2003年山东省初中数学竞赛试题
99-04年山东省初中数学竞赛试题(含答案).(数学试题 竞赛模拟)

1999年山东省初中数学竞赛试题 (1)2000年山东省初中数学竞赛试题 (5)2001年山东省初中数学竞赛试题 (7)2002年山东省初中数学竞赛试题 (11)2003年山东数学竞赛试题 (14)2004年山东省初中数学竞赛试题 (17)1999年山东省初中数学竞赛试题一、选择题(每小题6分,共48分.下面各题给出的选项中,只有一项是正确的,请将正确选项的代号填在题后的括号内.)1.已知命题“有一组对边平行,而另一组对边相等的四边形是平行四边形”,则( ).(A)这个命题和它的否命题都是真命题(B)这个命题和它的否命题都是假命题(C)这个命题是真命题,而它的否命题是假命题(D)这个命题是假命题,而它的否命题是真命题2.一项工程,甲建筑队单独承包需要a 天完成,乙建筑队单独承包需要b 天完成.现两队联合承包,那么完成这项工程需要( ). (A)b a 1+ 天 (B) )b 1a 1(+天 (c) b a ab +天 (D) ab1天 3.如图,∠CGE =α,则∠A+∠B+∠C+∠D+∠E+∠F =( ).(A)360°-α (B)270°-α (C)180°+α (D)2α4.如果|x|+||x|-1|=l ,那么( ).(A)(x+1)(x-1)>0 (B)(x+1)(x-1)<0(C)(x+1)(x-1)≥0 (D)(x+1)(x-1)≤05.与212-171最接近的整数是( ).(A)5 (B)6 (C)7 (D)86.已知a 、b 、c 、d 都是正实数,且d c b a < ,且A =dc d -b a b ++与0的大小关系是( ). (A)A>0 (B)A ≥0 (C)A<O (D)A ≤07.若方程p -x =x 有两个不相等的实数根,则实数P 的取值范围是( ).(A)p ≤0 (B)p<41 (C)O ≤P<41 (D)P ≥41 8.如图,S △AFG =5a ,S △ACG =4a ,S △BFG =7a ,则S △AEG =( ).(A)1127a (B) 1128a (c) 1129a (D) 1130a 二、填空题(每小题8分,共32分)1.已知,|x+y-5|+4-y 2x +=0,则yx =2.已知a 、b 、c 为不等于零的实数,且a+b+c =0,则a(c 1b 1+)+ b(a 1c 1+)+c(b 1a 1+)的值为 ·3.如图,在四边形ABCD 中,∠A =∠C =90°,AB =AD ,若这个四边形的面积为12,则BC+CD =4.如图,在矩形ABCD 的边AB 上有一点E ,且23EB AE =,DA 边上有一点F ,且EF =18,将矩形沿EF 对折,A 落在边BC 上的点G ,则AB=三、(本题满分20分)如图,AD 是Rt △ ABC 的斜边BC 上的高,P 是AD 的中点,连结BP 并延长交AC 于E.已知AC:AB =k ,求AE:EC .四、(本题满分20分)已知方程x 2+a 1x+a 2a 3=0与方程x 2+a 2x+a l a 3=0有且只有一个公共根.求证:这两个方程的另两个根(除公共根外)是方程x 2+a 3x+a 1a 2=0的根.五、(本题满分30分)现有质量分别为9克和13克的砝码若干只,在天平上要称出质量为3克的物体,问至少要用多少只这样的砝码才能称出?并证明你的结论.1 999年山东省初中数学竞赛试题参考答案、一、1.D .2.C. 3.D .4.D .5.B .6.A .7 .C 8.D .二、1.x=-1y=6.y x =1/62.a+b+c=0, b+c=-a ,c+a=-b ,a+b=-c .原式=-33.解法l :延长CB 到E ,使BE=DC ,连结AE ,AC2000年山东省初中数学竞赛试题1.已知关于x 的方程mx+2=2(m —x)的解满足|x-21 |-1=0,则m 的值是 ( ) A.10或52 B.10或-52 c.-10或52 D.-10或52- 2.设直角三角形的三边长分别为a 、b 、c ,若c-b=b-a>O ,则 ( )A.1/2B.1/3C.1/4D.1/53.某工厂第二季度的产值比第一季度的产值增长了x %,第三季度的产值又比第二季度的产值增长了x %,则第三季度的产值比第一季度的产值增长了 ( )A.2x %B. 1+2x % C(1+x %)x % D.(2+x %)x %4.甲从一个鱼摊上买了三条鱼,平均每条a 元,又从另—个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是 ( )A .a>b b .a<b C. a=b D.与a 和b 的大小无关5.若D 是△ABC 的边AB 上的一点,么ADC=么BCA,AC=6,DB=5,△ABC 的面积是S ,则△BCD 的面积是 ( ) A.S 53 B. S 74 C .S 95 D .S 116 6.如图,AE ⊥AB 且AE=AB ,BC ⊥CD 且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是( )A .50 B.62 C .65 D .687.如图,两个标有数字的轮子可以分别绕轮子的中心旋转,旋转停止时,每个轮子上方的箭头各指着轮子上的一个数字,若左图轮子上方的箭头指着的数字为a ,右图轮子上方的箭头指着的数字为b ,数对(a ,b)所有可能的个数为n ,其中a+b 恰为偶数的不同数对的参数为m ,则m/n 等于 ( )A .21B .61C .125D .43 8.如图,甲、乙两动点分别从正方形ABCD 的顶点,A 、C 同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2000次相遇在边 ( )A .AB 上 B.BC 上 C .CD 上D .DA 上9.已知2+x a 与2-x b 和等于442-x x ,则a= ,b= 10.如图,AD 是△ABC 的中线,E 是AD 上的一点,且AE=31AD ,CE 交AB 于点F .若AF=1.2cm ,则AB= cm11.在梯形ABCD 中,AB ∥CD,AC .BD 相交于点O ,若AC=5,BD=12,中位线长为213,△AOB 的面积为S 1,△COD 的面积为S 2,则21S S += 12.已知矩形A 的边长分别为a 和b ,如果总有另一矩形B ,使得矩形B 与矩形A 的周长之比与面积之比都等于k ,则k 的最小值为 .13.如图,AB ∥EF ∥CD ,已知 AC+BD=240,BC=100,EC+ED=192,求CF .14.已知x 、y 均为实数,且满足xy+x+y=17,x 2y+xy 2=66,求x 4+x 3y+x 2y 2+xy 3+y 4的值.15.将数字1,2,3,4,5,6,7,8分别填写到八边形ABCDEFGH 的8个顶点上,并且以S 1,S 2,…,S 8分别表示(A ,B ,C),(B ,C ,D),…,(H ,A ,B)8组相邻的三个顶点上的数字之和.(1)试给出一个填法,使得S 1,S 2,…,S 8都大于或等于12;(2)请证明任何填法均不可能使得S 1,S 2,…,S 8都大于或等于13.2000年山东省初中数学竞赛答案1.A 2.C 3.D 4.A 5.C 6.A 7.C 8.A9.2;2 10.6 11.30 12.2)(4b a ab +15.(1)不难验证,如图所示填法满足.s1,s2,…s8都大于或等于12.(2)显然,每个顶点出现在全部8组3个相邻顶点组的3个组中,所以有s1+S2+…+S8= (1+2+3+…+8)·3=108.如果每组三数之和都大于或等于13,因13·8=104,所以至多有108-104=4个组的三数之和大于13.由此我们可得如下结论:(1)相邻两组三数之和一定不相等.设前一组为(i,j,k),后一组为(j,k,l).若有i+j+k=j+k+l,则l=i,这不符合填写要求;(2)每组三数之和都小于或等于14.