初一下册数学第二章知识点

合集下载

初一数学下册第二章知识点总结

初一数学下册第二章知识点总结

初一数学下册第二章知识点总结初一数学下册第二章知识点:为了方便同学们复习,提高同学们的复习效率,对这一年的学习有一个更好的巩固,具体内容请看下文。

一、余角和补角:1、余角:定义:如果两个角的和是直角,那么称这两个角互为余角。

性质:同角或等角的余角相等。

2、补角:定义:如果两个角的和是平角,那么称这两个角互为补角。

性质:同角或等角的补角相等。

二、对顶角:我们把两条直线相交所构成的四个角中,有公共顶点且角的两边互为反向延长线的两个角叫做对顶角。

对顶角的性质:对顶角相等。

三、同位角、内错角、同旁内角:直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角。

其中1与5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;3与5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;3与6在直线AB,CD 之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角。

四、平行线的判定:1、两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

简称:同位角相等,两直线平行。

2、两条直线被第三条直线所截,如果内错角相等,那么两直线平行。

简称:内错角相等,两直线平行。

3、两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

简称:同旁内角互补,两直线平行。

补充平行线的判定方法:(1)平行于同一条直线的两直线平行。

(2)在同一平面内,垂直于同一条直线的两直线平行。

(3)平行线的定义。

五、平行线的性质:(1)两直线平行,同位角相等。

(2)两直线平行,内错角相等。

(3)两直线平行,同旁内角互补。

六、尺规作图:1、作一条线段等于已知线段。

2、作一个角等于已知角。

这篇初一数学下册第二章知识点就为大家分享到这里了。

祝大家春节愉快!。

初一下学期数学第二章知识点

初一下学期数学第二章知识点

初一上册数学_初一下学期数学第二章知识点
多阅读和积累,可以使学生增长知识,使学生在学习中做到举一
反三。

在此初中频道为您提供初一下学期数学第二章知识点,希望
给您学习带来帮助,使您学习更上一层楼!
2.1二元一次方程组
1、二元一次方程组
含有两个未知数,并且未知数的指数都是1的方程叫做二元一次方程
把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。

使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

2.2二元一次方程组的解法
1.二元一次方程组:
两个二元一次方程合在一起,就组成了一个二元一次方程组。

作为二元一次方程组的两个方程,不一定都含有两个未知数,可以其中一个是一元一次方程,另一个是二元一次方程。

2.3二元一次方程组的应用
1.一次篮、排球比赛,共有48个队,520名运动员参加,其中
篮球队每队10名,排球队每队12名,求篮、排球各有多少队参赛?
2.某厂买进甲、乙两种材料共56吨,用去9860元。

若甲种材料每吨190元,乙种材料每吨160元,则两种材料各买多少吨?
3.某人用24000元买进甲、乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,试问某人买的甲、乙两股票各是多少元?
初一下学期数学第二章知识点整理的很及时吧,提高学习成绩离不开知识点和练习的结合,因此大家想要取得更好的成绩一定要注重从平时中发现问题查缺补漏。

七年级下册第2章的知识点

七年级下册第2章的知识点

七年级下册第2章的知识点七年级下册第2章主要涉及到“有理数”的概念及其运算法则。

以下是本章的知识点。

一、有理数的概念有理数是整数、真分数和假分数的统称,可以表示为正数、负数或零。

有理数的分子和分母都是整数。

二、有理数的分类有理数可以分为正有理数、负有理数和零。

其中正有理数为大于零的数,负有理数为小于零的数,零既不是正有理数也不是负有理数。

三、有理数的绝对值有理数的绝对值是该数与零点的距离,即去掉其符号的值。

例如|-3|=3,|2|=2。

四、有理数的相反数一个数与其相加等于零的数称为它的相反数,用负号表示。

例如,3的相反数为-3,-4的相反数为4。

五、有理数的加法和减法运算①两个同号数相加或相减,先把绝对值相加,再加上它们的符号。

例如,2+3=5,-4+(-3)=-7②两个异号数相加或相减,先把绝对值的差相加,符号取大数的符号。

例如,2+(-3)=1,-4+3=-1六、有理数的乘法和除法运算①两个正数相乘得到正数,两个负数相乘得到正数,一个正数和一个负数相乘得到负数。

例如,2×3=6,-2×(-3)=6,2×(-3)=-6②一个数除以另一个数等于被除数乘以除数的倒数。

例如,12÷3=4,-12÷(-3)=4,12÷(-3)=-4七、有理数的运算法则有理数的加法、减法、乘法和除法满足以下法则:①结合律:数的加法和乘法运算满足结合律,即(a+b)+c=a+(b+c),(ab)c=a(bc)。

