2020年七年级下数学《对顶角、邻补角》练习题 (2)

合集下载

人教版七年级数学下册《邻补角、对顶角的定义及性质》课件ppt

人教版七年级数学下册《邻补角、对顶角的定义及性质》课件ppt

解:(1)∠AOC的邻补角是∠AOD和 ∠COB;∠BOE的邻补角是 ∠EOA和∠BOF.
(2)∠DOA的对顶角是∠COB; ∠EOC的对顶角是∠DOF.
(3)∠BOD=∠AOC= 50°; ∠COB=180°-∠AOC=130°.
D E
A
O
B
F
C
5. 在下图中,花坛转角(红色标注的角)按图纸要求为135°;施工结束 后,要求你检测它是否合格?请你设计检测的方法.
思考 :剪刀剪东西的过程中,你能说说∠AOC与∠AOD,∠AOC与∠BOD这两 对角的位置保持怎样的关系吗?
A
C
O
∠AOC和∠AOD有一条公共边AO,且∠AOC的
另一边是∠AOD另一边的反向延长线.
∠AOC和∠BOD有公共顶点,且∠AOC的两边 分别是∠BOD两边的反向延长线.
DB
一、邻补角的概念 邻补角:如果两个角有一条公共边,它们的另一边互为__反__向__延__长__线__,那 么这两个角互为邻补角.图中∠1的邻补角有__∠__2_,_∠__3___.
人教版 数学 七年级 下册
理解并掌握邻补角和对顶角的概念及性质.
掌握邻补角与对顶角的性质,并能运用它们的性质 进行角的计算及解决简单实际问题..
观察下列图片,说一说直线与直线有什么样的位置关系.
观察下列图片,说一说直线与直线有什么样的位置关系.
观察下列图片,说一说直线与直线有什么样的位置关系.
角的 名称
对 顶 角
邻 补 角
特征
性质 相同点
①两条直线相 交形成的角; ②有公共顶点;
③没有公共边。
对顶 角相 等。
①两条直线相 交而成; ②有公共顶点;
③有一条公共边。

浙教版2020七年级数学下册期中综合复习培优训练题2(附答案详解)

浙教版2020七年级数学下册期中综合复习培优训练题2(附答案详解)
【详解】
解: ,

由光学原理可得 ,
由三角形外角性质可得 ,
在第2次“好的发射”的条件下, ,
在第3次“好的发射”的条件下, ,

若最多能进行n次“好的发射”,则 , 若 ,则反射光线 在 的左侧
解得 ,
故答案为:4.
【点睛】
本题考查了平行线的性质和图形的变化类问题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解 探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
18.化简(2b+3a)(3a﹣2b)﹣(2b﹣3a)(2b+3a),当a=﹣1,b=2时,原式的值是_____.
19.若x=2m,则将y=1+4m+1,则用含x的代数式表示y为______________________.
20.若9x=4,3y=﹣2,则34x﹣3y的值是.
21.
22.如图,在平面直角坐标系中,小方格边长为1,点A,B,P都在格点上.
故答案为
【点睛】
考查代数式的化简求值,掌握整式的乘法法则是解题的关键.
19.
【解析】
试题分析: ,则 .
点睛:本题主要考查的就是幂的几个公式的应用,属于中等难度的题型. , ,解答这个问题的关键就是对这两个公式的运用要非常的熟悉,将所求的量通过公式之间的转化转化为已知的量.
20.﹣2.
【解析】试题分析:∵9x=32x=4,3y=﹣2,
27.如图是一个由4条线段构成的“鱼”形图案,其中∠1=55°,∠2=55°,∠3=125°,找出图中的平行线,并说明理由.
28.计算:
(1)2(y6)2-(y4)3;(2)(ab2c)2÷(ab3c2);

人教数学七年级下全册同步练习-初中数学七年级下册全册同步练习题(含答案,共119页)

人教数学七年级下全册同步练习-初中数学七年级下册全册同步练习题(含答案,共119页)

第五章 相交线与平行线1相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角. 3.对顶角的重要性质是_________________.4.如图,直线AB 、CD 相交于O 点,∠AOE =90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角; ∠2和∠3互为_______角;∠1和∠3互为______角; ∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE -∠______=______°-______°=______°; ∠4=∠______-∠1=______°-______°=______°. 5.如图,直线AB 与CD 相交于O 点,且∠COE =90°,则(1)与∠BOD 互补的角有________________________; (2)与∠BOD 互余的角有________________________; (3)与∠EOA 互余的角有________________________; (4)若∠BOD =42°17′,则∠AOD =__________; ∠EOD =______;∠AOE =______. 二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC (B)∠BOC 和∠AOF (C)∠AOF (D)∠BOE 和∠AOF 8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ). (A)30° (B)45° (C)60°(D)135°9.如图所示,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°三、判断正误10.如果两个角相等,那么这两个角是对顶角.( ) 11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角.( ) 12.有一条公共边的两个角是邻补角.( ) 13.如果两个角是邻补角,那么它们一定互为补角.( ) 14.对顶角的角平分线在同一直线上.( ) 15.有一条公共边和公共顶点,且互为补角的两个角是邻补角.( )综合、运用、诊断一、解答题16.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直. ( ) 11.一条直线的垂线只能画一条. ( ) 12.平面内,过线段AB 外一点有且只有一条直线与AB 垂直. ( ) 13.连接直线l 外一点到直线l 上各点的6个有线段中,垂线段最短. ( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离. ( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离. ( ) 16.在三角形ABC 中,若∠B =90°,则AC >AB . ( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α (B)180°-α(C)α2190+︒ (D)2α-90°18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为P A =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ). (A)3cm (B)小于3cm (C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n (C)n ≤AC ≤m (D)n <AC <m 20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm的点的个数是( ). (A)0 (B)1 (C)2 (D)3 21.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC于点E ,能表示点到直线(或线段)的距离的线段有( ). (A)3条 (B)4条 (C)7条 (D)8条 三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG 平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图2所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图3所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图4所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).图2 图3 图4(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD ⊥DA ,DA ⊥AB ,∠1=∠2.试确定射线DF 与AE 的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______. (3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义) 又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质) 即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( ) ∴∠2=∠______.(等量代换) ∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______. (3)证明过程:证明:∵∠1=∠2,( )∴a ∥______.(________,________)① ∵∠3+∠4=180°,( )∴c ∥______.(________,________)② 由①、②,因为a ∥______,c ∥______, ∴a ______c .(________,________)5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________)6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,∠B =50°.求∠D 的度数.分析:可利用∠DCE 作为中间量过渡. 解法1:∵AB ∥CD ,∠B =50°,( )∴∠DCE =∠_______=_______°. (____________,______) 又∵AD ∥BC ,( )∴∠D =∠______=_______°.(____________,____________)想一想:如果以∠A 作为中间量,如何求解? 解法2:∵AD ∥BC ,∠B =50°,( )∴∠A +∠B =______.(____________,____________)即∠A =______-______=______°-______°=______°. ∵DC ∥AB ,( )∴∠D +∠A =______.(_____________,_____________) 即∠D =______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( ) ∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行) ∴∠3=∠______.(两直线平行,内错角相等) ∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( )∴∠APC =∠2+∠3=∠1+∠4=90°.( ) 总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠E的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E 是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( )二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”)19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?第六章 实数6.1平方根学习要求1. 理解算术平方根和平方根的含义。

