Molecular Biology & Cell-Biology Applications
第一章 绪论3分子生物学课件

1.3 分子生物学与生物化学之间的关系
分子生物学发展的三大支撑学科: 1、细胞学:研究细胞的结构与功能。细胞的化学组
成,细胞器的结构,细胞骨架,生物大分子在细胞中
的定位及功能。 2、遗传学:研究基因的遗传与变异。基因结构,基 因复制,基因表达,基因重组,基因突变。 3、生物化学:研究活性物质代谢规律。
第一个细菌基因的克隆,开创了基因工程新纪元,标志
着人类认识生命本质并能主动改造生命的新时期开始,
1980年。
5. 1975年,Kohler和Milstein巧妙地创立了
淋巴细胞杂交瘤技术,获得了珍贵的单克隆抗体;
1984年。
6. 1975-1977年,Sanger和Gilbert发明了 DNA序列测定技术;1977年第一个全长5387个核苷 酸的Φ X174基因组序列由Sanger测定完成;1980年, 1958年。
划,2003年4月14日美、英、日、法、德和中国科学家经
过13年努力共同绘制完成了人类基因组序列图)。
3. PCR技术的建立(1983年,Mullis,PCR被喻 为加速分子生物学发展进程的一项“简单而晚熟”的 技术,1993年)。 4. 单克隆抗体及基因工程抗体的发展和应用 (生物制品生产,如酶、细胞因子、干扰素、生长激 素、胰岛素等,疾病的诊断、治疗和研究)。 5. 基因表达调控机理(反义RNA技术、RNAi干扰、 基因芯片)。 6. 细胞信号转导机理研究成为新的前沿领域(G 蛋白、细胞凋亡、细胞癌变、细胞分化)。 7. 基因组学、蛋白质组学、生物信息学成为新 的前沿领域。
分子结构生物学 分子发育生物学 分子细胞生物学 分子免疫学 分子遗传学 分子数量遗传学
分子神经生物学
分子育种学 分子肿瘤学
分子生物学课程教学大纲

分子生物学课程教学大纲课程名称:分子生物学(Molecular Biology)课程编号:1313072215课程类别:专业课总学时数:68 课内实验时数:18学分:3.5开课单位:生命科学学院生物技术教研室适用专业:生物技术适用对象:本科(四年)一、课程的性质、类型、目的和任务分子生物学为高等学校生物技术专业学生必修的一门专业基础课,是从分子水平研究生命本质为目的的一门新兴边缘学科,主要研究核酸、蛋白质等生物大分子的功能、形态结构特征及其重要性和规律性的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。
通过分子生物学的教学,应使学生了解分子生物学的发展历史以及最新研究成果;熟练掌握DNA的结构与功能、RNA在蛋白质合成中的功能、蛋白质的结构与功能、遗传密码及基因表达调控的本质;了解现代分子生物学基本研究方法,并能运用分子生物学的理论知识分析、研究和解决问题,为进一步学习有关专业课程及从事基因工程领域的研究工作奠定基础。
二、本课程与其它课程的联系与分工从学科角度来讲,分子生物学涵盖面非常广,与生物学、生物化学和细胞生物学、遗传学等生命科学课程有交叉,《生物化学》是先修课程。
三、教学内容及教学基本要求[1]表示“了解”;[2]表示“理解”或“熟悉”;[3]表示“掌握”;△表示自学内容;○表示略讲内容;第一章绪论第一节引言创世说与进化论[1];细胞学说[2];经典的生物化学和遗传学[3];DNA的发现[2]第二节分子生物学简史[1]第三节分子生物学研究的主要内容分子生物学的含义[3];DNA重组技术、基因工程技术概念[3];分子生物学研究的主要内容[3]第四节展望分子生物学的一些分支学科[1];分子生物学发展的趋势[1]重点:分子生物学的含义和研究内容难点:分子生物学的研究内容教学手段:多媒体教学教学方法:讲授法作业:1.简述阵德尔、摩尔根和沃森等人对分子生物学发展的主要贡献。
Molecular Biology

Molecular Biology双语教学大纲课程编号:A0620059学分:3.5学时:56(其中:讲课学时: 40 实验学时:16 上机学时:先修课程:生物化学、遗传学、微生物学适用专业:生物工程(本科)教材:《基础分子生物学教程》(第三版)赵亚华编著科学出版社 2011一、课程的性质与任务课程的性质:分子生物学是一门近年来发展迅速并且在生命科学领域里应用越来越广泛、影响越来越深远的一个学科。
本课程是生物科学专业主干课。
分子水平的生物学研究,正在越来越多地影响各个传统生物科学领域。
课程的任务:通过学习本课程,要求学生能进一步加深对生命本质的认识,引导他们进入生物科学发展的前沿,并理解有关基础理论的实践意义和应用前景,使学生的学科知识由广度向纵深延伸。
为今后从事研究或教学工作打好基础。
要求学生掌握基因概念在分子水平上的发展与演变、基因的分子结构和特点、基因的复制、基因表达(在转录、翻译水平)的基本原理、基因表达调控的基本模式、分子生物学技术等。
另外,将介绍人类基因组计划、基因芯片、分子杂交等分子生物学前沿知识。
Molecular biology is an important course for the students majoring in biotechnology as one of main specialized basic courses. Its previous courses are general biology, biochemistry and genetics. And its following courses are gene engineering, microbiological engineering, cell engineering, evolutinary biology and comprehesive experiment of biotechnolgy.Molecular biology seeks to explain the relationships contrbute to the operation and control of biochemical processes. Of principal interest are the macromolecules and macromolecular complexes of DNA, RNA and protein and the processes of replication, transcription and translation. Rapid advances in these fields ask teachers for the course to deliver the core of the subject in a concise, easily assimilated form in their teaching. Because of large contents of the textbook and the limit lesson hours of the course, it necessary for the teachers to carefully select.二、课程的基本内容及要求Chapter 1 Introduction1.Contents(1)A retrospect to life science on the 19th and 20th century(2)Concept of molecular biology(3)prospect of molecular biology in the 21st century2.Key points分子生物学的概念、研究内容和发展历史3.Requirements(1)理解分子生物学研究的内容;(2)掌握分子生物学领域一些具有里程碑意义的事件。
最喜欢的学科分子生物学英语作文

最喜欢的学科分子生物学英语作文Molecular Biology: Unlocking the Mysteries of Life。