因若有一组三数之和大于或等于15,则至多还有另外两个组,其三数之和大于13,余下5个组三数之和等于13,必有相邻的两组相等,这和上述结论(1)不符.因此,相邻两组三数之和必然为13或14.不妨假定1填在B点上,A点所填为i,C点所填为j.(1)若S1=i+1+J=13,则.s2=1+j+l=14,S3=j+l+k=13,因J>1,这是不可能的.(2)若sl=i+1+j=14,则S2=1+j+(i-1)=13,S=j+(i-1)+2:14,s4=(i-1)+2+(j-1)=13,这时S5=14,只能是S=2+(j-1)+i,i重复出现:所以不可能有使得每组三数之和均大于或等于13的填法.2001年山东省初中数学竞赛试题一、选择题(每小题6分,共48分)下面各题给出的选项中,只有一项是正确的1.某商店经销一批衬衣,进价为每件m元,零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,那么,调价后每件衬衣的零售价是 ( )A.m(1+a%)(1—b%)元 B.m·a%(1—b%)元C.m(1+a%)b%元 D.m(1+a%·b%)元2.如图,已知AB=10,P是线段AB上任意一点,在AB的同侧分别以AP和PB为边作等边△APC和等边△BPD.则CD长度的最小值是 ( )A.4 B.5 C 6 D.5(5—1)3.在凸n边形中,小于108°的角最多可以有( )A .3个B 4个C .5个D .6个4.方程(x 2+x-1)x+3=1的所有整数解的个数是 ( )A .2B .3C .4D .55.如图,在△ABC 中,∠ACB=90°,分别以AC 、AB 为边,在△ABC 外作正方形ACEF 和正方形AGHB .作CK⊥AB,分别交AB 和GH 于D 和K .则正方形ACEF 的面积S 1与矩形AGKD 的面积S 2的大小关系是 ( )A S 1=S 2B S 1>S 2 C. S l <S 2 D .不能确定,与AC/AB 的大小有关6.甲、乙两人同时从同一地点出发,相背而行,1小时后他们分别到达各自的终点A 与B .若仍从原地出发,互换彼此的目的地,则甲在乙到达A 之后35分钟到达B .那么,甲的速度与乙的速度之比为 ( )A 3:5 B. 4:3 C. 4:5 D .3:47.在全体实数中引进一种新的运算*,其规定如下:(1)对任意实数a 、b ,有a*b=(a+1)·(b -1);(2)对任意实数a ,有a *2==a*a当x=2时,[3*(x *2)]-2*x+1的值为( )A 34 B. 16 C. 12 D .68.若不等式|x+l|+|x-3|≤a 有解,则n 的取值范围是 ( )A 0<a≤4B a≥4C O<a≤2 D.a≥2二、填空题(每小题8分,共32分)9.如图,□ABCD 的对角线相交于点O ,在AB 的延长线上任取一点E ,连结OE 交BC 于点F .若AB=a ,AD=c ,BE=b ,则BF= .10.若S=,则S 的整数部分是11.若四边形的一组对边中点的连线的长为d ,另一组对边的长分别为a 、b ,则d 与2ba 的大小关系是 .12.如图,O 为某公园大门,园内共有9处景点A 1、A 2、……An.景点间的道路如图所示,游客只能按图上所示的箭头方向从一个景点到达另一个景点.游客进入公园大门之后,可按上述行进要求游览其中部分或全部景点.一旦返回大门O 处,游览即告结束(每个景点只能游览一次).那么,游客所能选择的不同的游览路线共有 条.三、解答题(每小题20分,共60分)13.关于x 的方程kx 2-(k-1)x+l=0有有理根,求整数k 的值.14.如图,在□ABCD 中,P 1、P 2、…、P n-1是BD 的n 等分点,连结AP 2并延长交BC 于点E ,连结AP n-2并延长交.CD 于点F .(1)求证:EF∥BD;(2)设□ABCD 的面积是S .若S △AEF =3s/8,求n 的值.15.有12位同学围成一圈,其中有些同学手中持有鲜花,鲜花总数为13束,他们进行分花游戏,每次分花按如下规则进行:其中一位手中至少持有两束鲜花的同学拿出两束鲜花分给与其相邻的左右两位同学,每人一束.试证:在持续进行这种分花游戏的过程中,一定会出现至少有7位同学手中持有鲜花的情况.2001年山东省初中数学竞赛一、1.C 2.B 3.B 4.C 5.A 6.D 7.D 8.B15.不妨假设开始时手中持有鲜花的同学不足7位.我们以A、A2、A、…、A2按逆时针方向依次分别标记这12位同学.(1)在分花游戏过程中,任何相邻的两位同学一旦其中一位手中持有鲜花,那么,在此后的每次分花之后,他们两人中始终至少有一人手中持有鲜花.事实上,每次分花,如果分花的同学不是这两位同学中的一位,那么,他们俩手中的鲜花只会增加,不会减少.如果他们俩中的一位是分花者,那么,分花后另一位同学一定持有鲜花. (2)任何一位同学不可能手中始终无花,可用反证法证明这一点.不妨假设A1手中始终无花,这意味着A2始终没作为分花者,A2手中鲜花只能增加,不会减少.因总共只有13束鲜花,所以经过有限次分花之后, A2不再接受鲜花.这又意味着经过有限次分花之后,A3不再为分花者.同理可知,再经过有限次分花后,A4不再为分花者.依此类推,经有限次分花之后,全部12位同学无一人为分花者,活动终止.这就与13束鲜花分置于12位同学手中,无论何种情况总能找到与可能分花的同学的事实相矛盾.由(1)、(2)可知,经若干次分花之后,可使任何相邻的两位同学中至少有一位同学手中有花,因此至少有6位同学手中有花.若仅有6位同学手中有花,则手中有花的同学不可能相邻,否则就会有两位手中无花的同学相邻.因此,只要再进行一次分花,至少增加一位手中持花的同学,即至少有7位同学手中持有鲜花.2002年山东省初中数学竞赛试题一、选择题1.磁悬浮列车是一种科技含量很高的新型交通工具.它有速度快、爬坡能力强、能耗低的优点.它每个座位的平均能耗仅为飞机每个座位的平均能耗的三分之一、汽车每个座位的平均能耗的70%.那么汽车每个座位的平均能耗是飞机每个座位平均能耗的( ) (A)73 (B)37 (C) 2110 (D)1021 2.已知a ,b ,c ,d 都是正实数,且d c b a <·给出下列四个不等式:①dc c b a a +>+②d c c b a a +<+ ;③d c d b a b +>+④d c d b a b +<+其怔确的是( ) (A)①③(B)①④(C)②④(D)②③3.如图,在等腰Rt △ABC 中,∠C =90°,∠CBD =30°, 则AD :DC =( ) (A)33 (B)22 (C)2 -l (D)3 -l 4.世界杯足球赛小组赛,每个小组4个队进行单循环比赛,每场比赛胜队得3分, 败队得0分,平局时两队各得1分.小组赛完以后,总积分最高的两个队出线进入下轮比赛.如果总积分相同,还要按净胜球数排序.一个队要保证出线,这个队至少要积( )(A)5分 (B)6分 (C)7分 (D)8分5.如图,四边形ABCD 中,∠A =60°,∠B =∠D =90°,AD =8,AB=7,则BC+CD 等于( ) (A)63 (B)53 (C)43 (D)336.如图,在梯形ABCD 中,AD ∠∠BC ,AD =3,BC =9,AB =6,CD =4.若EF ∥BC ,且梯形AEFD 与梯形EBCF 的周长相等,则EF 的长为( ) (A)745 (B)533 (C)539 (D)2157.如图,在Rt △ABC 中,∠ACB =90°,AC =b ,AB =c ,若D 、E 分别是AB 和AB 延长线上的两点,BD =BC ,CE ⊥CD ,则以AD 和AE 的长为根的一元二次方程是( )(A)x 2-2cx+b 2=0 (B)x 2-cx+b 2=0 (C)x 2-2cx+b=0 (D)x 2一cx+b =08.已知实数a ,b ,c 满足a<a<c ,ab+bc+ca =0,abc =1,则( )(A)|a+b|>|c|, (B)|a+b|<|c|, (C)|a+b|=|c| (D)|a+b|与|c|的大小关系不能确定二、填空题9.M是个位数字不为零的两位数,将M的个位数字与十位数字互换后得另一个两位数N.