2023年春上海七年级下数学辅导讲义(沪教版)第5讲邻补角、对顶角及垂直(练习)解析版

2023年春上海七年级下数学辅导讲义(沪教版)第5讲邻补角、对顶角及垂直(练习)解析版

第5讲邻补角、对顶角及垂直(练习)夯实基础1.下列语句中正确的是()A.有一条公共边且和为180°的两个角是邻补角B.互为邻补角的两个角不等C.两边互为反向延长线的两个角是对顶角D.交于一点的三条直线形成3对对顶角【难度】★【答案】C【解析】A错误,另一边互为反向延长线;B错误,不一定,有可能相等;D错误,6对.【总结】考察邻补角,对顶角的内容.2.直线AB上有一点P和此直线外的一点Q的距离为3cm,则Q到直线AB的距离()A.等于3cm B.大于或等于3cmC.小于或等于3cm D.都不对【难度】★【答案】C【解析】考察点到直线的距离的知识点及其运用.⊥,垂足为O.若3.(2018·上海松江区·七年级期中)如图,已知BO DE∠=︒,则AODBOC42∠=_______︒.【答案】48【分析】先根据垂直求得BOC ∠的余角EOC ∠的度数,再根据对顶角相等即可得出答案.【详解】,42BO DE BOC ⊥∠=︒90904248EOC BOC ∴∠=︒-∠=︒-︒=︒48AOD EOC ∴∠=∠=︒故答案为:48.【点睛】本题考查了余角、对顶角的计算,熟练掌握余角和对顶角的定义是解题的关键.4.(2018·上海松江区·七年级期中)如图,已知直线,a b 相交,12280∠+∠=︒,则1∠=_______︒.【答案】140【分析】根据对顶角相等可得12∠=∠,然后求解即可.【详解】12280,12∠+∠=︒∠=∠112801402∴∠=⨯︒=︒ 故答案为:140.【点睛】本题考查了对顶角,熟练掌握对顶角相等是解题的关键.5.(2018·上海杨浦区·七年级期末)已知直线AB 和直线CD 相交于点O ,200AOC BOD ∠+∠=︒,那么这两条直线的夹角等于___________度.【答案】80【分析】如下图,先根据对顶角相等求得∠AOC 的大小,再根据邻补角互补可得∠AOD 的大小,两直线的夹角用小于90°的那个角表示,据此可得夹角大小.【详解】如下图∵200AOC BOD ∠+∠=︒∴∠AOC=∠BOD=100°∴∠AOD=80°故答案为:80【点睛】本题考查对顶角和邻补角的性质,解题关键是绘制出图形,然后才好方便分析求解.6.(2016·上海奉贤区·七年级期中)如图,已知直线AB 、CD 相交于O 点,∠AOC +∠BOD =80°,那么∠BOC=_____度.【答案】140【分析】本题考查的是对顶角知识,根据∠AOC与∠BOD是对顶角,相等且和为80°解答即可【详解】∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD;又∵∠AOC+∠BOD=80°,∴∠AOC=∠BOD=40°,∴∠BOC=180°-∠BOD=180°-40°=140°【点睛】本题的关键是掌握对顶角相等的知识7.直线AB与直线CD相交于点O,EO⊥AB于O,则图中∠1和∠2的关系是__________.【难度】★【答案】互余.【解析】考察对顶角的性质以及互余的意义及运用.8.(2019·上海七年级单元测试)如图所示,直线AB、CD、EF相交于点O,若∠1+∠2=90°,∠3=40°,求∠1的度数,并说明理由.【答案】50°【分析】根据题意已知了∠1与∠2的关系,要求∠1的角度,只要求出∠2的度数即可.观察图形,可得知∠2与∠3是对顶角,而题目中又已知了∠3的角度,计算即可得到∠1的度数. 【详解】解:因为∠2=∠3(对顶角相等),∠3=40°(已知),所以∠2=40°(等量代换).又因为∠1+∠2=90°(已知),所以∠1=90°-∠2=50°.【点睛】此题考查对顶角、邻补角,解题关键在于掌握其性质定义.能力提升1.(2018·上海金山区·七年级期中)如图,直线AB、CD相交于点O,∠=︒,则直线AB与直线CD的夹角是______︒.BOC135【答案】45【分析】先根据邻补角的定义求出∠AOC,再根据直线的夹角为锐角解答.【详解】解:∵∠BOC=135°,∴∠AOC=180°-∠BOC=180°-135°=45°,∴直线AB与直线CD的夹角是45°.故答案为:45.【点睛】本题考查了邻补角的定义,要注意直线的夹角是锐角.2.(2017·上海长宁区·七年级期末)如图,直线AC与直线BD交于点O,∠=∠,那么AOD2AOB BOC∠=______度.【答案】60【分析】直接利用已知结合邻补角的定义得出答案.【详解】∵直线AC 与直线BD 交于点O ,∠AOB=2∠BOC ,∴∠AOB+∠BOC=180°,∴2∠BOC+∠BOC=180°,∴∠BOC=60°,∴∠AOD=∠BOC=60°.故答案为:60.【点睛】此题考查邻补角以及对顶角,正确得出∠BOC 的度数是解题关键.3.(2018·上海嘉定区·七年级期中)如图,直线AB 与CD 相交于点O ,135BOC ∠=︒,那么它们的夹角的度数是____.【答案】45︒【分析】根据邻补角和夹角的定义,结合题意即可得到答案.【详解】因为135BOC ∠=︒,BOC ∠和AOC ∠是邻补角,则18013545AOC ∠=︒-︒=︒,则夹角的度数是45︒.【点睛】本题考查邻补角和夹角的定义,解题的关键是掌握邻补角和夹角的定义.4.(2018·上海浦东新区·七年级期中)如图,直线AB 与CD 相交于点O ,∠AOE=90°,且∠EOD=14∠COE ,∠BOD=__________°.【答案】54°【解析】解:设∠EOD=x,则∠COE=4x,∴x+4x=180°,解得:x=36°.∵∠AOE=90°,∴∠EOB=90°,∴∠BOD=90°-36°=54°.故答案为54.5.(2018·上海普陀区·七年级期中)如图,直线AB、CD相交于点O,COE∠=___________°.∠=︒,则BOE∠=︒,20140AOD【答案】120分析:观察图形可知∠AOD与∠COB是一对对顶角,根据对顶角相等可得∠COB的度数;结合图中的隐含条件∠BOE=∠COB-∠COE,即可求出∠BOE的度数.详解:∵直线AB、CD相交于点O.∴∠AOD=∠COB=140°.∵∠COE=20°,∠COB=140°,∴∠BOE=∠COB-∠COE=140°-20°=120°.点睛:本题考查了角的运算,关键是观察图形中各角之间的关系.6.从钝角∠AOB的顶点O在∠AOB内引射线OC使OC⊥OA,若∠AOC:∠COB=3:1,求∠AOB的度数.【难度】★★【答案】120︒.【解析】因为OC OA⊥(已知),所以90∠=︒(垂线的意义)AOC因为∠AOC:∠COB=3:1(已知)所以30∠=︒(等式性质)COB所以120∠=︒(等式性质)AOB【总结】考查学生画图能力,并且学会分析题目.7.如图:AO⊥BC于点O,OA平分∠DOE,∠COE=64°,求∠AOD的度数.【难度】★★【答案】26︒.【解析】因为AO BC⊥(已知)所以90∠=︒(垂直的意义)AOC因为64COE∠=︒(已知)所以26∠=︒(等式性质)AOE因为OA平分∠DOE(已知)所以26∠=∠=︒(角平分线的意义)AOD AOEQ P Q P B OAB O A 【总结】考察学生对简单几何题的分析,注意互余,角平分线等概念的理解及运用.8.作图:已知线段AB 上一点Q 及线段外一点P .(1) 过点Q 作线段AB 的垂线;(2) 过点P 作线段AB 的垂线.【难度】★★【答案】如下图.【解析】注意标注垂直符号,以及字母的标注.【总结】画图一定要写结论.9.(1)用三角尺画一个30°的∠AOB ,在边OA 上任取一点P ,过P 作PQ ⊥OB ,垂足为Q ,量一量OP 的长,你发现点P 到OB 的距离与OP 长的关系吗?(2)若所画的∠AOB 为60°,重复上面的测量,你会发现什么?【难度】★★【答案】(1)12PQ OP =; (2)12PQ OP ≠,12OQ OP =.【解析】画图,测量,猜想结论.【总结】考察学生的作图能力,并且量出相应的长度,从而得出结论.10.如图所示,直线AB、CD、EF相交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,求∠DOG的度数.【难度】★★【答案】55︒.【解析】因为BOF AOE∠=∠(对顶角相等)又70AOE∠=︒(已知)所以70BOF∠=︒(等量代换)因为OG平分∠BOF(已知)所以35FOG BOG∠=∠=︒(角平分线的意义)因为CD EF⊥(已知)所以90EOD FOD∠=∠=︒(垂线的意义)所以903555DOG∠=︒-︒=︒(互余的意义)【总结】考察角平分线,垂线的意义,对顶角的内容等等.11.如图所示,O为直线AB上一点,∠AOC=13∠BOC,OC是∠AOD的平分线(1)求∠DOC的度数;(2)判断OD与AB的位置关系,并说明理由.【难度】★★【答案】(1)45︒;(2)垂直.【解析】(1)因为180AOC BOC∠+∠=︒(邻补角的意义)又∠AOC=13∠BOC(已知),所以11803BOC BOC∠+∠=︒(等量代换),所以135BOC∠=︒(等式性质),所以45AOC∠=︒(等式性质)因为OC是∠AOD的平分线(已知),所以45AOC DOC∠=∠=︒(角平分线的意义)(2)垂直.因为45AOC DOC∠=∠=︒(已知),所以90AOD∠=︒(等式性质)所以OD AB⊥(垂直的意义).【总结】本题主要考查邻补角的意义及角平分线的意义的理解及运用.12.如图,直线AB、CD、EF相交于点O,AB⊥EF,OG平分∠FOC,OH平分∠DOG,(1)若∠AOC:∠COG=4:7,求∠DOF的度数;(2)若∠AOC:∠DOH=8:29,求∠COH的度数.【难度】★★★【答案】(1)110︒;(2)107.5︒.【解析】(1)因为OG平分∠FOC(已知)所以COG GOF∠=∠(角平分线的意义)因为∠AOC:∠COG=4:7(已知)所以设4COG x∠=,∠=,7AOC x因为AB⊥EF(已知),所以90∠=︒(垂直的意义)AOF即47790x=︒,x x x++=︒,解得:5所以20∠=︒(等式性质)COG∠=︒,35AOC因为180∠+∠=︒(邻补角的意义)COF DOF所以1803535110∠=︒-︒-︒=︒(等式性质)DOF(2)因为OG平分∠FOC(已知)所以COG GOF∠=∠(角平分线的意义)因为∠AOC:∠DOH=8:29(已知)所以设8∠=.∠=,COG xAOC kDOH k∠=,29因为AB⊥EF(已知),所以90AOF ∠=︒(垂直的意义), 即890k x x ++=︒①因为180DOH GOH COG ∠+∠+∠=︒(平角的意义),即2929180k k x ++=︒②联立①、②,解得:35x =︒,52k =. 所以35GOC ∠=︒,52972.52HOG ∠=⨯=(等式性质) 因为COH COG GOH ∠=∠+∠(角的和差)所以3572.5107.5COH ∠=︒+︒=︒(等式性质)【总结】本题综合性较强,主要考查角平分线意义与邻补角意义的综合运用,解题时注意对题目中的条件认真分析.13.如图,直线AB 、CD 、EF 交于点O ,DOB ∠是它的余角的2倍,2AOE DOF ∠=∠,且有OG OA ⊥,求EOG ∠的度数.【难度】★★★【答案】50︒.【解析】因为DOB ∠是它的余角的2倍所以设DOB x ∠=, 则2(90)x x =-, 解得:60x =︒因为AOC BOD ∠=∠(对顶角相等),所以60AOC ∠=︒(等量代换)设DOF y ∠=,则由2AOE DOF ∠=∠,得2AOE y ∠=,因为DOF EOC ∠=∠(对顶角相等), 所以EOC y ∠=, 即360y =︒.解得:20y =︒, 所以40AOE ∠=︒(等式性质)因为OG OA ⊥(已知), 所以90AOG ∠=︒(垂直的意义)所以50EOG ∠=︒(等式性质)【总结】主要考察学生对基本知识点的掌握,以及对题目的分析,包括垂线的意义,对顶角的意义,设未知数解方程等等.。