Molecular biology stands as a cornerstone in the realm of biological sciences, illuminating the intricate mechanisms governing life at its most fundamental level. Through the lens of molecular biology, we peer into the very essence of existence, unraveling the mysteries encoded within the strands of DNA, the building blocks of life itself.At its core, molecular biology delves into the structure, function, and interactions of biological molecules, particularly nucleic acids and proteins. By dissecting these molecules with precision, scientists elucidate the mechanisms underlying essential biological processes, from replication and transcription to translation and beyond.Central to the field of molecular biology is the study of DNA, the iconic double helix that harbors the blueprint of life. Within its elegant structure lies the code that dictates the traits of every living organism, from the simplest bacterium to the most complex multicellular organism. Through groundbreaking techniques such as DNA sequencing and genome editing, researchers unlock the secrets embedded within the genetic code, paving the way for revolutionary advancements in medicine, agriculture, and biotechnology.In tandem with the study of DNA, molecular biologists scrutinize the myriad proteins that orchestrate the myriad functions of living systems. Proteins serve as the workhorses of the cell, catalyzing reactions, transmitting signals, and providing structural support. Through techniques like X-ray crystallography and mass spectrometry, scientists elucidate the three-dimensional structures of proteins, offering invaluable insights into their mechanisms of action and potential therapeutic targets.Moreover, molecular biology transcends the confines of individual molecules, exploring the complex networks that underpin cellular function and organismal development. From signal transduction pathways to gene regulatory networks,researchers uncover the intricate web of interactions that governs biological processes at every scale. By deciphering these networks, scientists gain a deeper understanding of health and disease, laying the groundwork for precision medicine and personalized therapies.In the quest to unravel the mysteries of life, molecular biology embraces interdisciplinary collaboration, drawing upon insights from genetics, biochemistry, biophysics, and computational biology. By integrating diverse perspectives and methodologies, researchers tackle complex biological questions with unparalleled depth and breadth, driving innovation and discovery across the scientific landscape.In conclusion, molecular biology serves as a beacon of enlightenment in our quest to understand the fundamental principles of life. Through meticulous experimentation and rigorous analysis, scientists illuminate the inner workings of biological systems, unraveling the mysteries that have captivated humanity for centuries. As we continue to push the boundaries of knowledge, molecular biology will undoubtedly remain at the forefront of scientific inquiry, guiding us toward new frontiers of discovery and innovation.。
分子生物学部分名词解释(Molecularbiology)