若M-N恰是某正整数的立方,则这样的M共有个.10.设x1,x2是方程x2-2(k+1)x+k2+2=0的两个实数根,且(x1+1)(x2+1)=8,则k的值是.11.已知实数x,y,z满足x+y=5及z2=xy+y一9,则x+2y+3z=12.如图5,P是矩形ABCD内一点,若PA=3,PB=4,PC=5,则PD=三、解答题13.如图,甲楼楼高16米,乙楼座落在甲楼的正北面,已知当冬至中午12时太阳光线与水平面的夹角为30°,此时,求:(1)如果两楼相距20米,那么甲楼的影子落在乙楼上有多高?(2)如果甲楼的影子刚好不落在乙楼上,那么两楼的距离应当是多少米?14.如图,△ABC是等腰直角三角形,∠C=90°,O是△ABC内一点,点O到△ABC各边的距离都等于l,将△ABC绕点O顺时针旋转45°得△A1B1C1,两三角形公共部分为多边形KLMNPQ.(1)证明:△AKL,△BMN,△CPQ都是等腰直角三角形;(2)求△ABC与△A1B1C1公共部分的面积.15.某乡镇小学到县城参观,规定汽车从县城出发于上午7时到达学校,接参观的师生立即出发去县城.由于汽车在赴校的途中发生了故障,不得不停车修理.学校师生等到7时10分,仍未见汽车来接,就步行走向县城.在行进途中遇到了已经修理好的汽车,立即上车赶赴县城,结果比原定到达县城的时间晚了半小时.如果汽车的速度是步行速度的6倍,问汽车在途中排除故障花了多少时间.参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C D D B B C A A 6 l 832 13.(1)设冬天太阳最低时,甲楼最高处A点的影子落在乙楼的C处,那么图中CD的长度就是甲楼的影子在乙楼上的高度.设CE⊥AB于点E,那么在△AEC中,∠AEC=90°,∠ACE=30°,EC=20米,所以 AE=ECtan∠ACE=20tan30°≈11.6(米).CD=EB=AB-AE=4.4(米).(2)设点A的影子落到地面上某一点C,则在△ABC中,∠ACB=30°,AB=16米,所以 BC=ABcot∠ACB=16cot30°≈27.7(米),所以,要使甲楼的影子不影响乙楼,那么乙楼距离甲楼至少要27.7米.14.(1)连结OC,DC1,分别交PQ,NP于点D,E,根据题意得∠COC1=45°.因为点O 到AC 和BC 的距离都等于1-,所以OC 是∠ACB 的平分线.因为 ∠ACB =90°,所以 ∠OCE =∠OCQ =45°.同理 ∠OC l D =∠OC 1N =45°,所以 ∠OEC =∠ODC l =90°,∠CQP =∠CPQ =∠C 1PN =∠C 1NP =45°,所以 △CPQ 和△C 1NP 都是等腰直角三角形,所以∠BNM =∠C 1NP =∠A 1QK =∠CQP =45°.因为 ∠B =∠A 1=45°,所以 △BMN 和△A 1KQ 都是等腰直角三角形,∠B l ML =∠BMN =∠AKL =∠A 1KQ =90°,所以 ∠B 1=∠A =45°,所以 △B 1Am l 和△AKL 也都是等腰直角三角形.(2)在Rt △ODC l 和Rt △OEC 中,因为OD =OE =1,∠COC1=45°,所以 OC =CC 1=2 ,CD =C 1E =2-1,所以 PQ =NP =2(2-1)=22-2, CQ=CP-C 1P=C 1N=2(2-1)=2一2, 所以 S △CPQ =21 ×(2-2)2=3-22延长CO 交AB 于H . 因为①平分∠ACB ,且AC =BC ,所以CH ⊥AB ,所以 CH=CO+OH=2+1,所以AC =BC =A l C l =B 1C 1=2(2+1)=2+2,所以 S=21×(2+2)2=3+22 因为A l Q=BN=(2+2)-(22-2)-(2一2)=2,所以KQ =MN =22=2,所以 S △BMN =21 ×(2)2=1.因为 AK=(2+2)-(2-2)-2=2. 所以 S △AKL =21 ×2)2=1, 所以S 多边形KLMNPO -S △ABC +S △CPQ -S △BMN-S △AKL =(3+22)-(3-22)-1-1=42-2.15.假定排除故障花时x 分钟.如图9,设点A 为县城所在地,点C 为学校所在地,点B 为师生途中与汽车相遇之处.在师生们晚到县城的30分钟中,有10分钟是因晚出发造成的,还有20分钟是由于从C 到B 由步行代替乘车而耽误的.汽车所晚的30分钟,一方面是由于排除故障耽误了x 分钟,但另一方面由于少跑了B 到C 之间的一个来回而省下了一些时间.已知汽车速度是步行速度的6倍,而步行比汽车从C 到B 这段距离要多花20分钟.由此知汽车由C 到B 应花1-520=4(分钟) 一个来回省下8分钟,所以有x 一8=30,x =38,即 汽车在途中排除故障花了38分钟.2003年山东数学竞赛试题一、选择题(本题共8小题.每小题6分,满分48分):下面各题给出的选项中,只有一项是正确的.请将正确选项的代号填在题后的括号内.1.如果a ,b ,c 是非零实数,且a+b+c=O ,那么||||||||abc abc c c b b a a +++的所有可能的值为( ).A .0B .1或-1C .2或-2D .0或-22.如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( ).A .a+lB .a 2+lC .a 2+2 a+1 D .a+22+l 3.甲、乙、丙三人比赛象棋,每局比赛后,若是和棋,则这两人继续比赛,直到分出胜负,负者退下,由另一人与胜者比赛.比赛若干局后,甲胜4局、负2局;乙胜3局、负3局.如果丙负3局,那么丙胜( ).A .O 局B .1局C .2局D .3局4.关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 235332只有5个整数解.则a 的取值范围是( ). A .-6<a<-211 B .-6≤a<-211 c .-6<a≤-211 D .-6≤a ≤-211 5.如图,若将左边正方形剪成四块,恰能拼成右边的矩形,设a=l ,则这个正方形的面积 为( ).A .2537+B .253+C .215+ D .(1+2 )2 6.某种产品按质量分为l 0个档次.生产最低档次产品,每件获利润8元.每提高一个档次,每件产品利润增加2元.用同样工时,最低档次产品每天可生产60件,提高一个档次将减少3件.如果获利润最大的产品是第k 档次(最低档次为第一档次,档次依次随 质量增加),那么k 等于( ).A .5B .7C .9D .107.如图,在Rt △ABC 中,∠C =90°,∠A=30°,∠C 的平分线与∠B 的外角的平分线交于E 点,连结AE ,则∠AEB 是( ).A .50° B.45° C.40° D.35°8.已知四边形ABCD ,从下列条件中:(1)AB∥CD; (2)BC∥AD; (3)AB=CD ; (4)BC=AD ;(5)∠A =∠C;(6)∠B =∠D.任取其中两个,可以得出“四边形ABCD 是平行四边形”这一结论的情况有( ).A .4种B .9种C .1 3种D .1 5种二、填空题(本题共4小题,每小题8分,满分32分):将答案直接填写在对应题目的横线上.9.已知-l<a<0,化简4)1(4)1(22+-+-+aa a a 得 . 10.如图,已知AD=DB=BC .如果∠C=α,那么∠ABC=11.甲、乙两厂生产同一种产品,都计划把全年的产品销往济南,这样两厂的产品就能占 有济南市场同类产品的43.然而实际情况并不理想.甲厂仅有21的产品、乙厂仅有31 的产品销到了济南,两厂的产品仅占了济南市场同类产品的31 .则甲厂该产品的年产量与乙厂该产品的年产量的比为12.假期学校组织360名师生外出旅游,某客车出租公司有两种大客车可供选择:甲种客车每辆车有40个座位,租金400元;乙种客车每辆有50个座位,租金480元.则租用该公司客车最少需要租金 .三、解答题(本题共3小题,每小题20分,满分60分):13.