七年级下数学基础训练题-2020七年级数学下册基础训练答案

七年级下数学基础训练题-2020七年级数学下册基础训练答案

1.下面四个图形中,∠1与∠2是对顶角的图形的个数是()A.0 B.1 C.2 D.32.如果∠1+∠2 = 900,∠2与∠3互余,那么∠1与∠3的关系是_____。

3.如图直线AB与CD交于点O。

(1)∠1的对顶角是(2)∠1的邻补角是。

4.如果∠1+∠2 = 900,那么∠1、∠2 _______。

如果∠1+∠2 = 1800,那么∠1、∠2 _______。

5.如图,直线AB与CD交于点O,∠COE = 600,OA平分∠COE,求∠DOE的度数。

BAB1.(1)指出图中∠1、∠2、∠3、∠4同位角。

∠1同位角是______。

∠2同位角是______。

∠3同位角是______。

∠4同位角是______。

(2)指出图中∠3、∠4的内错角。

∠3内错角是______。

∠4内错角是______。

(3)指出图中∠3、∠4的同旁内角。

∠3同旁内角是______。

∠4同旁内角是2.如右图,回答下列问题:(1) ∠1同位角是_____________________ (2) ∠2内错角是_____________________ (3)∠3同旁内角是_____________________ 3.找出图中的平行线,并说明理由。

4.如图∠1、∠2是 ( )A 同位角B 内错角C 同旁内角 D5.如图,∵∠1=∠2 ∴_______‖_______.∵∠3=∠4 ∴_______‖CAL 87654321B DcHGCAB1.平行线的性质。

(1) 两直线平行,__________________________。

(2) 两直线平行,__________________________。

(3) 两直线平行,__________________________2.如图,AB ‖CD ,∠1 =630,求∠2 。

3.如图,已知∠1=∠B ,∠2=∠C ,求证:AB ‖CD4. 如图,∠1=650,∠2 =650,∠3=1000,求∠4 。

对顶角、邻补角、垂线、平移之七大题型(解析版)--2024年七年级数学下学期期中真题分类(人教版)

对顶角、邻补角、垂线、平移之七大题型(解析版)--2024年七年级数学下学期期中真题分类(人教版)