分子生物学部分名词解释(Molecular biology)Hypochromic effectBiochemochromic effect, in biochemistry, refers to the reduction of 260nm uv absorption in the form of a double helical structure in the form of denaturation DNA, a phenomenon called hypochromic effect.Hyperchromic effectDefinition 1: nucleic acid (DNA and RNA) molecular degenerative or broken chain, and its uv absorption value (generally measured at 260nm) increases. Applied subjects: biochemistry and molecular biology (first class); Nucleic acid and gene (secondary discipline) definition 2: the effect or property of the uv absorption value increased by the DNA or RNA in the solution in the treatment of heat and alkali. Applied discipline: genetics (first-level discipline); Molecular geneticsHalf-discontinuous replicationDefinition 1: when DNA replicates, a chain (leading chain) is continuously synthesized while the other chain (after chain) is discontinuous. Applied subjects: biochemistry and molecular biology (first class); Nucleic acids and genes (secondary disciplines) 2: double stranded DNA synthesis 5 'to 3' end is continuous synthesis, and 3 'to 5' end is discontinuous synthesis. Applied discipline: genetics (first-level discipline); Molecular genetics (secondary disciplines)Semiconservative replicationA replication model of double chain deoxyribonucleic acid (DNA), in which each single strand is used as a template for the new chain synthesis after the parental double chain separation. Therefore, when the replicates are completed, there will be two subgenerations of DNA molecules, each of which has the same nucleotide sequence as the parental moleculeA leading chainLeading strand: consistent with the direction of the replication fork movement, a new strand of DNA synthesized by successive 5-3 - - 3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -After with chainIn the process of DNA replication, a template chain is 3 'to 5', and the DNA can be synthesized in 5 'to 3' to become the leading chain. Another template strand, is 5 'to 3' direction, on which the synthesis of from 5 'to 3' direction, but is the opposite of the direction of the replication forks mobile, therefore with the moving of the replication forks, to form a number of discrete pieces. The fragments are then linked together into a complete strand of DNA. The chain is called a post-it chainReplication forksIn DNA replication, the y-font structure formed by thecombination of unsoling, dissolving, and SSB proteins in the DNA strand is called a replication fork. In the replication fork, the double stranded DNA of the template is disintegrated and the new strand of DNA is synthesized.Silent mutationsThe same meaning mutation, the mutation replaces the base, but the amino acid sequence has not changed, keeping the function of the wild type.DNA damageDNA damage is a permanent change in the DNA nucleotide sequence that occurs during the replication process and results in changes in the genetic characteristics. To replace (insert) the insertion of (insert) exon (exon)Frameshift mutationsIn the normal DNA molecule, the base deletion or increase of the non-3 diploid number, resulting in a series of coding changes that occurred after this location, the phenomenon called shift code mutationMissense mutationIt is the code that codes for some kind of amino acid that is replaced by the base and becomes the codon of another amino acid, which changes the amino acid variety and sequence of the polypeptide chaintranscriptionThe process of transferring genetic information from genes to RNA.RNA polymerase dynamic complex with a series of component composition, and gene sequence as the genetic information template, catalytic synthesis of sequence complementary RNA, including transcription initiation, elongation, termination, etc. The