直井定向井井斜控制共76页文档
第五章:井斜及其控制

(2)井斜角(α): 井斜角( )
指井眼方向线与重力线之间的夹角。单位为度( 指井眼方向线与重力线之间的夹角。单位为度(°)。 井眼方向线: 井眼方向线: 过井眼轴线上某测点作 过井眼轴线上某测点作 轴线上 井眼轴线的切线, 井眼轴线的切线,该切线向 井眼前进方向延伸的部分称 为井眼方向线。 为井眼方向线。 井斜角增量( ∆α ): 井斜角增量( 下测点井斜角与上测点 井斜角之差。 井斜角之差。
1磁铁定向法双罗盘定向法双罗盘测斜仪定向磁铁安装在无磁钻铤上上罗盘处在定向磁铁位置指针标志工具面方位下罗盘远离定向磁铁指针指向正北方位
钻井工程
井斜及其控制
——钻井工程
重庆科技学院石油工程学院制作
第五章 井斜及其控制
本节主要内容: 本节主要内容:
第一节 第二节 井斜及其控制标准 井斜原因
第三节 控制井斜的措施 第四节 虹吸测斜仪
二、衡量井斜的参数
目的:掌握有关参数的概念及这些参数之间的关系。 目的:掌握有关参数的概念及这些参数之间的关系。
1.轨迹的基本参数
测量方法:非连续测量,间断测量。 测段” 测点” 测量方法:非连续测量,间断测量。“测段”,“测点”。 井深、井斜角和井斜方位角----轨迹的三个基本参数。 轨迹的三个基本参数。 井深、井斜角和井斜方位角 轨迹的三个基本参数 (1)井深(或称为斜深、测深) 井深(或称为斜深、测深) 井口(通常以转盘面为基准)至测点的井眼长度。 井口(通常以转盘面为基准)至测点的井眼长度。 以字母D 表示,单位为米(m) (m)。 以字母Dm表示,单位为米(m)。 井深增量(井段) 下测点井深与上测点井深之差。 井深增量(井段):下测点井深与上测点井深之差。 表示。 以ΔDm表示。
(a) 井斜曲率对比图 (b)
直井定向井井斜控制

最大特点:柱面展平后,井眼长度和井斜角都保持不变。
优点:
凭着这两张图,即可了解井眼的空间形状,可以反映出井
身参数的真实值,作图容易,利用测斜资料算出每个测点 的坐标位置,即可作图。
H
§3-3 直井钻井技术
三、井斜的危害 1、使井眼偏离设计井位 ,将打 乱油气田开发的布井方案。 2、使井深发生误差,使所得的地 质资料不真实。 3、给钻井工作增加困难,甚至造 成井下复杂事故。 4、使钻柱磨损和折断或造成井壁 坍塌及键槽卡钻等事故。 5、下套管困难,套管居中,影响 固井质量。 6、影响采油及注水工作,常引起 油管和抽油杆的磨损和折断,甚至 造成严重的井下事故。 所以,井斜过大对油气田的勘探 和开发都有很大危害。如何控制井 斜是钻井工作的一个重要课题。
(2)层状地层对井斜的影响
钻头在倾斜的层状地层中钻进时,当钻至每个层面交界处时,此处岩层不能长时 间支持所加的钻压而趋向沿垂直层面发生破碎。在井眼上倾一侧的小斜台很容易 钻掉。相反,在井眼下倾一侧却残留一个小斜台;它就向小变向器作用一样,对 钻头施加一个横向力,把钻头推向上倾的一侧,从而引起井斜。
参数的真实值。
井眼轴线的图示法
二、柱面图表示法:
包括两张图:
一张是水平投影图,相当于俯视图,与投影图表示法相同; 一张是垂直剖面图(横坐标 P,纵坐标D或 H),与垂直投影
图不同,它不是在某个铅垂平面上的投影。
垂直剖面图的形成:实钻井眼是一条空间曲线,设想经过
这条曲线上的每一个点作一条铅垂线,所有这些铅垂线就构成 了一个曲面。
2、钻具原因
钻具导致井斜的主要因素是钻 具的倾斜和弯曲。一是引起钻头 倾斜,在井底形成不对称切削; 二是使钻头受到侧向力的作用, 迫使钻头进行侧向切削。 (1)导致钻具的倾斜和弯曲的 原因: ①由于钻具直径小于井眼直径 钻具和井眼之间有一定的间隙。 ②钻压使下部钻具受压弯曲。 弯曲钻柱将使靠近钻头的钻具弯 曲更大。 ③下入井内的钻具本来就是倾 斜和弯曲的。
定向井井斜与方位控制.