如图,在Rt△ABC 中,∠ACB=90°CD 是角平分线,DE∥BC 交A C 于点E ,DF∥AC 交BC 于点F .求证:(1)四边形CEDF 是正方形;(2)CD 2=2AE·BF.14.设方程20022x 2-2003·2001 x -l=0的较大根是r ,方程2001 x 2-2002 x+1=0的较小根是s ,求r-s 的值.15.在1 8×18的方格纸上的每个方格中均填入一个彼此不相等的正整数.求证:无论哪种填法,至少有两对相邻小方格(有一条公共边的两个小方格称为一对相邻小方格),每对相邻的两小方格中所填之数的差均不小于1 0.2003年山东省‘KLT 快灵通杯’初中数学竞赛一、选择题1.A 2.D 3.B 4.C 5.A 6.C 7.B 8.B二、填空题9.一a 2 10.180°一23a 11.2:l 12.3520(1)当a 和b 所在的方格既不同行又不同列时,从 a 所在的方格出发,可以通过一系列向相邻格(上下或左右)的移动而达到6所在的格.如图(1)所示.由于a 和b 既不同行又不同列,总存在两条完全不同的路线(两路线途径的方格无一相同),由a 所在的方格到达b 所在的方格.显然,无论是线路甲,还是线路乙,其相邻移动的次数均不超过17+17=34次.若在线路甲上任何相邻两方格所填之数的差均小于或等于9,则323≤b -a≤34×9=306.这与事实不符.路线乙的情况完全相同,所以,在路线甲和路线乙中各存在一对相邻小方格,其中所填之数的差均不小于10.(2)当a 和b 所在的方格同行或同列时.与情况1类似,如图(2)所示,同样可以找到两条完全不同的,移动次数不大于34次的路线甲和路线乙,其中各存在一对相邻小方格,其中所填之数的差均不小于10.A D CB E MC B B ’ A 1 AD A B C2004年山东省初中数学竞赛试题一、选择题(8×6=48分)1.已知n 是奇数,m 是偶数,方程组⎩⎨⎧=+=+m y x n y 28112004有整数解x o ,y o ,则( ) A 、x o ,y o 均为偶数 B 、x o ,y o 均为奇数 C 、x o ,是偶数,x o ,是奇数 D 、x o ,是奇数,x o ,是偶数2.若ab ≠0,则aba b a 135-=--成立的条件是( ) A 、a>0,b>0 B 、a<0,b>0 C 、a>0,b<0 D 、a<0,b<03.设a,b,c,d 都是非零实数,则四个数:-ab,ac,bd,cd ( )A 、都是正数B 、都是负数C 、是两正两负D 、是一正三负或一负三正4.如图,矩形ABCD 中,AB=a ,BC=b ,M 是BC 的中点,DE ⊥AM ,E 为垂足,则DE=( )A 、2242ba ab+ B 、224b a ab + C 、2242b a ab+ D 、224b a ab + 5.某商店出售某种商品每件可获利m 元,利润率为20%。
山东省2003年中考数学试题评价报告

2003年中考数学试题评价报告本评价组收到济南、青岛、淄博、烟台、潍坊、济宁、泰安、威海、临沂、滨州、菏泽11份数学学科初中毕业、升学考试试卷以及部分地市报送的相关材料。
各单位报送的材料如下表:一、背景描述上述11份试卷均采用闭卷、笔试的形式,这是由数学学科的特点所决定的。
从各市的试卷可知,总题数在24~30道,客观题一般在16~22道;主观题一般在8道左右,最多的有10道题。
总题量及客观题的数量与2002年相当。
主观题数量与2002年基本保持一致,分值有所增加。
各市的试卷中,客观题主要有选择题、填空题两种题型,主观题除了传统的题型外,还有近几年出现的阅读理解题、推理判断题、画图设计题、开放题、实验探究题和动手操作题以及评价性问题等。
各题型分值、比例见下表:二、评价标准本项评价依据教育部《关于初中毕业、升学考试改革的指导意见》和《关于积极推进中小学评价与考试制度改革的通知》的精神,遵循《九年义务教育全日制中学数学教学大纲(试用修订版)》的内容范围与要求,体现《全日制义务教育数学课程标准(试验稿)》的理念。
中考数学试卷的评价标准是:试卷要有利于全面推进素质教育,有利于推进国家基础教育课程改革;有利于体现义务教育的性质,突出初中数学课程的基础性、普及性和发展性,升学试卷要有利于高中(中专)选拔优秀学生;并对初中数学教学给予正确的导向,有利于促进学生生动、活泼、主动的学习,有助于学生创新意识和实践能力的培养。
数学试题应关注学生的发展和数学素养的养成,注重考查数学核心内容与基本能力;应突出考查对数学思想方法的理解与简单应用;应重视考查获取数学信息、认识数学对象的基本过程与方法;应有利于渗透考查学生用数学、做数学的意识;应突出试题的教育价值,体现全面提高学生素质的导向,促进教师教学方式的改革,促进学生学习方式的变更;应合理设计各种试题,为学生探索、创新和发挥自己的水平提供机会与空间。
命题要科学、严谨,不出人为编造的偏题、怪题。
2003年全国初中数学联赛预赛暨2002年山东省初中数学竞赛试题(有答案)

2003年全国初中数学联赛预赛暨2002年⼭东省初中数学竞赛试题(有答案)2003年全国初中数学联赛预赛暨 2002年⼭东省初中数学竞赛试题⼀、选择题(本题共8⼩题,每⼩题6分,满分48分)1.磁悬浮列车是⼀种科技含量很⾼的新型交通⼯具.它有速度快、爬坡能⼒强、能耗低的优点.它每个座位的平均能耗仅为飞机每个座位的平均能耗的三分之⼀、汽车每个座位的平均能耗的70%.那么汽车每个座位的平均能耗是飞机每个座位平均能耗的( )(A)37 (B)73 (C)1021 (D)21102.已知a,b,c,d都是正实数,且ab <cd .给出下列四个不等式: ①aa+b >cc+d②aa+b <cc+d③ba+b >dc+d④ba+b <dc+d其中正确的是( )(A)①③ (B)①④ (C)②④ (D)②③3.如图,在等腰直⾓三⾓形ABC中,∠C=90°,∠CBD=30°,则ADDC的值是( ) (A)3 3 (B) 2 2(C) 2 -1 (D) 3 -1 4.世界杯⾜球赛⼩组赛,每个⼩组4个队进⾏单循环⽐赛,每场⽐赛胜队得3分,败队得0分,平局时两队各得1分.⼩组赛完以后,总积分最⾼的两个队出线进⼊下轮⽐赛.如果总积分相同,还要按净胜球数排序.⼀个队要保证出线,这个队⾄少要积( )(A)5分 (B)6分 (C)7分 (D)8分5.如图,四边形ABCD中,∠A=60°,∠B=∠D=90°,AD=8,AB=7,则BC+CD等于( )(A)6 3 (B)5 3 (C)4 3 (D)3 36.如图,在梯形ABCD中,AD∥BC,AD=3,BC=9,AB=6,CD=4.若EF∥BC,且梯形AEFD与梯形EBCF的周长相等,则EF的长为( )(A)45 7 (B) 33 5 (C) 39 5 (D) 1527.如图,在RtABC中,∠ACB=90°,AC=b,AB=c,若D、E分别是AB和AB延长线上的两点,BD=BC,CE⊥CD,则以AD和AE的长为根的⼀元⼆次⽅程是()(A)x2-2cx+b2=0(B)x2-cx+b2=0(C)x2-2cx+b=0(D)x2-cx+b=08.已知实数a、b、c满⾜a<b<c,ab+bc+ca=0,abc=1,则()(A)|a+b|>|c|(B)|a+b|<|c|(C)|a+b|=|c|(D)|a+b|与|c|的⼤⼩关系不能确定⼆、填空题(本题共4⼩题,每⼩题8分,满分32分)9.M是个位数字不为零的两位数,将M的个位数字与⼗位数字互换后得另⼀个两位数N,若M-N恰是某正整数的⽴⽅,则这样的M共有____个.10.设x1、x2是⽅程x2-2 (k+1)x+k2+2=0的两个实数根,且(x1+1) (x2+1)=8, 则k的值是____.11.已知实数x、y、z满⾜x+y=5及z2=xy+y-9,则x+2y+3z=____.12.如图,P是矩形ABCD内⼀点,若PA=3,PB=4,PC=5,则PD=____.三、解答题(本题共3⼩题,每⼩题20分,满分60分)13.