哈夫曼树

合集下载

哈夫曼树定义

哈夫曼树定义

哈夫曼树定义
哈夫曼树是一种二叉树,它用来表示一组符号权值的最优编码。

它应用于编码论,通常用来代表数据权值的树。

哈夫曼树是指一种最短带宽传输时能够有效工作的最优编码树。

哈夫曼树是每个节点都包含一个权值的二叉树。

它的定义如下:每一个权值所构成的数据集合,其最优树形式是每一个数据项的权值都比它的子节点的权值大,最终形成一个哈夫曼树。

哈夫曼树的构建一般是以权值的大小为基础进行的,权值越大,在哈夫曼树上就越靠近根节点,在结点之间的路径越短,这样便可以减少树的总长度,可以加快数据的传输速度。

此外,哈夫曼树还可以用于实现多种额外的功能。

哈夫曼树的构建有一种特别的方法,叫做“哈夫曼编码”,它采用“编码”和“解码”的方法来把一个数据集分成不同的组,这些组就是哈夫曼树的节点。

每组的数据都含有一个权值,当这些组被组合到一起时,它们就构成了一棵哈夫曼树。

哈夫曼树的建立是低耗时的,最优建立方式是将权值数组排序,然后依次添加,添加过程为:先将最小的两个数字添加到根节点,再将它们的和也添加到根节点,重复此过程,直到所有数字都被添加完为止。