process of synthesis of complementary single stranded RNA molecules by RNA polymerase is a template for DNA base sequences.The PCRPolymerase Chain Reaction (English full name: Polymerase Chain Reaction), Polymerase Chain ReactionPCR. Polymerase chain reaction (PCR) is a specific DNA fragments in vitro enzymatic synthesis of a kind of method, by the high temperature degeneration (compound) and the optimum temperature, low temperature annealing extension of several steps such as a cycle, cycle, makes the purpose of DNA amplification, rapidly with strong specificity, high sensitivity, convenient operation, time saving, etc. It not only can be used for gene isolation, cloning and sequence analysis of nucleic acids such as basic research, also can be used for the diagnosis of disease or any DNA and RNA. Polymerase Chain Reaction (Polymerase Chain Reaction, PCR), also known as cell free molecular cloning or specific sequences of DNAprimers in vitro directional enzymatic amplification techniques.The promoterDNA molecules can be combined with RNA polymerases to form regions of transcriptional initiation complexes. In many cases, the binding site for the regulating protein that facilitates this process is also included. Determine the DNA sequence of the RNA polymerase initiation site.enhancerThe sequent sequence of the gene promoter's work efficiency can be applied in any direction and in any location (upstream or downstream) of the promoter.operonIt refers to the general term for initiating genes, manipulating genes and a series of tightly linked structural genesexonDNA sequences corresponding to mature mRNA, rRNA or tRNA molecules in eukaryotic genes. Is the encoding sequence.intronsThere is no coding meaning in the eukaryotic gene and thesequence is excised. Introns are sequences that block the linear expression of genesDNA cloningApplication of enzymatic method, the various sources of genetic material in vitro, homology or different source, prokaryotic and eukaryotic, natural or artificial DNA combined with carrier DNA into a DNA molecule with self-replicating ability - replicators, then through the conversion or transfection host cells and extract containing the purpose gene into daughter cells, and then extract amplification, get a lot of the same DNA molecule, namely DNA clones.Gene libraryAn organism's genome DNA with restriction enzymes after part of the enzyme, the enzyme fragment inserted into the carrier DNA molecules, all of these into the genome DNA fragments of an aggregate of carrier molecules, will contain the organism's entire genome, which is constituted the organism's DNA library.A single genome DNA fragment cloned collectionDNA denaturationDNA degeneration refers to the hydrogen bond fracture of nucleic acid double helix base pairs, and the double chain becomes single chain, so that the natural conformation and properties of nucleic acid change.The cloneRestriction enzymes, or PCR, are used to obtain parts of the cloned DNA from the cloned DNA, and then clone the technology in other new carriers.attenuatorWhen RNA synthesis terminates, the DNA sequence that terminates the role of the transcriptional signal is terminated.Recombinant DNAA recombination of genetic information that occurs within or between a DNA molecule. Including homologous recombination, specific site recombination and transposition recombination. Recombinant DNA with artificial DNA is a key