②交换律:数的加法和乘法运算满足交换律,即a+b=b+a,ab=ba。

③分配律:乘法对加法具有分配律,即a(b+c)=ab+ac。

以上就是七年级下册第2章的知识点,掌握了这些知识点,就能够顺利地完成相关的练习和考试。

希望同学们能够认真学习,不断提高自己的数学成绩。

七年级下册数学第二单元知识点整理归纳

七年级下册数学第二单元知识点整理归纳

七年级下册数学第二单元知识点整理归纳七年级下册数学第二单元知识点整理归纳在我们平凡无奇的学生时代,说到知识点,大家是不是都习惯性的重视?知识点就是学习的重点。

你知道哪些知识点是真正对我们有帮助的吗?下面是店铺帮大家整理的七年级下册数学第二单元知识点整理归纳,希望能够帮助到大家。

七年级下册数学第二单元知识点整理归纳1相交线与平行线1.同一平面内,两直线不平行就相交。

2.两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。

性质是对顶角相等。

3.垂直定义:两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。

其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

4.垂直三要素:垂直关系,垂直记号,垂足5.垂直公理:过一点有且只有一条直线与已知直线垂直。

6.垂线段最短;7.点到直线的距离:直线外一点到这条直线的垂线段的长度。

8.两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧),内错角Z(在两条直线内部,位于第三条直线两侧),同旁内角U(在两条直线内部,位于第三条直线同侧)。

9.平行公理:过直线外一点有且只有一条直线与已知直线平行。

10.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

如果b//a,c//a,那么b//cP174题11.平行线的判定。

结论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。

平行线的性质:1.两直线平行,同位角相等。

2.两直线平行,内错角相等。

3.两直线平行,同旁内角互补。

七年级下册数学第二单元知识点整理归纳2平行线的判定第1课时基础知识1、C2、ADBCADBC180°—∠1—∠2∠3+∠43、ADBEADBCAECD同位角相等,两直线平行4、题目略MNAB内错角相等,两直线平行MNAB同位角相等,两直线平行两直线平行于同一条直线,两直线平行5、B6、∠BED∠DFC∠AFD∠DAF7、证明:∵AC⊥AEBD⊥BF∴∠CAE=∠DBF=90°∵∠1=35°∠2=35°∴∠1=∠2∵∠BAE=∠1+∠CAE=35°+90°=125°∠CBF=∠2+∠DBF=35°+90°=125°∴∠CBF=∠BAE∴AE∥BF(同位角相等,两直线平行)8、题目略(1)DEBC(2)∠F同位角相等,两直线平行(3)∠BCFDEBC同位角相等,两直线平行能力提升9、∠1=∠5或∠2=∠6或∠3=∠7或∠4=∠810、有,AB∥CD∵OH⊥AB∴∠BOH=90°∵∠2=37°∴∠BOE=90°—37°=53°∵∠1=53°∴∠BOE=∠1∴AB∥CD(同位角相等,两直线平行)11、已知互补等量代换同位角相等,两直线平行12、平行,证明如下:∵CD⊥DA,AB⊥DA∴∠CDA=∠2+∠3=∠BAD=∠1+∠4=90°(互余)∵∠1=∠2(已知)∴∠3=∠4∴DF∥AE(内错角相等,两直线平行)探索研究13、对,证明如下:∵∠1+∠2+∠3=180°∠2=80°∴∠1+∠3=100°∵∠1=∠3∴∠1=∠3=50°∵∠D=50°∴∠1=∠D=50°∴AB∥CD(内错角相等,两直线平行)14、证明:∵∠1+∠2+∠GEF=180°(三角形内角和为180°)且∠1=50°,∠2=65°∴∠GEF=180°—65°—50°=65°∵∠GEF=∠BEG=1/2∠BEF=65°∴∠BEG=∠2=65°∴AB∥CD(内错角相等,两直线平行)七年级下册数学第二单元知识点整理归纳3相交线与平行线1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。