专题01 对顶角、邻补角、垂线、平移之七大题型题型01对顶角、领补角的定义理解1(2023上·黑龙江哈尔滨·七年级校考期中)下列各图中,∠1与∠2是对顶角的是()A. B.C. D.【答案】C【分析】本题考查了对顶角的定义,根据对顶角的定义判断即可.有一个公共点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角互为对顶角.【详解】解:A、∠1的两边不是∠2的两边的反向延长线,∠1与∠2不是对顶角,故该选项不合题意;B、∠1的两边不是∠2的两边的反向延长线,∠1与∠2不是对顶角,故该选项不符合题意;C、∠1的两边分别是∠2的两边的反向延长线,∠1与∠2是对顶角,故该选项符合题意;D、∠1的两边不是∠2的两边的反向延长线,∠1与∠2不是对顶角,故该选项不合题意.故选:C.2(2023下·福建泉州·七年级校考期中)下列图形中,∠1与∠2是邻补角的是()A. B.C. D.【答案】C【分析】邻补角是指两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角,且两个角的和为180°,由此即可求解.【详解】解:A、不是邻补角,原选项不符合题意;B、是对顶角,原选项不符合题意;C、是邻补角,原选项符合题意;D、不是邻补角,原选项不符合题意;故选:C.【点睛】本题主要考查邻补角的概念及识别,理解并掌握其概念,图形结合分析是解题的关键.3(2023下·河南郑州·七年级校考期中)下列图形中,表示∠1和∠2是对顶角的是()A. B.C. D.【答案】D【分析】两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角,由此可得出正确答案.【详解】解:根据对顶角的定义可得A,B,C都不是对顶角,只有选项D符合对顶角的定义,故选:D.【点睛】本题考查了对顶角的定义,属于基础题,要求熟练掌握对顶角的定义.4(2023下·河北唐山·七年级统考期中)下面四个图形中,∠1与∠2是邻补角的是()A. B.C. D.【答案】C【分析】根据邻补角的定义作答即可.【详解】解:由题意知,C中∠1与∠2是邻补角,故选:C.【点睛】本题考查了邻补角的定义.解题的关键在于熟练掌握两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.题型02垂线及性质、画垂线、点到直线的距离5(2023下·安徽宿州·七年级校考期中)如图,P是直线l外一点,A,B,C三点在直线l上,且PB⊥l 于点B,∠APC=90°,则下列结论中正确的是()①线段BP的长度是点P到直线l的距离;②线段AP是A点到直线PC的距离;③在PA,PB,PC三条线段中,PB最短;④线段PC的长度是点P到直线l的距离A.①②③B.③④C.①③D.①②③④【答案】C【分析】本题考查了点到直线的距离及垂线段最短等知识点.点到直线的距离,即过这一点做目标直线的垂线,由这一点至垂足的距离.熟记相关结论是解题关键.【详解】解:∵PB⊥l于点B,∴线段BP的长度是点P到直线l的距离,故①正确,④错误;∵∠APC=90°,∴线段AP的长度是A点到直线PC的距离,故②错误;根据垂线段最短,在PA,PB,PC三条线段中,PB最短,故③正确;故选:C.6(2023下·内蒙古鄂尔多斯·七年级统考期中)如图,污水处理厂要从A处把处理过的水引入排水沟PQ,做法如下:过点A作AB⊥PQ于点B,沿着AB方向铺设排水管道可用料最省.能准确解释这一现象的数学知识是.【答案】垂线段最短【分析】本题考查垂线段最短,根据垂线段最短进行判断即可.理解垂线段最短的意义是正确解答的关键.【详解】解:由题意得,解释这一现象的数学知识是“垂线段最短”,故答案为:垂线段最短.7(2023下·河南许昌·七年级校考期中)如图,网格线的交点叫格点,格点P是∠AOB的边OB上的一点(请利用三角板和直尺借助网格的格点画图).(1)过点P画OB的垂线,交OA于点E;过点P画OA的垂线,垂足为F;(2)线段PF的长度是点P到的距离,线段的长度是点E到直线OB的距离,所以线段PE、PF、OE这三条线段大小关系是(用“<”号连接),理由是.【答案】(1)图见解析(2)OA,PE,PF<PE<OE,垂线段最短【分析】(1)如图,找点C,连接PC,与OA交点即为E,过P点作竖直的线,与OA交点即为F;(2)根据点到直线的距离的定义、垂线段最短即可求解.【详解】(1)解:由题意作图如下,PE是OB的垂线,PF是OA的垂线.(2)解:线段PF的长度是点P到OA的距离,线段PE的长度是点E到直线OB的距离,由垂线段最短可知,PF<PE<OE,故答案为:OA,PE,PF<PE<OE,垂线段最短.【点睛】本题考查了作垂线,垂线段最短.解题的关键在于对知识的熟练掌握与灵活运用.8(2023下·河北唐山·七年级统考期中)如图,在直角三角形ABC中,∠C=90°,BC=4cm,AC=3cm.(1)点B到AC的距离是cm;点A到BC的距是cm.(2)画出表示点C到AB的距离的垂线段CD.(3)AC CD(填“>”“<”“=”),理由是.【答案】(1)4,3(2)见解析(3)>,垂线段最短【分析】(1)根据点到直线的距离的定义求解;(2)过C点作AB的垂线,垂足为D;(3)根据垂线段最短进行判断.【详解】(1)点B到AC的距离是4cm,点A到BC的距离是3cm;故答案为4;3;(2)如图,CD为所作;(3)AC>CD,理由是垂线段最短.故答案为:>;垂线段最短.【点睛】本题考查了点到直线的距离,垂线段最短,熟练掌握点到直线距离的概念是解答本题的关键.直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离.题型03利用对顶角、领补角性质求角9(2023下·山西吕梁·七年级统考期中)如图,直线AB,CD相交于点O,OE⊥OF,OD平分∠BOF.(1)∠BOD的对顶角为,∠BOD的邻补角为;(2)若∠BOD=58°,求∠AOE的度数.【答案】(1)∠AOC;∠AOD,∠BOC(2)26°【分析】(1)根据对顶角的定义(有一个公共顶点,且一个角的两条边分别是另一个角的两条边的反向延长线,那么这两个角就叫做对顶角)和邻补角的定义(两个角有一条公共边,且它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角)即可得;(2)先根据角平分线的定义可得∠BOF=116°,再根据邻补角的定义可得∠AOF=64°,然后根据垂直的定义即可得.【详解】(1)解:∠BOD的对顶角为∠AOC,∠BOD的邻补角为∠AOD,∠BOC,故答案为:∠AOC;∠AOD,∠BOC.(2)解:∵OD平分∠BOF,∠BOD=58°,∴∠BOF=2∠BOD=116°,∴∠AOF=180°-∠BOF=64°,∵OE⊥OF,∴∠AOE=90°-∠AOF=90°-64°=26°.【点睛】本题考查了对顶角和邻补角的定义、与角平分线有关的计算、垂直,熟练掌握各定义和运算法则是解题关键.10(2023下·云南曲靖·七年级校考期中)如图,直线AB 、CD 相交于点O ,OE ⊥CD 于点O ,OM 平分∠BOE ,∠AOC =52°.(1)求∠BOM 的度数;(2)在∠AOM 的内部画射线ON ,若∠MON =45°,那么ON 是∠AOD 的平分线吗?请说明理由.【答案】(1)∠BOM =71°(2)ON 是∠AOD 的平分线.理由见解析【分析】(1)根据∠AOC 与∠BOD 是对顶角得到∠BOD =∠AOC =52°,再利用OE ⊥CD ,求出∠BOE ,最后利用角平分线的定义求∠BOM 即可;(2)分别求出∠DON 与∠AOD ,再根据角平分线的定义判定即可【详解】(1)解:∵∠AOC 与∠BOD 是对顶角,∴∠BOD =∠AOC =52°.∵OE ⊥CD ,∴∠DOE =90°,∴∠BOE =∠BOD +∠DOE =52°+90°=142°∵OM 平分∠BOE ,∴∠BOM =12∠BOE =12×142°=71°(2)ON 是∠AOD 的平分线.理由:根据题意,画图如下:∵∠DOM =∠BOM -∠BOD =71°-52°=19°,∠MON =45°,∴∠DON =∠DOM +∠MON =19°+45°=64°.∵∠AOC =52°,∴∠AOD =180°-∠AOC =180°-52°=128°,∴∠DON =12∠AOD ,∴ON 平分∠AOD .【点睛】本题考查的是对顶角、邻补角的概念和性质、角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.11(2023上·黑龙江哈尔滨·七年级校考期中)已知:直线AB 、CD 相交于点O ,OE ⊥CD 于点O ,∠AOE :∠BOD =4:5.(1)如图1,求∠EOB 的度数.(2)如图2,过点O 画出直线AB 的垂线MN ,请直接写出图中所有与∠AOE 互补的角.【答案】(1)140°(2)∠EOB 、∠DON 、∠COM【分析】本题主要考查了垂线,互余和互补的性质,找出角度之间的数量关系是解题关键.(1)由平角的性质,得到∠AOE +∠BOD =90°,进而得出∠BOD =50°,即可求出∠EOB 的度数;(2)利用互余和互补的性质,分别得到∠DOM 、∠DON 、∠CON 、∠COM 的度数,再根据与∠AOE 互补的角的度数为140°,即可得到答案.