cos 2 cos1 cos sin 1 sin cos sin sin tg sin 1 cos cos1 sin cos sin 2 sin sin sin
sin cos sin 2 sin 2 1 sin 2 tg 2 sin sin(1 1 )
定向井的井斜与方位控制
装置角定义: 井斜铅垂面顺时针
井底平面
旋至造斜工具面所转 过的角度。
高边
工具面 井斜铅垂面
井斜铅垂面与造
斜工具面之间的夹角
低边
。
水平面
定向井的井斜与方位控制
a.直井情况, b.水平井情况
因井斜铅垂面、造斜工 具面均与井底平面垂直、故 可在井底平面上量度。 在井底平面上,造斜工 具装置角等于以井斜铅垂面 与井底平面的交线(高边方 向线)为始边,顺时针转到 造斜工具面与井底平面的交 线所转过的角度。
水平面 井底平面
N
定向井的井斜与方位控制
(1) 装置角对井斜
的影响:
锁住转盘,扭 方位井段是造斜工具 面上的一段园弧。 (保持装置方位角不变 ,斜面法扭方位)
A
井斜铅垂面
B
水平面
定向井的井斜与方位控制
A
井斜铅垂面
B
水平面
定向井的井斜与方位控制
(1) 装置角对井斜的影响:
锁住转盘,扭方位井段是 造斜工具面上的一段园弧。
D
定向井的井斜与方位控制
B、讨论:
=0──>cos2=cos(1+)-->2= 1+ 增斜 =180─>cos2=cos(1-)-->2= 1- 降斜 A =90 ─>cos2=cos1cos-->21( 小)稳斜
定向井讲课

3
三 、 定 向 工 序 (1)熟悉设计数据,A、造斜点深度,B、设计井斜角和方位角,C、 设计造斜率,依据设计造斜率来选择定向造斜钻具组合,D、本地区磁 偏角。F、本区块方位漂移情况,为了减少方位调整次数,要合理确定 定 向 初 始 方 位 角 。 ( 2 ) 选 择 合 理 的 定 向 造 斜 钻 具 组 合 根据设计造斜率大小,选择定向弯接头度数或选择弯壳体动力钻具 的 弯 套 度 数 , 进 而 确 定 定 向 造 斜 钻 具 组 合 。 (3)一般情况钻至井斜角5°~10°,方位符合所要施工的要求,起 出定向造斜钻具组合,更换转盘钻具组合。
2、 12-1/4″井眼 (1)常规钻具组合: 12-1/4″钻头+Ф311mm双母稳定器(放档板)+8″无磁钻铤1根+8″ 钻铤0.5~1根+Ф311mm稳定器+8″钻铤1根+Ф311mm稳定器+8″钻铤 +5″加重钻杆+5″钻杆 (2)吉利杠钻具组合(强力增斜钻具) 12-1/4″钻头+Ф311mm双母稳定器(放档板)+6-1/4″无磁钻铤 1.5~2根+Ф311mm稳定器+8″钻铤1根+Ф311mm稳定器+8″钻铤+5″加 重钻杆+5 ″钻杆 钻进参数: (1)常规钻具组合: 钻压:200~220kN 转速:60~80rpm 排量:35~40l/s (2)吉利杠钻具组合: 钻压:160~180kN转速:60~80rpm排量:35~40l/s 两种钻具组合的对比:普通增斜钻具造斜率低,方位稳定性好,漂移量 小。吉利杠增斜钻具造斜率高,方位稳被送入无磁钻铤时,斜口管鞋的键槽在斜口的导向作用下, 骑在定向弯接头的定向键上,这样形成仪器刻度线、悬挂头母线、斜口 管鞋母线、定向弯接头弯曲方向在同一母线上,当钻具坐在转盘上等仪 器照相时,在转盘上的钻杆接头上作一记号并与转盘上作的记号(起始 点)重合,这时弯接头弯曲方向被记录下来,度读取井斜角、井斜方位 角和磁性工具面角,选定方钻杆标记,量取方钻杆标记与钻杆记号的偏 差角,通过转动方钻杆就可以把弯接头弯曲方向转到所要求的方位上。 钻进完成定向造斜施工。 高边工具面法:是磁性单点测斜仪和电子 单多点测斜仪配合斜口管鞋,利用高边工具面角定向造斜和扭方位的一 种方法。目前现场普遍采用的方法。适用于井斜角大于8°的施工作业。 上面所讲的两种方法,无论是用磁性测斜仪,还是用电子单多点测 斜仪,均称为单点定向施工,只能把仪器送到井下测量后起出地面读数 据 , 分 析 判 断 施 工 。 主要使用测斜仪器、测斜钢丝绞车、定向杆件、无磁钻铤、定向弯 接头、螺杆动力钻具等仪器设备。
直井定向井井斜控制-文档资料