step in genetic engineering.Satellite DNAThe DNA of a sequence of highly repetitive nucleotide sequences of eukaryotic cells. The total amount of the DNA is more than 10%, mainly in the centromere region of the chromosome, usually not transcribed. Because of the small amount of GC in its base composition, it has different buoyancy density, and its name is given after centrifugation of cesium density gradient and most of its DNA is different from other "satellites"- 10 sequenceAlso called Pribnow box (prokaryote). Corresponding sequencein eukaryotes is located at - 35 bp, known as the TATA box, also known as the Goldberg - Hognessbox, is the combination of RNA polymerase Ⅱ parts.。
分子生物学

第十节分子生物学(Molecular Biology)一、学科性质及研究范围分子生物学是一门从分子水平研究生命现象的科学。
是一门由生物化学、遗传学和微生物等学科融汇发展而派生出来的边缘学科,它试图运用物理学和化学的理论和方法来阐明生命活动的规律,以达到为人类服务的目的。
分子生物学中的所谓分子,一般系针对生物大分子而言,主要为核酸和蛋白质。
糖蛋白和糖脂也是大分子物质,它们在细胞的构造和信息传递中的作用,正在受到越来越大的重视,对它们的研究也应该看成为分子生物学的重要内容之一。
生物化学和分子生物学关系密切。
但两者的侧重点有所不同,前者着重于研究生物分子,尤其是小分子,如氨基酸、葡萄糖、脂肪等的转变和新陈代谢过程,而后者着重于生物大分子的结构和功能。
还有一个重要的研究领域就是分子间信息的传递和调控。
分子生物学不仅必须逐一研究生物大分子的各别结构,还应该从更高层次来研究其组织和相互作用。
各别结构的研究是十分必要的,如核酸的碱基顺序和蛋白质的氨基酸顺序测定等,这些知识是本学科的基础,也是今后长期的研究任务。
细胞乃由无数结构各异的生物分子精巧建造而成,这个高度复杂的结构体系,即所谓超分子结构体系,绝不是它的组成成分的简单加和。
当分子与分子以某种方式结合时,就会表现出原有分子所不曾有的崭新性质和功能。
水和二氧化碳经过光合作用转变成糖,而糖的性质和水及二氧化碳根本不同。
同样,核酸由四种核苷酸,蛋白质由20种氨基酸构成。
核苷酸和氨基酸都是小分子,并不表现出任何生命物质的特征,但是一旦许许多多核苷酸或氨基酸连接成为核酸或蛋白质时,其性质就出现了从无生命物质向生命物质的飞跃。
就一个细胞来说,细胞核中的DNA 与组蛋白共同构成染色质,染色质又和为数众多的功能复杂的非组蛋白相互作用;在胞质内存在着三大类RNA间的互相作用以及RNA和蛋白质问的相互作用;生物膜系统将细胞空间分隔成各种功能区域,它们由类脂质(包括糖脂)和蛋白质(包括糖蛋白)共同组成一种嵌镶流动的膜结构,这里涉及到类脂质和蛋白质以及多糖链间的组织和相互作用。
分子生物学学科的英语意思
分子生物学学科的英语意思The English Meaning of the Discipline of Molecular BiologyDefinition and BackgroundMolecular biology is a branch of science that explores the structure, function, and interactions of biological macromolecules, such as DNA, RNA, and proteins, at the molecular level. It involves the study of various processes within cells, including replication, transcription, translation, and gene expression. Through understanding the fundamental mechanisms of life, molecular biology provides insights into genetic diseases, evolutionary relationships, and the development of new therapeutic interventions.Etymology and OriginsThe term "molecular biology" originated in the early 20th century. The word "molecular" refers to the smallest fundamental units of a substance, while "biology" pertains to the study of life. The combination of these two concepts reflects the focus of molecular biology on elucidating the molecular basis of biological phenomena.Historical MilestonesThe history of molecular biology can be traced back to numerous key discoveries and technological advancements. In 1953, James Watson and Francis Crick proposed the double-helix structure of DNA, which revolutionized the field and provided a framework for understanding how genetic information is stored and transmitted. In the following years, the development of techniques such as polymerase chain reaction (PCR), DNAsequencing, and recombinant DNA technology allowed scientists to manipulate and analyze genetic material with unprecedented precision. These breakthroughs paved the way for significant advancements in the understanding of molecular biology.Interdisciplinary NatureMolecular biology draws upon various scientific disciplines, including genetics, biochemistry, biophysics, and cell biology. The integration of knowledge from these fields enables researchers to comprehend