如图,甲楼楼⾼16⽶,⼄楼坐落在甲楼的正北⾯,已知当地冬⾄中午12时太阳光线与⽔平⾯的夹⾓为30°,此时,求:(1)如果两楼相距20⽶,那么甲楼的影⼦落在⼄楼上有多⾼?(2)如果甲楼的影⼦刚好不落在⼄楼上,那么两楼的距离应当是多少⽶?14.如图, △ABC是等腰直⾓三⾓形,∠C=90°,O是△ABC内⼀点,点O到△ABC各边的距离都等于1,将△ABC绕点O顺时针旋转45°得△A1B1C1,两三⾓形公共部分为多边形KLMNPQ.(1)证明: △AKL、△BMN、△CPQ都是等腰直⾓三⾓形;(2)求△ABC与△A1B1C1公共部分的⾯积.15.某乡镇⼩学到县城参观,规定汽车从县城出发于上午7时到达学校,接参观的师⽣⽴即出发去县城.由于汽车在赴校的途中发⽣了故障,不得不停车修理. 学校师⽣等到7时10分,仍未见汽车来接,就步⾏⾛向县城. 在⾏进途中遇到了已经修理好的汽车,⽴即上车赶赴县城, 结果⽐原定到达县城的时间晚了半⼩时. 如果汽车的速度是步⾏速度的6倍,问汽车在途中排除故障花了多少时间.参考解答⼀、选择题1 C2 D3 D4 B5 B6 C7 A8 A⼆、填空题9 6 10 1 11 8 12 3 2 三、解答题13 (1)设冬天太阳最低时,甲楼最⾼处A点的影⼦落在⼄楼的C处, 那么图(1)中CD的长度就是甲楼的影⼦在⼄楼上的⾼度.设CE⊥AB于点E,那么在△AEC中,∠AEC=90°,∠ACE=30°,EC=20⽶.∴AE=EC·tan∠ACE=20·tan30°=20×33≈11.6(⽶). CD=EB=AB-AE=16-11.6=4.4(⽶).(2)设点A的影⼦落到地⾯上⼀点C(如图(2)),则在△ABC中,∠ACB=30°,AB=16⽶,∴BC=AB·cot∠ACB=16×cot30°=16×3≈27.7(⽶).所以,要使甲楼的影⼦不影响⼄楼,那么⼄楼距离甲楼⾄少要27.7⽶.14 (1)连结OC,OC1,分别交PQ、NP于点D,E,根据题意得∠COC1=45°. ∵点O到AC和BC的距离都等于1, ∴OC是∠ACB的平分线. ∵∠ACB=90°,∴∠OCE=∠OCQ=45°. 同理∠OC1D=∠OC1N=45°, ∴∠OEC=∠ODC1=90°.∴∠CQP=∠CPQ=∠C1PN=∠C1NP=45°. ∴△CPQ和△C1NP都是等腰直⾓三⾓形.∴∠BNM=∠C1NP=45°, ∠A1QK=∠CQP=45°. ∵∠B=45°,∠A1=45°,∴△BMN和△A1KQ都是等腰直⾓三⾓形.∴∠B1ML=∠BMN=90°, ∠AKL=∠A1KQ=90°. ∴∠B1=45°,∠A=45°,∴△B1ML和△AKL也都是等腰直⾓三⾓形.(2)在Rt△ODC1和Rt△OEC中, ∵OD=OE=1,∠COC1=45°,∴OC=OC1= 2 . ∴CD=C1E= 2 -1.∴PQ=NP=2( 2 -1)=2 2 -2,CQ=CP=C1P=C1N=2- 2 . ∴S△CPQ=12 ×(2- 2 )2=3-2 2 .延长CO交AB于H.∵CO平分∠ACB,且AC=BC, ∴CH⊥AB.∴CH=CO+OH= 2 +1.∴AC=BC=A1C1=B1C1= 2 ( 2 +1)=2+ 2 . ∴S△ABC= 12×(2+ 2 )2=3+2 2 .∵A1Q=BN=(2+ 2 )-(2 2 -2)-(2- 2 )=2,∴KQ=MN= 22 = 2 ,∴S△BMN=12×( 2 )2=1.∵AK=(2+ 2 )-(2- 2 )- 2 = 2 , ∴S△AKL=12×( 2 )2=1.∴S多四边形KLMNPQ=S△ABC-S△CPQ-S△BMN-S△AKL= (3+2 2 )-(3-2 2 )-1-1 = 4 2 -2.15 假定排除故障花时x分钟.如图,设点A为县城所在地,点C为学校所在地,点B为师⽣途中与汽车相遇之处.在师⽣们晚到县城的30分钟中,有10分钟是因晚出发造成的,还有20分钟是由于从C到B由步⾏代替乘车⽽耽误的.汽车所晚的30分钟,⼀⽅⾯是由于排除故耽误了x分钟,但另⼀⽅⾯由于少跑了B到C之间的⼀个来回⽽省下了⼀些时间.已知汽车速度是步⾏速度的6倍,⽽步⾏⽐汽车从C到B这段距离要多花20分钟.由此知汽车由C到B应花206-1=4(分钟).⼀个来回省下8分钟,所以有x-8=30,x=38,即汽车在途中排除故障花了38分钟.。
2003年山东数学中考试题

*考试时间120分钟,试卷满分120分。
一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内.每小题2分,共20分)1.在下列各组根式中,是同类二次根式的是()A.B.C D2.在平面直角坐标系中,点P(-1,1)关于x轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限3.已知⊙O1和⊙O2的半径分别为1和5,圆心距为3,则两圆的位置关系是()A.相交B.内含C.内切D.外切4.在下面四种正多边形中,用同一种图形不能平面镶嵌的是()A.B.C.D.5.已知2是关于x的方程23202x a-=的一个根,则21a-的值是()A.3 B.4 C.5 D.66.关于x的方程210x+=+有两个不相等的实数根,则k的取值范围是()A.k>-1 B.k≥-1 C.k>1 D.k≥7.如图,在同心圆中,两圆半径分别为2、1,∠AOB=120°,)则阴影部分的面积为A.4πB.2πC.43πD.π8.已知一次函数y=kx+b的图象经过第一、二、四象限,则反比例函数kbyx=的图象在A.第一、二象限B.第三、四象限()C.第一、三象限D.第二、四象限第7题图9.已知圆锥的侧面展开图的面积是15πcm 2,母线长是5cm ,则圆锥的底面半径为 ( )A .32cm B .3cm C .4cm D . 6cm10.如图,射线l 甲、l 乙分别表示甲、乙两名运动员在自行车 比赛中所走路程与时间的函数关系,则他们行进的速度 关系是( )A .甲比乙快B .乙比甲快C .甲、乙同速D .不一定二、填空题(每小题2分,共20分)11.在函数2y x =-中,自变量x 的取值范围是 .12.若方程210x x +-=的两根分别为12x x 、,则2212x x += . 13.一组数据9,5,7,8,6,8的众数和中位数依次是 .14.如图,AB 是⊙O 的直径,弦CD ⊥AB ,E 为垂足,若AB=9, BE=1,则CD = .15.如果一个正多边形的内角和是900°,则这个多边形是正 边形. 16.已知圆的直径为13cm ,圆心到直线l 的距离为6cm ,那么直线l 和这个圆的公共点 的个数是 . 17.用换元法解方程2220383x x x x+-=+,若设23x x y +=,则原方程可化成关于y 的整式方程为 .18.如图,在△ABC 中,∠C =90°,AB =10,AC =8,以AC 为 直径作圆与斜边交于点P ,则BP 的长为 . 19.如图,施工工地的水平地面上,有三根外径都是1米的水泥管, 两两相切地堆放在一起,则其最高点到地面的距离是 .20.在半径为1的⊙O 中,弦AB 、AC 分别是 则∠BAC 的度数为 .第10题图19题图ABE DC O 第14题图. ABPCO第18题图.三、(第21题6分,第22题6分,第23题10分,共22分)21.当x =2,y =3-的值.22.如图,已知:AB. 求作:(1)确定AB的圆心O . (2)过点A 且与⊙O 相切的直线.(注:作图要求利用直尺和圆规, 不写作法,但要求保留作图痕迹)23.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计.请你根据下面尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题: (1)填充频率分布表中的空格; (2)补全频率分布直方图;(3)在该问题中的样本容量是多少?答: .(4)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(不要求说明理由) 答: . (5)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的约为多少人?