①由于钻具直径小于井眼直径 钻具和井眼之间有一定的间隙。
②钻压使下部钻具受压弯曲。 弯曲钻柱将使靠近钻头的钻具弯 曲更大。
③下入井内的钻具本来就是倾 斜和弯曲的。
(2)钻柱的一、二次弯曲对 井斜的影响
钻井实践表明,轻压吊打, 井打的比较直,钻铤稳定垂直, 但钻压小钻速慢头如图 a 。钻压 逐步增大,当增至某一值p1时下 部钻铤失去稳定状态,产生图 b 的一次曲,钻铤与井壁相切于切 点1。P1是使钻铤丧失稳定的轴向 压力的临界值称为一次弯曲临界 钻压,钻头倾角增大;如果再增 大钻压,弯曲程度继续增大,切 点不断下移,如图 c.钻头倾角继
钻进通过层状地层时井眼偏斜的原因
钻头在不同方向上的破碎速度
(4)岩性软硬交错变化对井斜的影 响
当钻头从软地层进入硬地层时, 如图(a)所示。钻头在A测接触到 硬岩石,而在B侧还是软岩石,这样 在钻压作用下,由于A侧岩石的硬度 大,可钻性小,钻头刀刃吃入地层 少,钻速慢;而在B侧岩石的硬度 小,可钻性大,钻头刀刃吃入地层 多,钻速快。这样钻出井眼自然会 偏斜。另外,由于钻头两侧受力不 均,在A侧的井底的反力的合力比 B侧大,将产生一个弯距M,扭转钻 头,使其沿着地层上倾方向发生倾 斜。
答:真方位角=3570
2. 我国新疆克拉玛依油 田的磁偏角大约是东偏 4.10。某测点测得井斜 方位角为3580,求真方 位角=?
答:真方位角=2.10
3. 西磁偏角5.50,测得方位 角292.50,求真方位角=? 如果用象限角表示,象限角 =?
答:真方位角=2870;
测得象限角=N67.50W;校正 后象限角=N730W;
3. 西磁偏角5.50,测得 方 位 角 292.50 , 求 真 方 位角=?如果用象限角 表示,象限角=?
定向井钻井轨迹控制

新文38-33 F1924C
新濮3-402
濮6-122 文79-131
GP545
GP545 GP545
2732-2960
3643-3860 3080-3351
40-60
60-80 40-50
58
58 58
28
28 28
17
18 16
40↓39
37.5↓33 29↓28.5
285
295↓292 310↑312
定向钻井技术
轨迹控制方法
第七节 定向井轨迹控制技术
直井段 (防斜打直)
转盘钻+防斜钻具组合 复合钻进(直螺杆/小弯角螺杆)
概念:从垂直井段的造斜点开始,使井眼沿一 定的方位
轨 迹 控 制
偏斜的作业
定向 造斜
沿一定方位造斜至一定角度,用 直螺杆+弯接头 增斜组合增斜至要求的井斜角
方法
弯螺杆+直接头 沿一定方位造斜至一定角度,复
Dm
6.88 = 68.8m Kc 10 / 100
如Δφ=-22°,其它不变,ω=? ΔDm=? γ= 6.88°,ω=-75.19°=284.19°,ΔDm= 68.8m。
转盘钻进轨迹控制
转盘钻进轨迹控制:
在转盘钻进的基础上,利用靠近钻头的钻铤部
分,合理的使用扶正器,得到各种性能的钻具组合,实
的横断面是呈倾斜状态的圆平
面,若干个这样的圆平面上最
高点的连线称为高边。
定向井的井斜与方位控制
2、工具面:造斜工具弯曲方
向的平面。
井底平面
3、装置角(重力工具面角): 从井眼高边方向线顺时针旋
工具面 工具面角 井斜铅垂面
定向井钻井直井段井斜控制技术与应用