哈夫曼树在编码的时候,如果一个字符出现的次数越多,它的权值就越大,它就越接近根节点。

数据结构哈夫曼树和哈夫曼编码权值

数据结构哈夫曼树和哈夫曼编码权值

数据结构哈夫曼树和哈夫曼编码权值一、引言在计算机领域,数据结构是非常重要的一部分,而哈夫曼树和哈夫曼编码是数据结构中非常经典的部分之一。

本文将对哈夫曼树和哈夫曼编码的权值进行全面评估,并探讨其深度和广度。

通过逐步分析和讨论,以期让读者更深入地理解哈夫曼树和哈夫曼编码的权值。

二、哈夫曼树和哈夫曼编码的基本概念1. 哈夫曼树哈夫曼树,又称最优二叉树,是一种带权路径长度最短的二叉树。

它的概念来源于一种数据压缩算法,可以有效地减少数据的存储空间和传输时间。

哈夫曼树的构建过程是基于给定的权值序列,通过反复选择两个最小权值的节点构建出来。

在构建过程中,需要不断地重排权值序列,直到构建出一个满足条件的哈夫曼树。

2. 哈夫曼编码哈夫曼编码是一种变长编码方式,它利用了哈夫曼树的特点,对不同的字符赋予不同长度的编码。

通过构建哈夫曼树,可以得到一套满足最优存储空间的编码规则。

在实际应用中,哈夫曼编码经常用于数据压缩和加密传输,能够有效地提高数据的传输效率和安全性。

三、哈夫曼树和哈夫曼编码的权值评估1. 深度评估哈夫曼树和哈夫曼编码的权值深度值得我们深入探究。

从构建哈夫曼树的角度来看,权值决定了节点在树中的位置和层次。

权值越大的节点往往位于树的底层,而权值较小的节点则位于树的高层。

这种特性使得哈夫曼树在数据搜索和遍历过程中能够更快地找到目标节点,提高了数据的处理效率。

而从哈夫曼编码的角度来看,权值的大小直接决定了编码的长度。

权值越大的字符被赋予的编码越短,可以有效地减少数据传输的长度,提高了数据的压缩率。

2. 广度评估另哈夫曼树和哈夫曼编码的权值也需要进行广度评估。

在构建哈夫曼树的过程中,权值的大小直接影响了树的结构和形状。

当权值序列较为分散时,哈夫曼树的结构会更加平衡,节点的深度差异较小。

然而,当权值序列的差异较大时,哈夫曼树的结构也会更不平衡,而且可能出现退化现象。

这会导致数据的处理效率降低,需要进行额外的平衡调整。

简述哈夫曼树的定义

简述哈夫曼树的定义

简述哈夫曼树的定义哈夫曼树是一种重要的二叉树,它有着广泛的应用,是许多计算机系统中常用的数据结构。

哈夫曼树是一种完全二叉树,其中任意一个结点都有左右子树,叶子结点只有左子树或者右子树。

它是根据“最优化原则”建立的,目的是使总代价最低。

它是一种最高效率、最具有利用价值的数据结构,因此深受广大科学家和技术工作者的喜爱。

简而言之,哈夫曼树是一种带权路径长度最小的二叉树,即它的任一非叶子结点的权值之和等于所有叶子结点的权值之和。

它的定义如下:将n个权值不同的叶子结点组成的n棵二叉树,它们的带权路径长度之和最小称为哈夫曼树。

哈夫曼树的带权路径长度指的是从根节点到叶子节点的路径上结点权值的乘积之和,它是求解最优二叉树的重要参数。

哈夫曼树可分为正哈夫曼树和负哈夫曼树,它们的不同之处在于哈夫曼树的根节点权值是正数或者负数,而负哈夫曼树的根节点权值总是负数。

哈夫曼树的构造方法是从叶子结点开始,依次将权值较小的两棵二叉树合并,然后将这两棵子树的权值之和作为新的父母亲结点,新的子树的根节点的权值就是这两个结点的权值之和。

构造方法至将所有的n个结点合并为一棵树,最后得到的哈夫曼树即为最优二叉树。

哈夫曼树是最优二叉树,在许多需要使用最优二叉树的算法中均可运用,如字符编码算法、矩阵乘法算法、最短路径算法等,它的应用非常广泛。

哈夫曼树的设计既可以给出解决问题的最佳答案,又能将数据结构设计得非常有效。

哈夫曼树可以帮助计算机系统显著提高性能,在网络通信、数据压缩、资源分配等方面均有用处。

总而言之,哈夫曼树是一种完全二叉树,其中每一个结点都有左右子树,根据“最优化原则”建立,其带权路径长度最小,广泛应用于计算机系统中。

它可以有效地解决许多计算机系统中的性能瓶颈问题,无论是在数据组织方面还是在计算机系统性能提升方面都有重要的意义。

哈夫曼树

哈夫曼树

哈夫曼树及其应用一、基本术语1.路径和路径长度在一棵树中,从一个结点往下可以达到的孩子或子孙结点之间的通路,称为路径。

通路中分支的数目称为路径长度。

若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1。

2.结点的权及带权路径长度若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。

结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积。

3.树的带权路径长度树的带权路径长度(Weighted Path Length of Tree):也称为树的代价,定义为树中所有叶结点的带权路径长度之和,通常记为:其中:n表示叶子结点的数目wi和li分别表示叶结点ki的权值和根到结点ki之间的路径长度。

二、哈夫曼树构造1.哈夫曼树的定义在权为w l,w2,…,w n的n个叶子所构成的所有二叉树中,带权路径长度最小(即代价最小)的二叉树称为最优二叉树或哈夫曼树。

【例】给定4个叶子结点a,b,c和d,分别带权7,5,2和4。

构造如下图所示的三棵二叉树(还有许多棵),它们的带权路径长度分别为:(a)WPL=7*2+5*2+2*2+4*2=36(b)WPL=7*3+5*3+2*1+4*2=46(c)WPL=7*1+5*2+2*3+4*3=35其中(c)树的WPL最小,可以验证,它就是哈夫曼树。

2.哈夫曼树的构造假设有n个权值,则构造出的哈夫曼树有n个叶子结点。

n 个权值分别设为w1,w2,…,wn,则哈夫曼树的构造规则为:(1) 将w1,w2,…,wn看成是有n 棵树的森林(每棵树仅有一个结点);(2) 在森林中选出两个根结点的权值最小的树合并,作为一棵新树的左、右子树,且新树的根结点权值为其左、右子树根结点权值之和;(3)从森林中删除选取的两棵树,并将新树加入森林;(4)重复(2)、(3)步,直到森林中只剩一棵树为止,该树即为我们所求得的哈夫曼树。

下面给出哈夫曼树的构造过程,假设给定的叶子结点的权分别为1,5,7,3,则构造哈夫曼树过程如下图所示。

数据结构第六章 哈夫曼树

数据结构第六章 哈夫曼树

6.3哈夫曼树6.3.1基本术语1.路径和路径长度若在一棵中存在着一个结点序列k1 ,k2,…,kj,使得ki是k1+i 的双亲(1ji<≤),则称此结点序列是从k1~kj的路径,因树中每个结点只有一个双亲结点,所以它也是这两个结点之间k 1~kj所经过的分支数称为这两点之间的路径长度,它等于路径上的结点数减1(实际就是边数)。