答: .频率分布表⌒ ⌒ 成绩(分)A B第22题图四、(10分)24.如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带.该建筑物顶端宽度AD和高度DC都可直接测得,从A、D、C三点可看到塔顶端H.可供使用的测量工具有皮尺、测倾器.(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG的方案.具体要求如下:①测量数据尽可能少....;②在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D间距离,用m表示;如果测D、C间距离,用n表示;如果测角,用α、β、γ表示).(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示,测倾器高度忽略不计).第24题图五、(10分)25.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?)第25题图六、(12分)26.某博物馆每周都吸引大量中外游客前来参观.如果游客过多,对馆中的珍贵文物会产生不利影响.但同时考虑到文物的修缮和保存费用问题,还要保证一定的门票收入.因此,博物馆采取了涨浮门票价格的方法来控制参观人数.在该方法实施过程中发现:每周参观人数与票价之间存在着如图所示的一次函数关系.在这样的情况下,如果确保每周4万元的门票收入,那么每周应限定参观人数是多少?门票价格应是多少元?第26题图人数 (人)七、(12分)27.(1)如图(a ),已知直线AB 过圆心O ,交⊙O 于A 、B ,直线AF 交⊙O 于F (不与B 重合),直线l 交⊙O 于C 、D ,交AB 于E ,且与AF 垂直,垂足为G ,连结AC 、AD .求证:①∠BAD =∠CAG ;②AC ·AD =AE ·AF .(2)在问题(1)中,当直线l 向上平行移动,与⊙O 相切时,其他条件不变.①请你在图(b )中画出变化后的图形,并对照图(a ),标记字母;②问题(1)中的两个结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.图(a)BO AFDC G E l· BO A图(b)第27题图·八、(14分)28.已知:如图,⊙D 交y 轴于A 、B ,交x 轴于C ,过点C的直线:8y =--与y 轴交于P . (1)求证:PC 是⊙D 的切线;(2)判断在直线PC 上是否存在点E ,使得S △EOP =4S △CDO ,若存在,求出点E 的坐标;若不存在,请说明理由;(3)当直线PC 绕点P 转动时,与劣弧AC交于点F (不与A 、C 重合),连结OF ,设PF =m ,OF =n ,求m 、n 之间满足的函数关系式,并写出自变量n 的取值范围.⌒ 第28题图。
2003年“TRULY信利杯”全国初中数学竞赛试题解答

2003年“TRULY ®信利杯”全国初中数学竞赛试题参考答案与评分标准一、选择题(每小题6分,满分30分)1.D由⎩⎨⎧=-+=--,072,0634z y x z y x 解得⎩⎨⎧==.2,3z y z x 代入即得.2.D因为20×3<72.5<20×4,所以根据题意,可知需付邮费0.8×4=3.2(元).3.C如图所示,∠B +∠BMN +∠E +∠G =360°,∠FNM +∠F +∠A +∠C =360°, 而∠BMN +∠FNM =∠D +180°,所以∠A +∠B +∠C +∠D +∠E +∠F +∠G =540°.4.D显然AB 是四条线段中最长的,故AB =9或AB =x 。
(1)若AB =9,当CD =x 时,222)51(9++=x ,53=x ;当CD =5时,222)1(59++=x ,1142-=x ; 当CD =1时,222)5(19++=x ,554-=x .(2)若AB =x ,当CD =9时,222)51(9++=x ,133=x ;当CD =5时,222)91(5++=x ,55=x ;当CD =1时,222)95(1++=x ,197=x .故x 可取值的个数为6个.5.B设最后一排有k 个人,共有n 排,那么从后往前各排的人数分别为k ,k +1,k +2,…,k +(n -1),由题意可知1002)1(=-+n n kn ,即()[]20012=-+n k n .N MAB CEFG O C DAB因为k ,n 都是正整数,且n ≥3,所以n <2k +(n -1),且n 与2k +(n -1)的奇偶性不同. 将200分解质因数,可知n =5或n =8. 当n =5时,k =18;当n =8时,k =9. 共有两种不同方案.6.23-. 4341442141212222--=-+--=---++x x x x x x =234)31(32-=-+-。
历年初中数学竞赛真题库含答案

1991年全国初中数学联合竞赛决赛试题第一试 一、选择题本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1. 设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223y xy x y xy x +--+的值是(A )3 ; (B )31; (C )2; (D )35. 答( )2. 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是(A ) 10; (B )12;(C ) 16; (D )18. 答( )3. 方程012=--x x 的解是(A )251±; (B )251±-; (C )251±或251±-; (D )251±-±. 答( )4.已知:)19911991(2111n n x --=(n 是自然数).那么n x x )1(2+-,的值是(A)11991-; (B)11991--;(C)1991)1(n -; (D)11991)1(--n . 答( )5. 若M n 1210099321=⨯⨯⨯⨯⨯ ,其中M为自然数,n 为使得等式成立的最大的自然数,则M(A)能被2整除,但不能被3整除; (B)能被3整除,但不能被2整除; (C)能被4整除,但不能被3整除; (D)不能被3整除,也不能被2整除. 答( )6. 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么d c b a +++的最大值是(A)1-;(B)5-;(C)0;(D)1. 答( )7. 如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S ,32=S 和13=S ,那么,正方形OPQR 的边长是(A)2;(B)3;(C)2 ;(D)3. 答( )8. 在锐角ΔABC 中,1=AC ,c AB =, 60=∠A ,ΔABC 的外接圆半径R ≤1,则(A)21< c < 2 ; (B)0< c ≤21; 答( )11=S 3S =132=S(C )c > 2; (D )c = 2. 答( ) 二、填空题1.E是平行四边形ABCD 中BC 边的中点,AE 交对角线BD 于G ,如果ΔBEG 的面积是1,则平行四边形ABCD 的面积是 .2.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+acb 32 . 3.设m ,n ,p ,q 为非负数,且对一切x >0,qpn m x x x x )1(1)1(+=-+恒成立,则4.四边形ABCD 中,∠ ABC 135=,∠BCD 120=,AB 6=,BC 35-=,CD = 6,则AD = .第二试x + y , x - y , x y ,yx四个数中的三个又相同的数值,求出所有具有这样性质的数对(x , y ).二、ΔABC 中,AB <AC <BC ,D 点在BC 上,E 点在BA 的延长线上,且BD =BE =AC ,ΔBDE 的外接圆与ΔABC 的外接圆交于F 点(如图).