 与B 的差事件,记作B A - 5.对立事件称“A -Ω”为A 的对立事件或称为A 的逆事件,记作A 。

`A A A =⋃-Φ=-A A 6.互不相容事件(互斥事件)若两个事件A 与B 不能同时发生,即Φ=AB ,称A 与B 为互不相容事件(或互斥事件)。

7.事件的运算法则1)交换律 BA AB A B B A =⋃=⋃,2)结合律 ()()()()BC A C AB C B A C B A =⋃⋃=⋃⋃, 3)分配律 ()()()C B C A C B A ⋂⋃⋂=⋂⋃ )()()(C B C A C B A ⋃⋂⋃=⋃⋂ ]4)对偶原则 B A B A ⋂=⋃ ,B A B A ⋃=⋂三、常用公式 1.加法公式(1)对任意两个事件A 、B ,有P(B A ⋃)=P(A )+P(B )-P(AB ) (2)对任意三个事件A 、B ,C)()()()()()()()(ABC p BC p AC p AB p C P B P A P C B A p +---++=⋃⋃2.减法公式若A ⊂B 则P(B-A)= P(B)-P(A); P(B)≥P(A)&P(A-B)= P(A)-P(AB)3.对立事件概率公式对任一随机事件A ,有 P (A )=1-P (A ); 4.乘法公式当0)(>A p 时:)|()()(A B P A p AB p =)|()|()()(AB C p A B P A p ABC p = 5全概率公式定理1:设 n B B B ,,,21 是 一列互不相容的事件,且有Ω=⋃=i ni B 1,对任何事件A ,有P(A)=)(1∑=ni iB P )(i B A P?6、贝叶斯公式定理2:若n B B B ,,,21 是一列互不相容的事件,且Ω=⋃=i ni B 1则对任一事件A 有∑==nj jji i i B A p B p B A p B p A B p 1)|()()|()()|(两个公式的相同点:相关问题都有两个阶段; 两个公式的不同点:全概率公式用于求第二阶段某事件发生的概率,“由因求果”贝叶斯公式用于已知第二阶段的结果,求第一阶段某事件发生的概率,“由果求因” 7.贝努里概型 {贝努里试验:若试验E 只有两个可能的结果A 及-A ,称这个试验为贝努里试验。

贝努里概型设随机试验E 具有如下特征: 1)每次试验是相互独立的;2)每次试验有且仅有两种结果:事件A 和事件A ;3)每次试验的结果发生的概率相同 0)(>=p A p q p A p =-=1)(称试验E 表示的数学模型为贝努里概型。

若将试验做了n 次,则这个试验也称为n 重贝努里试验。

记为nE 。

设事件A 在n 次试验中发生了X 次,则n k p p C k X P kn k k n ,,2,1,)1(}{ =-==-&四、举例例1.已知)()(B A p AB p =,p A p =)(,求)(B p【解】 )]()()([1)()()(AB p B p A p B A p B A p AB p -+-=⋃==p B p -=1)(例2.已知,81)(,0)()(,41)()()(======AC p BC p AB p C p B p A p 求A,B,C 至少有一个发生的概率。

【解】 )()()()()()()()(ABC p BC p AC p AB p C P B P A P C B A p +---++=⋃⋃=8500810414141=+---++ 例3.(摸球模型不放回用组合问题求解)在盒子中有6个球,4个白球、2个红球,从中任取两个(不放回)。