如在图5-19(a)所示的二叉树中,从树根结点L到叶子结点P的路径为结点序列L、M、S、P,路径长度为3。

(a) (b)(c) (d)图5-19 二叉排序树的删除2.结点的权和带权路径长度在许多应用中,常常将树中的结点赋上一个有着某种意义的实数,我们称此实数为该结点的权。

结点的带权路径长度规定为从树根结点到该结点之间的路径长度与该结点上权的乘积3.树的带权路径长度树的带权路径长度定义为树中所有叶子结点的带权路径长度这和,通常记为:2 WPL = ∑=n i i i lw 1其中n 表示叶子结点的数目,i w 和i l 分别表示叶子结点i k 的权值和根到i k 之间的路径长度 。

4.哈夫曼树哈夫曼(Huffman)树又称最优二叉树。

它是n 个带权叶子结点构成的所有二叉树中,带权路径长度 WPL 最小的二叉树。

因为构造这种树的算法是最早由哈夫曼于1952年提出的,所以被称之为哈夫曼树。

例如,有四个叶子结点a 、b 、c 、d ,分别带权为9、4、5、2,由它们构成的三棵不同的二叉树(当然还有其它许多种)分别如图5-20(a)到图5-20(c)所示。

b ac a b cd d c a b d(a) (b) (c)图5-20 由四个叶子结点构成的三棵不同的带权二叉树 每一棵二叉树的带权路径长度WPL 分别为:(a) WPL = 9×2 + 4×2 + 5×2 + 2×2 = 40(b) WPL = 4×1 + 2×2 + 5×3 + 9×3 = 50(c) WPL = 9×1 + 5×2 + 4×3 + 2×3 = 37其中图5-20(c)树的WPL 最小,稍后便知,此树就是哈夫曼树。

哈夫曼树的定义

哈夫曼树的定义

哈夫曼树的定义
哈夫曼树的定义:给定n个权值作为n个叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树。

扩展资料:
哈夫曼树也可以是k叉的,只是在构造k叉哈夫曼树时需要先进行一些调整。

构造哈夫曼树的思想是每次选k个权重最小的元素来合成一个新的元素,该元素权重为k个元素权重之和。

但是当k大于2时,按照这个步骤做下去可能到最后剩下的元素少于k个。

解决这个问题的办法是假设已经有了一棵哈夫曼树(且为一棵满k叉树),则可以计算出其叶节点数目为(k-1)nk+1,式子中的nk表示子节点数目为k的节点数目。

于是对给定的n个权值构造k叉哈夫曼树时,可以先考虑增加一些权值为0的叶子节点,使得叶子节点总数为(k-1)nk+1这种形式,然后再按照哈夫曼树的方法进行构造即可。

哈夫曼树.ppt


n
w i pi
最小,其中
i 1
Wi是第i个字符的使用频度,而Pi是第i个字符的编码长度, 这正是度量报文的平均长度的式子。
2020/3/5
21
例2:要传输的电文是{CAS;CAT;SAT;AT}
要传输的字符集是 D={C,A,S,T, ;}
每个字符出现的频率是W={ 2,4, 2,3, 3 }
PL=0+1+1+2+2=6
2020/3/5
9
问题2:什么样的带权树路径长度最小?
例如:给定一个权值序列{2,3,4,7},可构造的多种 二叉树的形态。
2
3
4
7
2 34 7
(a) WPL=2×2+2×3+2×4+2×7=32 (b) WPL=1×2+2×3+3×4+3×7=41
2020/3/5
7
4
3
2
(c) WPL=1×7+2×4+3×3+3×2=30
10
哈夫曼树的构造
例:给定权值{7,5,2,4},构造哈夫曼树。
6
方法: 75 2 4
75
(1)a 初始b化:由c 原始d数据生成森林a ; b c
d
(次2小)的找二最叉小(树a树) 作:为在左森右林子中树选构取造两一棵棵根新结的点二权叉值树最(,小b)其的根和
A)先序遍历
B)中序遍历
C)后序遍历
D)从根开始进行层次遍历
2、某二叉树的先序序列和后序序列正好相反,则该二叉
树一定是( B )的二叉树。
A)空或只有一个结点
B)高度等于其结点数
C)任一结点无左孩子
D)任一结点无右孩子