求证:BF =AF +CF三、将正方形ABCD 分割为 2n 个相等的小方格(n 是自然数),把相对的顶点A ,C 染成红色,把B ,D 染成蓝色,其他交点任意染成红、蓝两色中的一种颜色.证明:恰有三个顶点同色的小方格的数目必是偶数.1992年全国初中数学联合竞赛决赛试题 第一试 一.选择题本题共有8个题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.满足1=+-ab b a 的非负整数),(b a 的个数是(A)1; (B)2; (C)3; (D)4.2.若0x 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆与平方式20)2(b ax M +=的关系是(A)∆>M (B)∆=M (C)∆>M ; (D)不确定. 3.若01132=+-x x ,则44-+x x 的个位数字是(A)1; (B)3; (C)5; (D)7. 答( )4.在半径为1的圆中有一内接多边形,若它的边长皆大于1且小于2,则这个多边形的边数必为(A)7; (B)6; (C)5; (D)4. 答( )5.如图,正比例函数)0(>==a ax y x y 和的图像与反比例函数)0(>=k xk y 的图像分别相交于A 点和C 点.若AOB Rt ∆和COD ∆的面积分别为S 1和S 2,则S 1与S 2的关系是(A)21S S > (B)21S S = (C)21S S < (D)不确定答( )6.在一个由88⨯个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆周经过的所有小方格的圆内部分的面积之和记为1S ,把圆周经过的所有小方格的圆内部分的面积之和记为2S ,则21S S 的整数部分是 (A)0; (B)1; (C)2; (D)3. 答( )7.如图,在等腰梯形ABCD 中, AB //CD ,AB=2CD , ︒=∠60A ,又E 是底边AB 上一点,且FE=FB=AC , FA=AB .则AE :EB 等于(A)1:2 (B)1:3 (C)2:5 (D)3:10 答( )8.设9321,,,,x x x x ⋅⋅⋅均为正整数,且921x x x <⋅⋅⋅<<,220921=+⋅⋅⋅++x x x ,则当54321x x x x x ++++的值最大时,19x x -的最小值是(A)8; (B)9; (C)10; (D)11. 答( ) 二.填空题1.若一等腰三角形的底边上的高等于18cm ,腰上的中线等15cm ,则这个等腰三角形的面积等于________________.2.若0≠x ,则xx x x 44211+-++的最大值是__________.3.在ABC ∆中,B A C ∠∠=∠和,90 的平分线相交于P 点,又AB PE ⊥于E 点,若3,2==AC BC ,则=⋅EB AE .4.若b a ,都是正实数,且0111=+--b a b a ,则=+33)()(baa b . 第二试一、设等腰三角形的一腰与底边的长分别是方程062=+-a x x 的两根,当这样的三角形只有一个时,求a 的取值范围.二、如图,在ABC ∆中,D AC AB ,=是底边BC 上一点,E 是线段AD 上一点,且A CED BED ∠=∠=∠2.求证:CD BD 2=.三、某个信封上的两个邮政编码M 和N 均由0,1,2,3,5,6这六个不同数字组成,现有四个编码如下:A :320651B :105263C :612305D :316250已知编码A 、B 、C 、D 各恰有两个数字的位置与M 和N 相同.D 恰有三个数字的位置与M 和N 相同.试求:M 和N. 1993年全国初中数学联合竞赛决赛试题 第一试 一.选择题本题共有8个小题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.多项式1612+-x x 除以12-x 的余式是(A)1; (B)-1; (C)1-x ; (D)1+x ;2.对于命题Ⅰ.内角相等的圆内接五边形是正五边形.Ⅱ.内角相等的圆内接四边形是正四边形,以下四个结论中正确的是 (A)Ⅰ,Ⅱ都对 (B)Ⅰ对,Ⅱ错 (C)Ⅰ错,Ⅱ对. (D)Ⅰ,Ⅱ都错. 3.设x 是实数,11++-=x x y .下列四个结论: Ⅰ.y 没有最小值;Ⅱ.只有一个x 使y 取到最小值;Ⅲ.有有限多个x (不止一个)使y 取到最大值; Ⅳ.有无穷多个x 使y 取到最小值. 其中正确的是(A)Ⅰ (B)Ⅱ (C)Ⅲ (D)Ⅳ 4.实数54321,,,,x x x x x 满足方程组其中54321,,,,a a a a a 是实常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的大小顺序是(A)54321x x x x x >>>>; (B)53124x x x x x >>>>; (C)52413x x x x x >>>>; (D)24135x x x x x >>>>. 5.不等式73)1(12+<-<-x x x 的整数解的个解(A)等于4 (B)小于4 (C)大于5 (D)等于5 6.在ABC ∆中,BC AO O A =∠,,是垂心是钝角, 则)cos(OCB OBC ∠+∠的值是 (A)22-(B)22(C)23 (D)21-. 答( )7.锐角三角ABC 的三边是a , b , c ,它的外心到三边的距离分别为m , n , p ,那么m :n :p 等于(A)cb a1:1:1; (B)c b a :: (C)C B A cos :cos :cos (D)C B A sin :sin :sin . 答( ) 8.13333)919294(3-+-可以化简成 (A))12(333+; (B))12(333- (C)123- (D)123+ 答( ) 二.填空题1. 当x 变化时,分式15632212++++x x x x 的最小值是___________.2.放有小球的1993个盒子从左到右排成一行,如果最左面的盒里有7个小球,且每四个相邻的盒里共有30个小球,那么最右面的盒里有__________个小球.3.若方程k x x =--)4)(1(22有四个非零实根,且它们在数轴上对应的四个点等距排列,则k =____________.4.锐角三角形ABC 中,︒=∠30A .以BC 边为直径作圆,与AB ,AC 分别交于D , E ,连接DE , 把三角形ABC 分成三角形ADE与四边形BDEC ,设它们的面积分别为S 1, S 2,则S 1:S 2=___________.第二试一.设H 是等腰三角形ABC 垂心,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积HBC ABC S S ∆∆⋅的值变小,变大,还是不变?证明你的结论.二.ABC ∆中, BC =5, AC =12, AB =13, 在边AB ,AC 上分别取点D , E , 使线段DE 将ABC ∆分成面积相等的两部分.试求这样的线段DE 的最小长度.三.已知方程0022=++=++b cx x c bx x 及分别各有两个整数根21,x x 及21,x x '',且,021>x x 021>''x x . (1)求证:;0,0,0,02121<'<'<<x x x x (2)求证:1-b ≤c ≤1+b ; (3)求c b ,所有可能的值.1994年全国初中数学联赛试题 第一试(4月3日上午8:30—9:30)考生注意:本试共两道大题,满分80分.一、选择题(本题满分48分,每小题6分)本题共有8个小题都给出了A ,B 、C ,D ,四个结论,其中只有一个是正确的,请把你认为正确结论的代表字母写在题后答案中的圆括号内,每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在圆括号内),一律得0分.〔答〕( )2.设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x,y,zA.都不小于0 B.都不大于0C.至少有一个小0于D.至少有一个大于0 〔答〕( )3.如图1所示,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若BC=2,DA=3,则AB的长A.等于4 B.等于5C.等于6 D.不能确定〔答〕( )A.1 B.-1 C.22001D.-22001〔答〕( )5.若平行直线EF,MN与相交直线AB,CD相交成如图2所示的图形,则共得同旁内角A.4对B.8对C.12对D.16对〔答〕( )〔答〕( )7.设锐角三角形ABC的三条高AD,BE,CF相交于H。