【详解】(1)解:∵OE ⊥CD ,∴∠EOD =90°,∴∠AOE +∠BOD =90°,∵∠AOE :∠BOD =4:5,∴∠AOE =45∠BOD ,∴45∠BOD +∠BOD =95∠BOD =90°,∴∠BOD =50°,∴∠EOB =∠EOD +∠BOD =90°+50°=140°;(2)解:由(1)可知,∠BOD =50°,∠EOB =140°,∴∠AOE =40°,∵MN ⊥AB ,∴∠BOM =∠BON =∠AON =90°,∴∠DOM =∠BOM -∠BOD =40°,∴∠DON =∠180°-∠DOM =140°,∵∠CON =∠DOM =40°,∴∠COM =180°-∠CON =140°,∵与∠AOE 互补的角的度数为140°,∴与∠AOE 互补的角有∠EOB 、∠DON 、∠COM .题型04 生活中的平移现象12(2023下·广西南宁·七年级校考期中)下图是德胜中学的校徽,将它通过平移可得到的图形是()A. B. C. D.【答案】C【分析】根据平移前后,图形的形状,大小,方向均不变,进行判断即可.【详解】A 、校徽左右交换位置得到,故选项错误,不符合题意;B 、向下旋转180°得到,故选项错误,不符合题意;C 、是通过平移得到,故选项正确,符合题意;D 、顺时针旋转90°故选项错误,不符合题意.故选:C .【点睛】此题考查了图形的平移,解题的关键是熟知图形平移的性质.13(2023下·四川广元·七年级校联考期中)下面生活中的现象可以看成平移的是()①转动的指针②水平传输带上物品的运动③从楼顶自由下落的铁球(球不旋转)④随风摆动的旗帜A.①②B.③④C.②③D.②④【答案】C【分析】根据平移的定义,平移是指将一个图形上的所有点都按照某个直线方向做相同距离的移动,逐项进行判断即可.【详解】解:平移是指将一个图形上的所有点都按照某个直线方向做相同距离的移动,生活中也很多物体存在平移现象,②水平传输带上物品的运动,③从楼顶自由下落的铁球(球不旋转)是平移,①转动的指针,④随风摆动的旗帜都改变了方向,不是平移,故选:C .【点睛】本题考查了生活中的平移现象,熟练掌握平移的定义是解答本题的关键.14(2023下·湖北武汉·七年级统考期中)如图,以下四个图标中可以看作由“基本图案”经过平移得到的是()A. B. C. D.【答案】D【分析】图形平移前后的大小,形状都不变化,据此判断即可.【详解】解:A 、不能看作由“基本图案”经过平移得到,故不符合题意;B 、不能看作由“基本图案”经过平移得到,故不符合题意;C 、不能看作由“基本图案”经过平移得到,故不符合题意;D 、能看作由“基本图案”经过平移得到,故符合题意;故选:D .【点睛】此题考查了平移的性质,熟练掌握图形平移前后的大小,形状都不变化,只是位置变化是解题的关键.题型05 利用平移的性质求解点C 的方向平移到如图位置,已知AB =14.图中阴影部分的面积为84,DH =4,则平移距离为.【答案】7【分析】根据平移的性质可知:AB =DE ,由此可求出EH 的长.由S 阴影DHCF =S 梯形ABEH ,结合梯形的面积公式即可求出BE .【详解】解:根据平移可得DE =AB =14,DE ∥AB ,S △ABC =S △DEF ,∴EH =14-4=10,S 阴影DHCF =S 梯形ABEH =84,∴12(EH +AB )⋅BE =84,∴12×(14+10)⋅BE =84,∴BE =7,即平移的距离为7,故答案为:7.【点睛】本题考查了平移的性质,对应点连线的长度等于平移距离,平移变化只改变图形的位置不改变图形的形状,熟记各性质并判断出阴影部分面积等于梯形ABEH 的面积是解题的关键.16(2023上·云南昆明·八年级校考期中)如图,将△ABC 沿CB 边向右平移得到△DFE ,DE 交AB 于点G .已知∠A :∠C :∠ABC =1:2:3,AB =9cm ,BF =5cm ,AG =5cm ,则图中阴影部分面积为cm 2.【答案】652【分析】本题主要考查平移的性质,根据平移的性质,AB 的对应边是FD ,求出FD 的长度,∠A :∠C :∠ABC =1:2:3,则△ABC 是直角三角形,∠F 是直角,则BF 是梯形的高,根据AG 的长度求出BG 的长度,利用梯形的面积公式求出答案.【详解】解:∵AB =DF ,AB =9,∴DF =9,BG =AB -AG =9-5=4,又∵BF 是梯形高S 阴影=12BG +DF ⋅BF =12×4+9 ×5=652.故答案为:652.17(2023下·贵州铜仁·八年级校考期中)在一矩形花园里有两条绿化带.如图所示的阴影部分,A 1A 2∥B 1B 2、A 1A 2=B 1B 2、A 2A 3∥B 2B 3,A 2A 3=B 2B 3、A 3A 4∥B 3B 4、A 3A 4=B 3B 4、AC ∥BD ,且A 1B 1=AB ,这两【答案】S1=S2【分析】设矩形花园的宽a,根据题意可知,两条绿化地的面积都相当于长为AB,宽为a的长方形的面积.【详解】解:设矩形花园的宽a,根据题意可知,两条绿化地的面积都相当于长为AB,宽为a的长方形的面积,∴S1=S2,故答案为:S1=S2.【点睛】本题考查了生活中的平移,根据平移确定绿化带的长和宽是解题的关键.题型06利用平移解决实际问题18(2023下·河北沧州·七年级校考期中)某宾馆在重新装修后,准备在大厅主楼梯上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼梯道宽2m,其侧面如图,则购买地毯至少需要元.AI【答案】450【分析】根据题意,结合图形,先把楼梯的横竖向上向右平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.【详解】解:利用平移线段,把楼梯的横竖向上向右平移构成一个长方形,根据题意这个长方形的长与宽分别为5米,2.5米,∴地毯的长度为:5+2.5=7.5(米),地毯的面积为:7.5×2=15(平方米),故买地毯至少需要:15×30=450(元).故答案为:450.【点睛】本题主要考查了生活中的平移现象,利用平移的性质,把所要求的的所有线段平移到一条直线上进行计算是解本题的关键.19(2023下·江西南昌·七年级校考期中)如图,是一块长方形的场地,长AB=52m,宽AD=41m.从A,B两处入口的小路宽都为1m,两条小路汇合处宽为2m,其余部分种植草坪,则草坪的面积为m2.【答案】2000【分析】本题要看图解答.从图中可以看出剩余部分的草坪正好可以拼成一个长方形,然后根据题意求出长和宽,最后可求出面积.【详解】解:由图片可看出,剩余部分的草坪正好可以拼成一个长方形,且这个长方形的长为52-2=50m,这个长方形的宽为:41-1=40m,因此,草坪的面积=50×40=2000平方米.故答案为:2000.【点睛】此题主要考查了平移的性质的应用,有一定的思维含量,得出草坪正好拼成长方形是解题的关键.20(2023下·黑龙江鸡西·七年级期中)春天到了,为美化环境,鸡西市儿童公园在一块长方形的空地上修两条宽一米的小路,其余部分种上不同的花卉,测得数据如图所示,求种花的面积和为.【答案】8【分析】根据图形利用平移的性质,将图中空地平移后,种花的正好组成一个长为4,宽为2的长方形,然后求出结果即可.【详解】解:根据题意可知,种花的面积和为:5-1=4×2=8.×3-1故答案为:8.【点睛】本题主要考查了平移的性质,解题的关键是根据平移得出种花的正好组成一个长为4,宽为2的长方形.题型07平移作图21(2023上·黑龙江哈尔滨·七年级校考期中)如图,△ABC的三个顶点都在每格为1个单位长度的格点上,请将△ABC先向下平移三个单位长度后再向右平移四个单位长度后得到△A1B1C1.(1)画出平移后的图形;(2)在(1)的条件下,连接BB1、CB1,直接写出三角形BCB1的面积为.【答案】(1)作图见解析;(2)△BCB1的面积为92.【分析】(1)根据平移的性质作图即可;(2)利用三角形面积公式计算即可;此题考查了作图--平移,三角形的面积,熟练掌握平移的性质是解题的关键.【详解】(1)如图,△A1B1C1即为所求;(2)如图,△BCB1的面积为12×3×3=92.22(2023上·黑龙江哈尔滨·七年级哈尔滨德强学校校考期中)如图,在每个小正方形的边长为1的方格纸中,将△ABC向上平移4个单位长度得到△DEF,使点A、B、C分别对应点D、E、F,再将△DEF平移得到△MNP,使点D、E、F分别对应点M、N、P.(1)分别画出两次平移后的三角形;(2)顺次连接点C、F、N,请直接写出△CFN的面积为.【答案】(1)见解析(2)6【分析】本题考查了作图-平移变换、三角形的面积.(1)根据平移作图即可得△DEF,再向右平移5个单位,再向下平移1个单位,画出△MNP即可得;(2)直接利用直角三角形的面积公式进行计算即可得.【详解】(1)解:分别画出两次平移后的△DEF和△MNP,如图所示.×4×3=6.(2)解:△CFN的面积为12故答案为:6.23(2023上·黑龙江哈尔滨·七年级校考期中)如图,网格中每个小正方形的边长均为1,点A、B、C均在小正方形的顶点,把三角形ABC平移得到三角形A B C ,使C点的对应点为C .