哈夫曼树的实际应用

哈夫曼树的实际应用
哈夫曼树(Huffman Tree)是一种重要的数据结构,它在信息编码和压缩、数据传输和存储、图像处理等领域有广泛应用。

1. 数据压缩:哈夫曼树是一种无损压缩的方法,能够有效地减小数据的存储空间。

在进行数据压缩时,可以使用哈夫曼树构建字符编码表,将出现频率较高的字符用较短的编码表示,而出现频率较低的字符用较长的编码表示,从而减小数据的存储空间。

2. 文件压缩:在文件压缩领域,哈夫曼树被广泛应用于压缩算法中。

通过构建哈夫曼树,可以根据字符出现的频率来生成不同长度的编码,从而减小文件的大小。

常见的文件压缩格式如ZIP、GZIP等都使用了哈夫曼树。

3. 图像压缩:在图像处理中,哈夫曼树被用于图像压缩算法中。

通过将图像中的像素值映射为不同长度的编码,可以减小图像的存储空间,提高图像传输和存储的效率。

常见的图像压缩格式如JPEG、PNG等都使用了哈夫曼树。

4. 文件传输:在数据传输中,哈夫曼树被用于数据压缩和传输。

通过对数据进行压缩,可以减小数据的传输时间和带宽占用。

在传输过程中,接收方可以通过哈夫曼树解码接收到的数据。

5. 数据加密:在数据加密中,哈夫曼树可以用于生成密钥,从而实现数据的加密和解密。

通过将字符映射为不同长度的编码,可以实
现对数据的加密和解密操作。

哈夫曼树在信息编码和压缩、数据传输和存储、图像处理等领域有广泛应用,能够有效地减小数据的存储空间、提高数据传输效率、实现数据加密等功能。

哈夫曼树长度计算

哈夫曼树长度计算
哈夫曼树(Huffman Tree)是一种特殊的二叉树,通常用于数据压缩等领域。

在哈夫曼树中,每个叶子节点都对应一个权值(或频率),而非叶子节点的权值则等于其左右子节点权值之和。

哈夫曼树的构建过程是根据节点权值,不断选取权值最小的两个节点进行合并,直到只剩下一个根节点为止。

哈夫曼树的长度通常是指其带权路径长度(WPL,Weighted Path Length),即树中所有叶子节点的带权路径长度之和。

带权路径长度是指从根节点到该叶子节点的路径长度与该叶子节点权值的乘积。

计算哈夫曼树的长度(WPL)通常按照以下步骤进行:
根据给定的权值(或频率)构建哈夫曼树。

计算每个叶子节点的带权路径长度。

从根节点到叶子节点的路径长度可以通过从叶子节点向上回溯到根节点,累加每条边的权值得到。

叶子节点的带权路径长度则是该路径长度与叶子节点权值的乘积。

将所有叶子节点的带权路径长度相加,得到哈夫曼树的长度(WPL)。

需要注意的是,哈夫曼树的构建和长度计算通常使用优先队列(如最小堆)来优化过程,以提高效率。

在实际应用中,哈夫曼编码就是基于哈夫曼树的一种数据压缩方法,通过将出现频率
较高的字符编码为较短的二进制串,从而实现数据压缩。

数据结构哈夫曼树课件


总结词
优化、提升
详细描述
基于哈夫曼树的网络流量分类算法的优化策 略主要从以下几个方面进行优化和提升:一 是优化哈夫曼树的构造算法,提高树的构造 效率和准确性;二是利用多级哈夫曼编码技 术,降低编码和解码的时间复杂度;三是引 入机器学习算法,对网络流量特征进行自动
提取和分类,进一步提升分类准确率。
THANKS
基于堆排序的构造算法
总结词:堆排序是一 种基于比较的排序算 法,它利用了堆这种 数据结构的特点,能 够在O(nlogn)的时间 内完成排序。在哈夫 曼树的构造中,堆排 序可以用来找到每个 节点的父节点,从而 构建出哈夫曼树。
详细描述:基于堆排 序的构造算法步骤如 下
1. 定义一个最大堆, 并将每个节点作为一 个独立的元素插入到 堆中。每个元素包含 了一个节点及其权值 。
哈夫曼编码的基本概念
哈夫曼编码是一种用于无损数据压缩的熵编码算法,具有较高的编码效率和较低的 编码复杂度。
它利用了数据本身存在的冗余和相关性,通过构建最优的前缀编码来实现高效的数 据压缩。
哈夫曼编码是一种可变长编码,其中每个符号的编码长度取决于它在输入序列中出 现的频率。
哈夫曼编码的实现方法
构建哈夫曼树
节ቤተ መጻሕፍቲ ባይዱ。
优化编码长度
在分配码字时,通过一些策略优化 编码长度,例如给高频符号更短的 码字。
可变长度编码
为了提高压缩比,可以使用可变长 度编码,即对于高频符号赋予更短 的码字,对于低频符号赋予更长的 码字。
04
哈夫曼树在数据压 缩中的应用
基于哈夫曼编码的数据压缩算法
哈夫曼编码是一种可变长度的 编码方式,通过统计数据的出 现频率来构建哈夫曼树,实现 数据压缩。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