求取出的两个球都是白球的概率,两球颜色相同的概率,至少有一个白球的概率。

<【解】设A :两个球都是白球,B :两个球都是红球,C :至少有一个白球 基本事件总数为26C =15A 的有利样本点数为624=C , P(A)=6/15=2/5B 的有利样本点数为122=C , P(B)=1/15P(A+B)=P(A)+P(B)=7/15P(C)=1-P(B)=14/15例4. (摸球模型有放回用二项分布求解)在上题中,取球方法改成有放回,结果如何【解】用X 表示取到白球数 ,P(A)=}2{=X p =022232132⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛C =94P(B)= }0{=X p =9132132202=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛CP(A+B)=P(A)+P(B)=5/9P(C)=1-P(B)=8/9例5(抽签原理)有a 个上签,b 个下签,2个人依次抽签,采用有放回与无放回抽签,证明每个人抽到上签的概率都是ba a+ 【证】放回抽样结论是显然的; 不放回可用全概率公式证明ba a p +=例6:(几何概型)在区间(0, 1)中随机地取两个数, 则两数之差的绝对值小于21的概率为______.'【解】以x 和y 分别表示甲乙约会的时间,则 {=Ω}10,10|),(<<<<y x y x 两人到会面出时间差不超过15分钟25.0,10,10),{(≤-<<<<=y x y x y x A43)(==ΩS S A p A例7:某工厂有三条生产线生产同一中产品,该3条流水线的产量分别占总产量的20%,30%,50%,又这三条流水线的不合格品率为5%,4%,3%,现在从出厂的产品中任取一件, (1)问恰好抽到不合格品的概率为多少(2)已知抽到不合格品,求该产品来自一车间的概率{【解】(1)设i B :表示产品来自第i 条生产线A :表示抽到不合格品 由题意 5.0)(,3.0)(,2.0)(321===B p B p B p03.0)|(,04.0)|(,05.0)|(321===B A p B A p B A pP(A) 03.05.004.03.005.02.0)|()(31⨯+⨯+⨯==∑=i iiB A p B p= (2)371003.05.004.03.005.02.005.02.0)|()()|()()|(3111=⨯+⨯+⨯⨯==∑=i iiB A p B p B A p B p A B p 【点评】通过该题细心体会贝叶斯公式和贝叶斯公式的用法。

:例8甲乙两人同时射击同一目标,甲命中的概率为,乙命中的概率为。

已知已命中目标,求是甲命中目标的概率。

【分析】咋看这个题目觉得应用贝叶斯公式求解,但仔细分析个目中只有一个过程,应用条件概率求解。

【解】A:甲命中,B:乙命中,C :命中,C=A+B())()()()()()()()()(|B p A p B p A p A P B A P A p AC P AC p C A p -+=+===435.06.05.06.06.0=⨯++例9:一个盒子中有4件产品,3件一等品,1件二等品,从中任取两件,设事件A 表示“第一次取到一等品”, B 表示“第二次取到一等品”,求()A B p |。

【解】()3/24/32/14/3/)()(|2423====C C A P AB p A B p 这一结果的意义是明显的?例10:假定某人做10个选择题,每个题做对的概率均为41;求 (1)该同学做对3道题的概率; (2) 该同学至少做对3道题的概率; 【解】}3{=X p =733104341⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛C1-+=}0{X p +=}1{X p }2{=X p =1-1000104341⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛C -911104341⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛C -922104341⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛C 【点评】“至少……”,通过对立事件求解。

例11: 某人向同一目标独立重复射击,每次射击命中目标的概率为p (0<p <1), 则此人第4次射击恰好第2次命中目标的概率为 }(A) 2)1(3p p -. (B) 2)1(6p p -.(C) 22)1(3p p -. (D) 22)1(6p p -. [ C ] 例12:设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有(A) ()()P A B P A ⋃> (B) ()()P A B P B ⋃>(C) ()()P A B P A ⋃= (D) ()()P A B P B ⋃= [ C ] 例13:设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-< 则必有 (A) ! (B) 12σσ< (B) 12σσ>(C) 12μμ< (D) 12μμ> [ A ]教学后记\??<(教案(2) 难点是一维随机变量函数的分布、主要内容一、分布函数的定义与性质 1. 随机变量 2. 分布函数 二、离散型随机变量1.概念2.分布律及其表示 三、连续型随机变量*1.一维连续型随机变量的概念2.密度函数)(x f 具有下述性质:四、常见分布五、一维随机变量函数的分布1.一维离散型随机变量函数的分布2.一维连续型随机变量函数的分布教学方法讲授式 讲练结合]参考资料 《概率论与数理统计》余长安编,武汉大学出版社 《概率论与数理统计》吴传生编,高等教育出版社 思考题P31-3 4 p36-12 13 p44-20 p48-27第二章 一维随机变量及其分布一、分布函数的定义与性质1. 随机变量 ?定义1:设随机试验的每一个可能的结果(样本点)ω唯一地对应一个实数)( X ,则称实变量X 为随机变量,通常用大写字母X,Y ,Z 等表示随机变量,例1:一射手对一射击目标连续射击,则他命中目标的次数X 为随机变量,X 的可能取值为0,1,2……例2:某一公交车站每隔5分钟有一辆汽车停靠,一位乘客不知道汽车到达的时间,则侯车时间为随机变量X ,的可能取值为X =]5,0[。

相关文档
最新文档