(1)请在图中画出三角形A B C ;(2)过点C 画出线段A B 的垂线,垂足为O;(3)直接写出三角形A B C 的面积为平方单位.【答案】(1)见解析(2)见解析(3)6【分析】本题考查了平移的性质,(1)根据平移的性质,找到对应的A 、B 然后画出△A B C 即可;(2)根据垂线的定义作图即可;(3)根据平移的性质即可求解.(2)解:如图线段C O为所作图形;×3×4=6,根据平移的性质,可得△A B C 的面积也是6.(3)解:△ABC的面积为12一、单选题1(2023下·山东济南·七年级统考期中)下列四个图中,∠1=∠2一定成立的是()A. B.C. D.【答案】B【分析】根据对顶角的性质、互补的定义和角在图形中的位置逐项判断即可.【详解】解:A、图形中的∠1与∠2不能判断是否相等,故本选项不符合题意;B、图形中的∠1,∠2是对顶角,所以∠1=∠2,故本选项符合题意;C、图形中的∠1与∠2不能判断是否相等,故本选项不符合题意;D、图形中的∠1与∠2是邻补角,不能判断是否相等,故本选项不符合题意;故选:B.【点睛】本题考查了对顶角的性质和互补的定义,正确识别图形、熟知对顶角相等的性质是解题关键.2(2023上·黑龙江哈尔滨·七年级校考期中)如图,AC⊥BC,CD⊥AB,则点B到CD的距离是线段( )的长度A.BDB.CDC.BCD.AD【答案】A【分析】本题考查了点到直线的距离“直线外一点到这条直线的垂线段的长度,叫做点到直线的距离”.根据点到直线的距离的定义即可得.【详解】解:∵CD⊥AB,∴点B到CD的距离是线段BD的长度,故选:A.3(2023上·河南新乡·九年级校考期中)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,能用其中一部分平移得到的是()A.杯B.立C. 比D.曲【答案】C【分析】根据图形平移的性质解答即可.本题考查的是利用平移设计图案,熟知图形平移不变性的性质是解答此题的关键.【详解】解:由图可知A不是平移得到,B不是平移得到,D不是平移得到,C是利用图形的平移得到.故选:C.4(2023下·江西吉安·八年级校考期中)如图,将△ABC向左平移得到△DEF,连接AD,如果△ABC 的周长是16cm,四边形ACED的周长是20cm,那么平移的距离是()A.1cmB.2cmC.3cmD.4cm【答案】B【分析】根据平移的性质结合已知条件求解即可.【详解】解:∵将△ABC向左平移得到△DEF,∴AD=EB,△ABC≌△DEF,则ED=AB,EF=BC,DF=AC,∵△ABC的周长的周长是16cm,∴△DEF的周长是16cm,即DE+DF+EF=DE+AC+BC=16cm,∵四边形ACED的周长=AD+BE+BC+AC+DE=2AD+16=20(cm),∴AD=2cm,即平移的距离是2cm;故选:B.【点睛】本题考查了平移的性质,掌握平移前后对应线段相等是解题关键.5(2023下·河南郑州·七年级校联考期中)如图,直线AB,CD相交于点O,∠EOD=90°.下列说法中错误的是()A.∠AOC=∠BODB.∠AOE和∠AOC互余C.∠AOC与∠AOD互补D.∠AOC与∠BOD互余【答案】D【分析】根据对顶角、邻补角的概念判断即可.【详解】解:A.∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD,故本选项说法正确,不符合题意;B.∵∠EOD=90°,∴∠EOC=90°,∴∠AOE和∠AOC互余,故本选项说法正确,不符合题意;C.∵∠AOC+∠AOD=180°,∴∠AOC与∠AOD互补,故本选项说法正确,不符合题意;D.∠AOC与∠BOD相等,不一定互余,故本选项说法错误,符合题意;故选:D.【点睛】本题考查的是对顶角、邻补角,掌握对顶角的性质、邻补角的概念是解题的关键.二、填空题6(2023下·河南周口·七年级统考期中)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O,若∠1 =36°,则∠2=.【答案】54°/54度【分析】根据垂线的定义,由EO⊥CD,垂足为O,得∠DOE=90°.由∠1=36°,根据对顶角的定义,得∠BOD=36°,即可求得∠2.【详解】解:∵EO⊥CD,垂足为O,∴∠DOE=90°.∵∠1=36°,∴∠BOD=36°,∴∠2=∠DOE-∠BOD=90°-36°=54°,故答案为:54°.【点睛】本题主要考查垂线、对顶角,熟练掌握垂线的定义、对顶角的定义是解决本题的关键.7(2023下·广东中山·七年级统考期中)如图,当光线从空气射入水中时,光线的传播方向发生了改变,这就是折射现象.图中∠1与∠2是不是对顶角?.(填“是”或“不是”)【答案】不是【分析】本题考查了对顶角的定义,如果两个角有公共顶点,其中一个角的两边分别是另一个角的两边的反向延长线,那么这两个角是对顶角.根据对顶角的定义直接判断即可.【详解】解:由对顶角的定义可知:∠1与∠2不是对顶角.故答案为:不是.8(2023下·河南安阳·七年级校考期中)为持续推进儿童友好公园建设,郑州市园林绿化部门计划在2023年新建绿地面积300万平方米以上.如图,在长为103米,宽为60来的长方形地块上,有纵横交错的几条小路,宽均为3米,其他部分计划种植花草,则种植花草的面积为平方米.【答案】5700【分析】可以根据平移的性质,种植花草的面积相当于一条横向长为103-3米与一条纵向长为60-3米的长方形面积,据此求解即可.【详解】解:由平移的性质可知,植花草的面积相当于一条横向长为103-3米米与一条纵向长为60-3的长方形面积,∴种植花草的面积=103-3=5700m2 .60-3故答案为:5700.【点睛】本题考查了平移在实际中的应用,将两条小路平移至长方形的边上,使种植花草的面积等于一个长方形的面积是解决此题的关键.9(2023下·山西大同·七年级大同一中校考期中)如图,将直角三角形ABC沿边AC方向平移到三角形DEF的位置,连接BE.若AF=14,CD=6,则BE的长为【答案】4【分析】根据平移的性质,得BE=AD=CF,求出AD=CF=12AF-CD=12×14-6=4即可得出答案.【详解】解:由平移的性质,得BE=AD=CF,∴AD=CF=12AF-CD=12×14-6=4,∴BE=4.故答案为:4.【点睛】本题主要考查了平移的性质,解题的关键是熟练掌握性质,求出AD=4.10(2023下·内蒙古鄂尔多斯·七年级统考期中)如图,AB=4cm,BC=5cm,AC=2cm,将△ABC 沿BC方向平移3cm,得到△DEF,连接AD,则阴影部分的周长为cm.【答案】11【分析】本题考查平移的性质,根据平移性质得到AD=BE,AB=DE,然后计算出阴影部分周长为△ABC 的周长即可求解.利用平移的性质得到AD=BE,AB=DE是解答的关键.【详解】解:∵将△ABC沿BC方向平移3cm,得到△DEF,∴AD=BE=3cm,AB=DE=4cm,∴阴影部分的周长为AD+EC+DE+AC=BE+EC+AB+AC=BC+AB+AC=5+4+2=11cm,故答案为:11.三、解答题11(2023下·湖南永州·七年级校考期中)如图,在方格纸内将△ABC水平向右平移6个单位得到△A1 B1C1,再向上平移4个单位长度得到△A2B2C2.(1)画出△A1B1C1和△A2B2C2;(2)连接AA1、BB1,则线段AA1、BB1的位置关系是,线段AA1、BB1的数量关系是.【答案】(1)见解析(2)平行,相等【分析】(1)根据平移的性质画出点A、B、C的对应点A1、B1、C1及A2、B2、C2,再顺次连接即可得到△A1B1 C1和△A2B2C2;(2)由平移的性质即可得到答案.【详解】(1)解:如图所示,△A1B1C1和△A2B2C2即为所作;(2)解:如图,,由平移的性质可得:线段AA1、BB1的位置关系是平行,线段AA1、BB1的数量关系是相等,故答案为:平行,相等.【点睛】本题考查了作图-平移变换,平移的性质,经过平移后,对应点所连接的线段平行且相等,熟练掌握平移的性质是解题的关键.12(2023下·山东济南·七年级统考期中)如图,△ABC的三个顶点A、B、C在正方形网格中,每个小方格的边长都为1.请在方格纸上画图并回答下列问题:(1)过C点画直线AB的垂线,垂足为点E;(2)过A点画射线AF∥BC,交直线CE于点F;(3)点C到直线AB的距离为线段的长度;(4)比较大小:线段CE线段BC(填“>”、“”或“=”).【答案】(1)见解析(2)见解析(3)CE(4)<【分析】(1)根据网格的特点作图即可;(2)根据网格的特点作图即可;(3)根据点到直线的距离的概念解答;(4)根据垂线段最短解答.【详解】(1)如图,直线CE即为所作;(2)如图,射线AF即为所作;(3)点C到直线AB的距离为线段CE的长度;故答案为:CE;(4)根据垂线段最短得:线段CE<线段BC;故答案为:<.【点睛】本题考查了利用网格作图、垂线段最短以及点到直线的距离等知识,熟练掌握相关知识是解题的关键.13(2023下·河北石家庄·七年级校考期中)作图题(1)如图,要把河中的水引到水池P,在河岸AB的什么地方开始挖渠。