浅谈定向井钻井直井段井斜控制技术与应用摘要定向井前期施工的直井段的防斜打直,对后期的定向工作带来极大的便利,同时随着各油田勘探开发的进一步深入,在钻井过程中井斜给钻井工程带来一系列的危害,因而钻井过程中的防斜、纠斜技术也越来越引起油田开发人员的重视。
近年来,国内在现场主要使用的是钟摆钻具和满眼钻具,除此之外还发展了偏轴钻具防斜技术、螺杆钻具复合钻进防斜技术等。
文中从井斜原因分析入手,简述控制井斜的原理及其控制技术的发展,对传统的防斜纠斜原理及方法做以重点介绍,介绍了近年来新出现的井斜控制技术。
关键词:直井段,防斜打直,井斜原因,纠斜原理中图分类号:te221 井斜的原因定向井和水平井前期施工的直井段的防斜打直,对后期的定向工作带来极大的便利。
井为什么会斜?找到井斜的原因,就可以提出防斜纠斜的措施。
影响井斜的因素很多,但概括起来可以分为两大类:一类是地质因素,一类是钻具因素。
(1)地质因素.人们提出了许多理论,来解释地质因素导致井斜的原因。
其中,最本质的是地层可钻性的不均匀性和地层的倾斜两个因素。
这种地层可钻性的不均匀性表现在许多方面,再与地层倾斜相结合,导致井眼倾斜。
(1)地层可钻性的各项异性,即地层可钻性在不同方向上的不均匀性。
沉积岩都有这样的特性:垂直层面方向的可钻性高,平行层面方向的可钻性低。
钻头总是有向着容易钻进的方向前进的趋势。
在地层倾斜的情况下,当地层倾角小于45°时,钻头前进方向偏向垂直地层层面的方向,于是偏离铅垂线。
在地层倾角超过60°以后,钻头前进方向则是沿着平行地层层面方向下滑,也要偏离铅垂线。
当地层倾角在45-60°之间时,井斜方向属不稳定状态。
(2)地层可钻性的纵向变化。
地层在沉积过程中,由于沉积环境的不同和变化,形成了沿垂直于地层层面方向可钻性的变化,俗称“软硬交错”,这里的“纵向变化”是指沿钻头轴线方向遇到这种“软硬交错”。
由于地层倾斜,钻头底面上,遇到“软”地层的一侧容易钻,该侧的钻速高;而另一侧遇到“硬”地层则钻速低。
定向井、水平井井身轨迹控制资料

第三章定向井、水平井井身轨迹控制技术第一节定向井、水平井井眼轨迹控制理论无论是定向井,还是水平井,控制井眼轨迹的最终目的都是要按设计要求中靶。
但因水平井的井身剖面特点、目的层靶区的要求等与普通定向井和多目标井不同,在井眼轨迹控制方面具有许多与定向井、多目标井不同的新概念,需要建立一套新的概念和理论体系来作为水平井井眼轨迹控制的理论依据和指导思想。
我们在长、中半径水平井的井眼轨迹控制模式的形成和验证过程中,针对不断出现的轨迹控制问题,建立了适应于水平井轨迹控制特点的几个新概念。
一、水平井的中靶概念地质给出的水平井靶区通常是一个在目的层内以设计的水平井眼轨道为轴线的柱状靶,其横截面多为矩形或圆。
我们可以把这个柱状靶看成是由无数个相互平行的法面平面组成,因此,控制水平井井眼轨迹中靶,与普通定向井、多目标井是个截然不同的新概念,主要体现是:井眼轨迹中靶时进入的平面是一个法平面(也称目标窗口),但中靶的靶区不是一个平面,而是一个柱状体,因此,不仅要求实钻轨迹点在窗口平面的设计范围内,而且要求点的矢量方向符合设计,使实钻轨迹点在进入目标窗口平面后的每一个点都处于靶柱所限制的范围内。
也就是说,控制水平井井眼轨迹中靶的要素是实钻轨迹在靶柱内的每一点的位置要到位(即入靶点的井斜角、方位角、垂深和位移在设计要求的范围内),也就是我们所讲的矢量中靶。
二、水平井增斜井段井眼轨迹控制的特点及影响因素对一口实钻水平井,从造斜点到目的层入靶点的设计垂深增量和水平位移增量是一定的,如果实钻轨迹点的位置和矢量方向偏离设计轨道,势必改变待钻井眼的垂深增量和位移增量的关系,也直接影响到待钻井眼轨迹的中靶精度。
水平井钻井工程设计中所给定的钻具组合是在一定的理论计算和实践经验的基础上得出的,随着理性认识的深化和实践经验总结,设计的钻具组合钻出实际井眼轨迹与设计轨道曲线的符合程度会不断提高。
但是,由于井下条件的复杂性和多变性,这个符合程度总是相对的。