the complex mechanisms underlying biological processes at the molecular level. By combining theoretical concepts with experimental approaches, scientists in molecular biology can unravel the intricate details of cellular functions.Application in BiotechnologyThe knowledge gained from molecular biology research has numerous practical applications. In the field of biotechnology, molecular biology techniques are utilized for the production of recombinant proteins, development of genetically modified organisms (GMOs), and gene therapy. Through genetic engineering, scientists are able to manipulate and modify the genetic makeup of organisms, leading to advancements in agriculture, medicine, and environmental conservation.Disease Research and Drug DevelopmentIn the context of human health, molecular biology plays a crucial role in disease research and drug development. By studying the molecular mechanisms underlying diseases, scientists can identify genetic markers, develop diagnostic tests, and design targeted therapies. Additionally,molecular biology techniques contribute to the identification and characterization of potential drug targets, facilitating the discovery of new treatments for various disorders.Evolutionary StudiesMolecular biology also contributes to our understanding of evolutionary processes. By comparing DNA sequences among different species, scientists can reconstruct evolutionary relationships and study the factors driving genetic variation and adaptation. This field, known as molecular evolution, sheds light on the origins of life and the diversification of species across time.Future PerspectivesAs technology continues to advance, the field of molecular biology is likely to witness further progress. Emerging techniques, such as next-generation sequencing, genome editing, and single-cell analysis, offer unprecedented opportunities to delve deeper into the molecular intricacies of life. Moreover, the integration of molecular biology with other fields, such as artificial intelligence and nanotechnology, may open up new avenues for scientific exploration and innovation.In conclusion, the discipline of molecular biology focuses on understanding the molecular basis of life, encompassing the study of DNA, RNA, proteins, and their interactions within cells. With its interdisciplinary nature and practical applications, molecular biology plays a pivotal role in various scientific and technological advancements. By continuously unraveling the mysteries of the molecular world, researchers in this field contribute to the progress of science and the betterment of human life.。
分子生物学常用参考书目
二十一世纪是分子生物学发展的世纪,生命科学将进 入一个新的时代——后基因组时代postgenomics
二十一世纪分子生物学发展的趋势:
1.功能基因组学 functional genomics 依附于对DNA序列的了解,应用基因组学的知识和工具
去了解影响发育和整个生物体的特征序列表达 谱。 酿酒酵母16条染色体的全部序列于1996年完成 。
…
1997
Wilmut成功获得克隆羊—Dolly诞生;
1998
Renard 克隆牛诞生(体细胞→个体);
…
2000 ,6.26 中、美、日、德、法、英6国,宣布人类基 因组草图发表。
2000 ,10月 科学家宣布将于2001年3月完 成河豚鱼的基 因组测序。
2000,12月14日英美等国科学家宣布绘出拟南芥基因组 的完整图谱。
2003年4月14日六国科学家完成了人类基因组序列图的 绘制,实现了人类基因组计划的所有目标。
二十世纪是以核酸为研究核心,带动分子生 物学向纵深发展:
•
50年代双螺旋结构
•
60年代操纵子学说
•
70年代DNA重组
•
80年代PCR技术
•
90年代DNA测序
生命科学从宏观→微观→宏观;由分析→综 合的时代。
分子生物学常用参考书 目
2024/2/1
第一章 绪 论
一、什么是分子生物学?
Instant Notes in Molecular Biology
---Turner et al.
Molecular biology seeks to explain the relationships between the structure and function of biological molecules and how these relationships contribute to the operation and control of biochemical processes.