优化设计七年级下册数学全部答案2

优化设计七年级下册数学全部答案2

优化设计七年级下册数学全部答案25.1相交线学前温故 1、两方无2、180? 新课早知1、邻补角2、对顶角3、?BOD ?AOC 和?BOD 4、相等5、C 轻松尝试应用 1,3 CAC 4、15?5、?AOF 和?BOE 6、解:因为?AOD与?BOC是对顶角所以?AOD=?BOC 又因为?AOD+?BOC=220?所以?AOD=110?而?AOC与?AOD是邻补角则?AOC+?AOD=180? 所以?AOC=70?智能演练能力提升 1,3 CCC 4、10?5、对顶角邻补角互为余角 6、135?40?7、90?8、不是9、解:因为OE平分?AOD, ?AOE=35?, 所以?AOD=2?AOE=70?由?AOD与?AOC是邻补角,得?AOC=180?-?AOD=110?因此?COE=?AOE+?AOC=35?+110?=145? 10、2 6 12 n(n-1) 4046132 5.1.2垂线学前温故90?新课早知1、垂直垂线垂足2、D BE CD C 3、一条垂线段 4、B 5、垂线段的长度 6、D 轻松尝试应用1,3 DBD 4、?1与?2互余 5、30?6、解:由对顶角相等,可知?EOF=?BOC=35?,又因为OG?AD, ?FOG=30?,所以?DOE=90?-?FOG-?EOF=90?-30?-35?=25? 智能演练能力提升1,3 AAB 4、?? 5、解:如图.6、解:因为CD?EF, 所以?COE=?DOF=90 ? 因为?AOE=70?,所以?AOC=90?-70?=20?, ?BOD=?AOC=20?,所以?BOF=90?-?BOD=90?-20?=70?因为OG平分?BOF,所以?BOG=0.5×70?=35?, 所以?BOG=35?+20?=55?7、解(1)因为OD平分?BOE,OF平分?AOE, 所以?DOE=1/2?BOE, ?EOF=1/2?AOE,因为?BOE+?AOE=180?,所以?DOE+?EOF=1/2?BOE+1/2?AOE=90?,即?FOD=90?,所以OF?OD(2)设?AOC=x,由?AOC: ?AOD=1:5,得?AOD=5x.因为?AOC=?AOD=180?,所以x+5x=180?,所以x=30?.所以?DOE=?BOD=?AOC=30?.因为?FOD=90?,所以?EOF=90?-30?=60?8、D 9解:(1)如图所示:(2)如图所示:(3)= =(4)角平分线上的点到角两边的距离相等.5.1.3同位角、内错角、同旁内角快乐预习感知学前温故1、相等互补2、直角新课早知 1、同位角内错角同旁内角2、B 3、A 互动课堂例解:同位角有?1和?2,?3和?5; 内错角有?1和?3,?2和?5;同旁内角有?1和?4,?4和?5 轻松尝试应用1、B 2、B 3、同位同旁内内错 4、内错AB BC AC 同旁内 AC BC AB 5、解:(1)中,?1与?2是直线c、d被直线l所截得的同位角,?3与?4是直线a,b被直线l所截得的同旁内角;(2)中,?1与?2是AB,CD 被直线BC所截得的同位角,?3与?4是直线AB,CD被直线AC所截得的内错角 ;(3)中,?1与?2是直线AB,CD被直线AG所截得的同位角,?3与?4是直线AG,CE被直线CD所截得的内错角;(4)中,?1与?2是直线AD,BC被直线AC所截得的内错角,?3与?4是直线AB,CD被直线AC所截得的内错角能力升级 1,5 ADCCB 6、?B ?A ?ACB和?B 7、BD 同位 AC 内错 AC AB BC 同旁内 AB AC BD 同位 AB EF BD 同旁内 8、解:?1与?5;?1与7;?4与?39、解:因为?1与?2互补,?1=110?,所以?2=180?-110?=70?,因为?2与?3互为对顶角,所以?3=?2=70?因为?1+?4=180? 所以?4=180?-?1=180?-110?=70?、解:(1)略(2)因为?1=2?2,?2=2?3,所以?1=4?3.又因为?1+?3=180? 10所以4?3=?3=180?所以?3=36?所以?1=36?×4=144?,?2=36?×2=72?5.2.1平行线学前温故有且只有一个新课早知 1、平行2、C 3、一条4、互相平行 5、A 轻松尝试 1,3 DBB 4、AB?CD ,AD?BC 5、? ? 6、略能力升级 1,4 BCAB 5、3 A′B′, C′D,CD 6、在一条直线上过直线外一点有且只有一条直线与已知直线平行 7、解:(1)CD?MN,GH?PN.(2)略.8 解:(1)如图?示.(2)如图?所示.)平行因为PQ?AD,AD?BC, 所以PQ?BC .(2)DQ=CQ 10、解:(1)图略(2)AH=HG=GM=MC 9解:(1(3)HD:EG:FM:BC=1:2:3:45.2.2平行线的判定学前温故同一同侧之间两侧之间同侧新课早知 1、不相交平行同位角平行内错角平行同旁内角互补平行 2、C 3、A 轻松尝试1,4、ABDC 5、EF 内错角相等,两直线平行 BC 同旁内角互补,两直线平行 AD BC 平行于同一条直线的两直线平行能力提升 1,5 DCDDD 6、?FEB=100?7、内错角相等,两直线平行 8、AB EC 同位角相等地,两直线平行 AB EC 内错角相等,两直线平行 AC ED 内错角相等,两直线平行 AB EC 同旁内角互补,两直线平行 9、解:因为DE平分?BDF,AF平分?BAC, 所以2?1=?BDF,2?2=?BAC 又因为?1=?2,所以?BDF=?BAC.所以DF?AC(同位角相等,两直线平行) 10、解:(1)因为AB?EF,CD?EF,所以AB?CD. 理由:两条直线都垂直于同一条直线,这两条直线平行。