*******************实践教学*******************兰州理工大学计算机与通信学院2007年春季学期算法与数据结构课程设计题目:赫夫曼编译码器设计专业班级:软件工程05-1班姓名:张龙学号:05350507指导教师:王燕成绩:目录摘要 (1)前言 (2)正文 (3)1.采用类C语言定义相关的数据类型 (3)2.各模块的伪码算法 (7)3.函数的调用关系图 (13)4.调试分析 (13)5.测试结果 (14)6.源程序(带注释) (14)总结 (20)参考文献 (20)附件Ⅰ部分源程序代码 (21)摘要哈夫曼编译码器主要用于通信领域,能够实现数据的快速,有效的传输。

它利用哈夫曼树对数据进行编码,形成前缀编码,实现数据的有效压缩存放。

然后又通过某种遍历实现译码,从而达到快速远距离通信的目的。

关键词:哈夫曼树;前缀编码;译码前言利用哈夫曼编码进行通信可以大大提高信道利用率,缩短信息传输时间,降低传输成本。

但是,这要求在发送端通过一个编码系统对待传数据预先编码,在接收端将传来的数据进行译码(复原)。

对于双工信道(即可以双向传输信息的信道),每端都需要一个完整的编/译码系统。

试为这样的信息收发站写一个哈夫曼码的编/译码系统。

通过该题目的设计过程,可以加深理解树及二叉树的逻辑结构、存储结构,掌握树及二叉树上基本运算的实现。

进一步理解和熟练掌握课本中所学的各种数据结构,学会如何把学到的知识用于解决实际问题,培养学生的动手能力。

正文1.采用类c语言定义相关的数据类型(1)结构体定义typedef struct{ int weight;char ch;int parent,lchild,rchild;}HTNode,*HuffmanTree; //动态分配数组存贮哈夫曼树。

typedef struct{char ch;char *chs;}HuffmanCode;typedef struct{char ch;int weight;}sw;typedef struct{HuffmanTree HT;HuffmanCode *HC;}huf;//哈夫曼树结构体。

从HT[i-1]选择parent为零且weight最小的两个节点,分别编号为n1,n2. (2)调用函数1)在给定权值中选择权值最小的两个节点。

void select(HTNode * HT,int n,int *n1,int *n2){int i=1; int n3;while(HT[i].parent!=0)i++;*n1=i;i++;while(HT[i].parent!=0) i++;*n2=i;if(HT[*n1].weight<HT[*n2].weight){ n3=*n1;*n1=*n2;*n2=n3;}for(i++;i<=n;i++){if(HT[i].parent==0){ if(HT[i].weight<HT[*n1].weight)*n1=i;else if(HT[i].weight<HT[*n2].weight)*n2=i;}}}2)进行哈夫曼编码。

huf * HuffmanCoding(HuffmanTree HT,HuffmanCode *HC,sw *w,int n,huf *HUF)//w存放n个字符的权值(均>0),构造哈夫曼树HT,并求出n个字符的哈夫曼编码HC.{int m,i,s1,s2,start,c,f;HuffmanTree p;char *cd;if(n<=1) return 0;m=2*n-1;HT=(HuffmanTree)malloc((m+1)*sizeof(HTNode));//零号单元未用。

for(p=HT+1,i=1;i<=n;i++,p++,w++){p->weight=w->weight;p->ch=w->ch;p->parent=0;p->lchild=0;p->rchild=0;} for(;i<=m;i++,p++){p->weight=0;p->ch='^';p->parent=0;p->lchild=0;p->rchild=0;}for(i=n+1;i<=m;i++)//建立哈夫曼树。