山东省数学竞赛试题七年级

山东省数学竞赛试题七年级一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果a和b是两个不同的质数,那么a+b的奇偶性是?A. 总是奇数B. 总是偶数C. 可能是奇数也可能是偶数D. 无法确定3. 一个数的平方根是它自己,这个数是?A. 0B. 1C. -1D. 1或-14. 一个圆的直径是14cm,那么它的半径是?A. 7cmB. 14cmC. 28cmD. 无法确定5. 一个长方体的长、宽、高分别是a、b、c,它的体积是?A. abcB. ab+bc+caC. a+b+cD. 无法确定6. 一个数的绝对值是它自己,这个数是?A. 0B. 正数C. 负数D. 0或正数7. 一个等腰三角形的两边长分别是5cm和10cm,那么第三边的长度是?A. 5cmB. 10cmC. 不能构成三角形D. 无法确定8. 一个数的立方根是它自己,这个数是?A. 0B. 1C. -1D. 0, 1, -19. 如果一个数的相反数是-3,那么这个数是?A. 3B. -3C. 0D. 无法确定10. 一个数的倒数是1/2,那么这个数是?A. 2B. 1/2C. -2D. 无法确定二、填空题(每题3分,共15分)11. 一个数的平方是16,这个数是______。
12. 如果一个数的绝对值是5,那么这个数可以是______。
13. 一个三角形的内角和是______度。
14. 一个数的立方是-8,那么这个数是______。
15. 如果一个分数的分子是5,分母是10,那么它的倒数是______。
三、解答题(每题5分,共55分)16. 一个长方体的长、宽、高分别是5cm、3cm和2cm,求它的表面积和体积。
17. 一个直角三角形的两条直角边分别是3cm和4cm,求斜边的长度。
18. 一个数列的前三项是1, 1, 2,从第四项开始,每一项都是前三项的和。
求这个数列的前10项。
2003年全国初中数学联赛试题及解答

第一试(4 月 13 日上午 8:30—9:30) 一、选择题(本题满分 42 分,每小题 7 分)
1. 2 3 − 2 2 + 17 −12 2 等于( )
A. 5 − 4 2 B. 4 2 −1 C.5 D.1 2.在凸 10 边形的所有内角中,锐角的个数最多是( )
而 x + y + 2003 > 0 ,所以, xy − 2003 = 0 。故 xy = 2003
又因为
2003
为质数,必有
⎧ ⎨ ⎩
x y
=1 = 2003
或
⎧ ⎨ ⎩
x y
= =
2003 1
5、(B);
如图,连结
BE ,
SΔADE
=1− 3 = 1 44
,设
CE AC
=x
,则
A D
E
SΔABE
2、4;
由题设可知,
⎧ ⎪3 ⎪ ⎨ ⎪⎪⎩3
× ×
⎛ ⎜⎝ ⎛ ⎜⎝
−
3 79 ⎞2 5 ⎠⎟源自⎞2 ⎟⎠+
+m m×
× ⎛ ⎜⎝
⎛ ⎝⎜ 3 7
− ⎞ ⎟⎠
9 5
−
⎞ ⎠⎟ 2
− >
2 0
>
0
,
解得 3 8 < m < 4 13 。故 m = 4
21
45
3、12º;
设∠BAC 的度数为 x ,因 AB = BB ' ,故∠ B ' BD = 2x, ∠CBD = 4x 又 AB = AA' ,
=
SΔABC
+
SΔADC
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2003年山东省初中数学竞赛试题
一、选择题(每小题6分,满分48分)
1.如果a,b,c 是非零数,且a+b+c=0,那么abc abc c c b b c a +++ 的所有可能的值为( )
(A ) 0 (B ) 1或-1 (C ) 2或-2 (D ) 0或-2
2.如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( )
(A )1+a (B )12+a (C )122++a a (D )12++a a
3.甲、乙、丙三人比赛象棋,每局比赛后,若是和棋,则这两人继续比赛,直到分出胜负,负者退下,由另一人与胜者比赛。
比赛若干局后,甲胜4局、负2局;乙胜3局、负3局。
若丙负3局,那么丙胜( )
(A )0局 (B )1局 (C )2局 (D )3局
4.不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 2
35352只有5个整数解,则a 取值范围是( ) (A )2116-<<-a (B )2
116-<≤-a (C )2116-≤<-a (D )2
116-≤≤-a 5.如图,若将左图正方形剪成四块,恰能
拼成右图的矩形,设a=1,则这个正方形的
面积为( )
(A )2537+(B )2
53+(C )215+(D )()221+ 6.某种产品按质量分为10个档次,生产最低档次产品,每件获利润8元,每提高一个档次,每件产品利润增加2元。
用同样工时,最低档次产品每天可生产60件,提高一个档次将减少3件。
如果获利润最大的产品是第k 档次(最低档次为第一档次,档次依次随质量增加),那么k 等于( ) (A ) 5 (B ) 7 (C ) 9 (D )10
7.如图,在ABC Rt ∆中,∠C=90°∠A=30°
∠C 的平分线与∠B 的外角平分线交于E 点,
连结AE ,则是( )
(A) 50° (B )45°(C )40° (D )35° 8.已知四边形ABCD ,从下列条件中:⑴AB ∥CD ⑵BC ∥AD ⑶AB=CD ⑷BC=AD ⑸∠A=∠C ⑹∠B=∠D,任取其中两个可以得出“四边形ABCD 是平行四边形”这一结论的情况有( )
(A )4种 (B )9种 (C )13种 (D )15种
二、填空题(每小题8分,满分32分) 9.01<<-a ,化简41412
2+⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛+a a a a 得 。
10.如图,已知AD=DB=BC ,如果∠C=α, 那么∠ABC= 。
11.甲、乙两厂生产同种产品,都计划把全年 的产品销往济南,这样两厂的产品就能占有济南市场同类产品的四分之三,然而实际情况并不理想。
甲厂仅有一半的产品、乙厂仅有三分之一的产品销到了济南。
两厂的产品仅占了济南市场同类产品的三分之一。
则甲厂该产品的年产量与乙厂该产品的年产量的比为 。
12.假期学校组织360名师生外出旅游,某客车出租公司有两种大客车可供选择:甲种客车每辆车有40个座,租金400元;乙种客车每辆车有50个座,租金480元。
则租用该公司客车最少需用租金 元。
三、解答题(每小题20分,满分60分) 13.如图,在ABC Rt ∆中,∠ACB=90°,CD 是角平分线, DE ∥BC 交AC 于点E ,DF ∥AC 交BC 于点F 求证:(1)四边形CDEF 是正方形; (2)BF AE CD ⋅=22 14.设方程0120012003200222=-⋅-x x 的较大根是r ,方程01200220012=+-x x 的较小的根是s, 求r-s 的值 15.在18×18的方格纸上的每个方格中均填入一个彼此不相等的正整数。
求证:无论哪种填法,至少有两对相邻小方格(有一条公共边的两个小方格称为一对相邻小方格),每对小方格中所填之数的差均不小于10。
E C
A B。