分子生物学手段 英文
分子生物学手段英文Molecular Biology Techniques.Molecular biology techniques are a set of tools and methods used to study the structure and function of biological molecules, such as DNA, RNA, and proteins. These techniques have revolutionized our understanding of biology and have led to the development of new therapies for diseases such as cancer and genetic disorders.DNA Analysis.DNA analysis is a key molecular biology technique used to study the structure and function of genes. DNA is the genetic material that makes up chromosomes and contains the instructions for all of the proteins in an organism. DNA analysis can be used to identify and characterize genes, study gene expression, and diagnose diseases.DNA sequencing is a technique used to determine theorder of nucleotides in a DNA molecule. DNA sequencing can be used to identify genes, study gene mutations, and diagnose genetic diseases.PCR (polymerase chain reaction) is a technique used to amplify a specific region of DNA. PCR can be used to amplify genes for study, diagnose diseases, and perform forensic analysis.Southern blotting is a technique used to detect specific DNA sequences in a sample. Southern blotting can be used to identify genes, study gene expression, and diagnose genetic diseases.Northern blotting is a technique used to detect specific RNA sequences in a sample. Northern blotting can be used to study gene expression and diagnose genetic diseases.Western blotting is a technique used to detectspecific proteins in a sample. Western blotting can be used to study protein expression, diagnose diseases, and performforensic analysis.Protein Analysis.Protein analysis is another key molecular biology technique used to study the structure and function of proteins. Proteins are the workhorses of the cell and are responsible for a wide range of cellular functions, such as metabolism, cell signaling, and movement. Protein analysis can be used to identify and characterize proteins, study protein function, and diagnose diseases.Protein purification is a technique used to isolate a specific protein from a sample. Protein purification can be used to study protein structure and function, diagnose diseases, and develop new therapies.Protein crystallization is a technique used to grow crystals of a protein. Protein crystals can be used to determine the three-dimensional structure of a protein.X-ray crystallography is a technique used to determinethe three-dimensional structure of a protein crystal. X-ray crystallography can be used to study protein structure and function, and develop new therapies.NMR spectroscopy is a technique used to study the structure and dynamics of proteins. NMR spectroscopy can be used to study protein structure and function, and