{select(HT,i-1,&s1,&s2);HT[s1].parent=i;HT[s2].parent=i;HT[i].lchild=s1;HT[i].rchild=s2;HT[i].weight=HT[s1].weight+HT[s2].weight;}//为哈夫曼编码审请空间。

HC=(HuffmanCode *)malloc((n+1)*sizeof(char));cd=(char *)malloc(n*sizeof(char));cd[n-1]='\0';for(i=1;i<=n;i++){ start=n-1;for(c=i,f=HT[i].parent;f!=0;c=f,f=HT[f].parent)if(HT[f].lchild==c)cd[--start]='0';else cd[--start]='1';HC[i].ch=HT[i].ch;HC[i].chs=(char*)malloc((n-start)*sizeof(char));strcpy(HC[i].chs,&cd[start]);printf("%c %-10s\n",HC[i].ch,HC[i].chs);}HUF->HT=HT;HUF->HC=HC;return HUF;}char * convert(char *chars,char *chars1,HuffmanCode *hc,int n) {char *p=chars; int i;strcpy(chars1,"");while(*p){i=1; while(hc[i].ch!=*p&&i<=n) i++;strcat(chars1,hc[i].chs); p++;}printf("the chars translate are:%s\n",chars1);return chars1;}3)译码。

void transcode(HuffmanTree ht,char *chars2,char*chars3) {int i=1,p; char *q=chars2;char *r=chars3;while(ht[i].parent!=0) i++;p=i;while(*q){while(ht[p].lchild!=0 && *q){if(*q=='0')p=ht[p].lchild;else p=ht[p].rchild;q++;}if(ht[p].lchild==0){*r=ht[p].ch;r++;}p=i;}*r='\0';printf("the chars are:");puts(chars3);}}void input(int *n,sw *w){int i;printf("input the mount of char:");scanf("%d",n);for(i=1;i<=*n;i++,w++){printf("input the %dth char and weight:",i);fflush(stdin);scanf("%c%d",&w->ch,&w->weight);4)主函数。

void main(){HTNode HT;HuffmanCode HC,*hc;HuffmanTree ht;huf *HUF,huf2;int n;sw w[40];char ch,inchar[500],outchar[1000];char *abc;char *p=inchar;input(&n,w);HUF=HuffmanCoding(&HT,&HC,w,n,&huf2);printf("input chars to translate:");fflush(stdin);//清除流,解决输入干扰ch=getchar();while(ch!='#'){*p=ch;p++;ch=getchar();}*p='\0';hc=HUF->HC;ht=HUF->HT;abc=convert(inchar,outchar,hc,n);transcode(ht,abc,outchar);}2.各模块的伪码算法1)节点结构体定义typedef structint weight;char ch;int parent,lchild,rchild;}HTNode,*HuffmanTree; //动态分配数组存贮哈夫曼树。

2)哈夫曼编码结构体定义。

typedef struct{char ch;char *chs;}HuffmanCode;3)根节点结构体定义。

typedef struct{char ch;int weight;}sw;4)哈夫曼树结构体定义。

typedef struct{HuffmanTree HT;HuffmanCode *HC;}huf;4)从HT[i-1]选择parent为零且weight最小的两个节点,分别编号为n1,n2. void select(HTNode * HT,int n,int *n1,int *n2){int i=1; int n3;while(HT[i].parent!=0)i++;*n1=i;i++;while(HT[i].parent!=0) i++;*n2=i;if(HT[*n1].weight<HT[*n2].weight){ n3=*n1;*n1=*n2;*n2=n3;}for(i++;i<=n;i++){if(HT[i].parent==0){ if(HT[i].weight<HT[*n1].weight)*n1=i;else if(HT[i].weight<HT[*n2].weight)*n2=i;}}}5)w存放n个字符的权值(均>0),构造哈夫曼树HT,并求出n个字符的哈夫曼编码HC.huf * HuffmanCoding(HuffmanTree HT,HuffmanCode *HC,sw *w,int n,huf *HUF){int m,i,s1,s2,start,c,f;HuffmanTree p;char *cd;if(n<=1) return 0;m=2*n-1;HT=(HuffmanTree)malloc((m+1)*sizeof(HTNode));//零号单元未用。

相关文档
最新文档