人教版七年级数学下册第五章相交线与平行线复习训练题

人教版七年级数学下册第五章相交线与平行线复习训练题

第五章相交线与平行线类型一邻补角与对顶角巧分辨1.如图1所示的几个图形中,能构成对顶角的是( )图12.如图2,三条直线AB,CD,EF相交于点O,则∠1的邻补角为______________.图23.如图3,直线AB,CD交于点O,射线OM平分∠AOC.若∠BOD=76°,求∠AOM的度数.图3类型二区分同位角、内错角、同旁内角有原则4.如图4,与∠1构成内错角的是( )图4A.∠2 B.∠3 C.∠4 D.∠55.如图5,直线DE经过点C,则∠A的内错角是________,∠A的同旁内角是________________.图56.如图6,E是AB延长线上一点,指出下面各组中的两个角是由哪两条直线被哪一条直线所截形成的?它们是什么角?(1)∠A和∠D;(2)∠A和∠CBA;(3)∠C和∠CBE.图6类型三掌握相交的特殊情形——垂直7.如图7,已知AB,CD相交于点O,OE⊥CD,垂足为O,∠AOC=30°,则∠BOE等于( )图7A .30°B .60°C .120°D .130°8.如图8所示,在直角三角形ABC 中,∠ACB=90°,CD⊥AB 于点D ,则点A 到BC 的距离为线段______的长度;点A到CD 的距离为线段______的长度;点C 到AB 的距离为线段______的长度.图8类型四 平行线的判定和性质9.如图9,直线a ,b 被直线c 所截,下列说法正确的是( )A .当∠1=∠2时,一定有a∥bB .当a∥b 时,一定有∠1=∠2C .当a∥b 时,一定有∠1+∠2=90°D .当∠1+∠2=180°时,一定有a∥b10.如图10,已知AB∥CD,∠1=60°,则∠2=________°.图9图1011.如图11,不添加辅助线,请你写出一个能判定EB∥AC的条件:________________________.图1112.如图12,AB∥CD,直线EF交AB于点E,交CD于点F,EG平分∠BEF,交CD于点G,∠1=50°,求∠2的度数.图1213.如图13,已知∠1+∠2=180°,∠DEF=∠A,试判断∠ACB与∠DEB的大小关系,并说明理由.图1314.如图14所示,已知OP∥QR∥ST,连接PR,SR,猜想∠1,∠2,∠3三个角之间的关系,并说明理由.图14类型五命题与定理须细辨15.下列语句不是命题的是( )A.若a<0,b<0,则ab>0B.用三角板画一个60°的角C.对顶角相等D.互为相反数的两个数的和为016.下列命题中,是真命题的是( )A.对顶角相等B.同位角相等C.若a2=b2,则a=bD.若a>b,则-2a>-2b17.将下列命题改写成“如果……那么……”的形式.(1)直角都相等;(2)末位数字是5的整数能被5整除;(3)三角形的内角和是180°.类型六平移平移的特征:图形的平移变换中,图形的形状、大小、方向都不发生改变,只是改变了图形的位置;平移前后图形的对应点的连线平行(或在同一条直线上)且相等.18.下列现象中,不属于平移的是( )A.钟表的指针转动B.电梯的升降C.火车在笔直的铁轨上行驶D.传送带上物品的运动19.如图15,将周长为8的三角形ABC沿BC方向向右平移1个单位长度得到三角形DEF,则四边形ABFD的周长为( )图15A.6 B.8 C.10 D.12类型七方程思想在几何中的应用20.如图16,已知a∥b,∠1=(3x+70)°,∠2=(5x+22)°,求∠1的补角的度数.图16类型八开放型问题21.给出下列三个论断:①∠B+∠D=180°;②AB∥CD;③BC∥DE.请你以其中两个论断作为已知条件,填入“已知”栏中,以一个论断作为结论,填入“结论”栏中,使之成为一道由已知可得到结论的题目,并说明理由.已知:如图17,________________________.结论:________________________.图17类型九探究型问题22.【阅读材料】在“相交线与平行线”的学习中,有这样一道典型问题:如图18①,AB∥CD,点P在AB与CD之间,可得结论:∠BAP+∠APC+∠PCD=360°.理由如下:过点P作PQ∥AB.∴∠BAP+∠APQ=180°.∵AB∥CD,PQ∥AB,∴PQ∥CD,∴∠PCD+∠CPQ=180°.∴∠BAP+∠APC+∠PCD=∠BAP+∠APQ+∠CPQ+∠PCD=180°+180°=360°.【问题解决】(1)如图②,AB∥CD,点P在AB与CD之间,可得∠BAP,∠APC,∠PCD间的等量关系是________________________________________________________________________;(2)如图③,AB∥CD,点P ,E 在AB 与CD 之间,AE 平分∠BAP,CE 平分∠DCP,写出∠AEC 与∠APC 间的等量关系,并写出理由;(3)如图④,AB∥CD,点P ,E 在AB 与CD 之间,∠BAE=13∠BAP,∠DCE=13∠DCP ,可得∠AEC与∠APC 间的等量关系是________________________.图18答案1.D2.∠BOE 和∠AOF 3.解:∵∠BOD=76°, ∴∠AOC=∠BOD=76°. ∵射线OM 平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°.4.B5.∠ACD ∠ACB,∠ACE 和∠B6.解:(1)∠A 和∠D 是直线AE ,DC 被直线AD 所截而成的同旁内角. (2)∠A 和∠CBA 是直线AD ,BC 被直线AE 所截而成的同旁内角. (3)∠C 和∠CBE 是直线DC ,AE 被直线BC 所截而成的内错角. 7.C 8.AC AD CD 9.D 10.12011.答案不唯一,如∠C=∠EBD 12.解:∵AB∥CD,∴∠2=∠BEG,∠BEF+∠1=180°. ∵∠1=50°,∴∠BEF=130°. ∵EG 平分∠BEF,∴∠BEG=12∠BEF=65°, ∴∠2=65°.13.解:∠ACB=∠DEB.理由:∵∠1+∠2=180°,∠1+∠DFE=180°,∴∠2=∠DFE,∴AB∥EF,∴∠DEF=∠BDE.∵∠DEF=∠A,∴∠A=∠BDE,∴AC∥DE,∴∠ACB=∠DEB.14.解:∠2+∠3=180°+∠1.理由:∵OP∥QR,∴∠2+∠QRP=180°,∴∠QRP=180°-∠2.∵QR∥ST,∴∠3=∠QRS=∠1+∠QRP=∠1+180°-∠2.∴∠2+∠3=180°+∠1.15.B16. A17.解:(1)如果几个角是直角,那么它们都相等.(2)如果一个整数的末位数字是5,那么它能被5整除.(3)如果一个图形是三角形,那么它的内角和是180°.18.A19. C20.解:如图,因为a∥b,所以∠1=∠3.又因为∠1=(3x+70)°,∠2=(5x+22)°,∠2+∠3=180˚,所以(3x +70)°+(5x+22)°=180°,解得x=11,所以∠1=(3x+70)°=103°.又因为180°-103°=77°,所以∠1的补角的度数为77°.21.解:答案不唯一,符合题意的情况有3种,即①②→③;①③→②;②③→①,任选其中一种即可.已知:如图17,∠B+∠D=180°,AB∥CD.结论:BC∥DE.理由:因为AB∥CD,所以∠B=∠C(两直线平行,内错角相等).又因为∠B+∠D=180°,所以∠C+∠D=180°,所以BC∥DE(同旁内角互补,两直线平行).22.解:(1)如图②,作PE∥AB,得∠APE=∠BAP.∵AB∥CD,AB∥PE,∴CD∥PE,∴∠CPE=∠PCD,∴∠APC=∠APE+∠CPE=∠BAP+∠PCD.故答案为∠APC=∠BAP+∠PCD.(2)∠APC=2∠AE C.理由:设∠EAB=∠EAP=x,∠ECD=∠ECP=y.由(1)可知:∠AEC=x+y,∠APC=2x+2y,∴∠APC=2∠AE C.(3)设∠EAB=a,∠DCE=b,则∠BAP=3a,∠DCP=3b. 由题意得∠AEC=a+b,∠APC+3a+3b=360°,∴∠APC+3∠AEC=360°.故答案为∠APC+3∠AEC=360°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档