develop new therapies.Applications of Molecular Biology.Molecular biology techniques have a wide range of applications in medicine, biotechnology, and forensics.Medicine: Molecular biology techniques are used to diagnose diseases, develop new therapies, and perform genetic testing.Biotechnology: Molecular biology techniques are usedto produce biofuels, biopharmaceuticals, and other products.Forensics: Molecular biology techniques are used toidentify individuals, analyze DNA evidence, and solve crimes.Molecular biology techniques are powerful tools that have revolutionized our understanding of biology and have led to the development of new therapies for diseases such as cancer and genetic disorders. As these techniques continue to develop, we can expect to see even more advances in medicine, biotechnology, and forensics.。
《分子生物学》课程教学大纲
武汉大学《分子生物学》课程教学大纲课程英文名称:Molecular Biology 课程类别:必修课程学分数:3 课程学时数:54授课对象:本院生物类所有本科生本课程的前导课程:生物化学一、教学目的.本课程主要是从生物大分子的角度来阐述基因组的复制和基因组的表达机制(DNA→ RNA→蛋白质),以及基因调控机制。
通过与实验课结合,将系统介绍基本的分子生物学技术,包括后基因组技术。
本课程是英语教学试验课,旨在使学生习惯使用英语进行“听、想、叙述”分子生物学相关内容,为学生进入研究生学习和进入日趋国际化的工作岗位奠定基础。
二、教学要求1.重点掌握“原核生物和真核生物复制和表达其遗传信息,以及基因表达调控的分子机制:包括发生过程,主导和参与各过程的酶和因子(反式作用因子和顺式作用元件)”。
2.掌握“常规分子生物学技术,包括基因克隆和表达的技术,研究生物大分子相互作用的技术,模式生物和后基因组分子生物学技术。
”3.熟悉“在基因组保持,表达和基因调控中主要酶和蛋白质的结构和作用机制;以及基因调控与发育和疾病的关系。
分子生物学技术在鉴定、诊断和治疗中的作用。
”三.课程内容与学时分配第一章课程简介与分子生物学发展史(教材第1至第5章)第一节课程介绍-教学目标和方法第二节课程介绍-教学内容和安排第三节分子生物学发展史1-蒙德尔的生物观重点:从名人的研究经历学法则、长智慧第四节分子生物学发展史2-核酸承载遗传信息重点:从重大发现学法则、开思路第五节化学弱相互作用与强相互作用决定大分子的结构第二章核酸结构(教材第6章)第一节 DNA的结构与拓扑异构酶重点:DNA的双螺旋结构与DNA的功能和复制之间的关系,以及DNA拓扑异构酶在解决细胞中DNA拓扑结构中的重要性第二节 RNA的结构与核酶重点:RNA可以折叠成高级结构的机制,不同核酶的结构与功能第三章 DNA复制(教材第8章)第一节 DNA复制的化学本质和DNA聚合酶的催化机制重点:DNA复制的化学反应,聚合酶的结构与催化第二节 DNA复制的过程-原核重点:不同蛋白因子是如何顺序性在复制过程中起作用的,先导链和滞后链复制的异同,不同DNA聚合酶的作用第三节 DNA复制的过程-真核重点:不同蛋白因子和聚合酶是如何顺序性在复制过程中起作用的,先导链和滞后链复制的异同第四节同一复制叉中先导链和滞后链同时被复制的机制重点:Sliding clamps和Clamp loader的作用,Trombone复制模型第五节 DNA复制起始的调控-普遍机制和原核机制重点:Replicator-initiator互作模型;E. coli的OriC,DnaA-ATP 水平,SeqA蛋白的作用第六节 DNA复制起始的调控-真核重点:Pre-RC (复制前复合物)的形成和调控第七节 DNA复制起始的结束重点:原核-II型拓扑异构酶的作用;真核-染色体复制的末端问题以及端粒酶的作用第四章基因表达1-转录(教材第12章)第一节 RNA聚合酶与转录循环内容:RNA聚合酶的种类和特征,RNA聚合酶催化的转录步骤,转录复合物在转录过程中的结构改变第二节细菌的转录循环1-启动子和因子第三节细菌的转录循环2-转录的起始,延伸和终止第四节真核转录1-RNA聚合酶II及其介导的前体mRNA转录起始重点:核心启动子的结构,以及普通转录因子组装起始复合物的过程其他内容:因为染色体高级结构的原因,体内转录需要Mediator复合物的作用第五节真核转录2-RNA聚合酶II转录的延伸重点:RNA聚合酶II CTD结构域所结合蛋白因子的顺序置换与前体mRNA的5'加帽,内含子剪接,3'加尾和转录终止第六节真核转录3-RNA聚合酶I和III转录rRNA和tRNA,小RNA的机制第五章基因组表达2-RNA剪接(教材第13章)第一节不同类型内含子分布和RNA剪接的化学性质第二节 I型和II型内含子核酶的剪接机制重点:结构和催化的化学反应第三节真核生物蛋白编码基因内含子的剪接-剪接体的组装,重排和催化重点:剪接体的组分(snRNPs);剪接体的组装、重派和催化之间的关系第四节可变剪接重点:生物学意义,调控机制第五节其他加工过程内容:选择性剪接体包含不同的snRNPs,RNA编辑,mRNA转运第六章基因组表达3-翻译与遗传密码(教材第14-15章)第一节 mRNA的功能内容:开放阅读框决定多肽序列,原核和真核mRNA上的翻译元件第二节转运RNA的功能,结构,以及氨基酸装载过程重点:氨基酸装载的识别功能第三节核糖内容:核糖体(翻译机器)组装与循环,翻译的化学特性,核糖体的催化功能。