七年级数学第2章的知识点

七年级数学第2章的知识点

七年级数学第2章的知识点数学是一门让人爱恨交加的学科,对于初学者来说,更是充满了挑战。

但是,无论你现在处于什么水平,掌握好基本知识点仍然是学好数学的基础。

那么,我们今天来聊聊七年级数学第2章的知识点,相信对于初学者来说会非常有帮助。

一、有理数的概念七年级数学第2章的第一个知识点是有理数的概念。

有理数包括整数和分数两种,其中整数包括自然数、零和负整数,分数包括正分数和负分数。

有理数可以表示为带分数或者分数的形式,例如3 = 3/1, -1/3 = -1÷3等。

有理数有加减乘除的运算,运算规律同于实数。

二、有理数的比较有理数的比较是接下来要学习的知识点。

在比较有理数大小时,可以比较它们的绝对值,先比较它们的整数部分,整数部分相同时,再比较小数或分数的大小。

如果不知道如何比较,也可以将其转化为同分数比较,通常情况下都能找到方法。

三、加减有理数接下来学习的就是加减有理数了,要掌握准确的方法,需要了解以下两点:1. 同号数相加减,异号数相加减。

同离合,异求差,当两个有理数同为正数或同为负数时,将其绝对值相加,再用相同符号表示结果。

当两个有理数异号时,将其绝对值相减,绝对值大的数符号保留,结果符号与绝对值大的数相同。

2. 把减法变成加法。

如果是两个有理数相减,可以将其转化为加上相反数,即减法转化为加法。

因为减去一个数,相当于加上其相反数。

例如:a-b = a+(-b)四、乘法和除法乘法和除法都是基本运算,掌握好方法有助于我们更好地解决问题。

1. 两数相乘,符号相同者为正,否则为负。

例如:-2×-5=10, 2×-5=-102. 一个数乘以一个分数,相当于把这个数乘以分子再除以分母。

例如:2/3×5=2×5/3=10/33. 除法是乘法的逆运算。

a÷b= a×1/b,当b≠0时五、小数的概念小数不同于分数,它用10为底的数表示,可以用有限小数和无限循环小数两种形式表示。

七年级数学第二章知识点整理

七年级数学第二章知识点整理

七年级数学第二章知识点整理七年级数学第二章知识点整理(一)嗨,亲爱的小伙伴们!今天咱们来一起整理一下七年级数学第二章的知识点哟。

先来说说整式吧,这可是个重要的概念。

整式就像是一个乖乖的大家族,里面包括单项式和多项式。

单项式呢,就像一个孤独的小可爱,只有一个项,比如 3x 、 5 。

而多项式呀,是由几个单项式手拉手组成的,像 2x + 3y 。

还有系数和次数,可别弄混啦!系数就是单项式前面的数字因数,比如 5x 中的 5 。

次数呢,是单项式中所有字母的指数和。

再讲讲整式的加减。

这就像是一场有趣的组合游戏,同类项才能在一起玩耍哟。

同类项就是所含字母相同,并且相同字母的指数也相同的项。

合并同类项的时候,系数相加,字母和指数不变,是不是挺简单?去括号也是个关键呢!括号前是“+”号,去掉括号不变号;括号前是“”号,去掉括号都变号。

哎呀,数学其实并不难,只要咱们用心,都能学得棒棒哒!七年级数学第二章知识点整理(二)哈喽呀,小伙伴们!咱们继续来聊聊七年级数学第二章的那些有趣知识点。

咱们先来说说整式乘法。

单项式乘以单项式,就把系数和同底数幂分别相乘,单独的字母照抄就行啦。

单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加。

多项式乘以多项式,可要仔细啦,一个多项式的每一项乘以另一个多项式的每一项,再合并同类项。

乘法公式也很重要哟!平方差公式:(a + b)(a b) = a² b² ,是不是很好记?完全平方公式:(a ± b)² = a² ± 2ab + b² ,要注意符号别弄错。

整式除法也不能落下。

单项式除以单项式,把系数、同底数幂分别相除。

多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加。

怎么样,是不是觉得数学也挺好玩的?只要咱们多练习,这些知识点都能轻松掌握哒!加油哟,小伙伴们!。

湘教版七年级数学下册第二章--整式的乘法知识点

湘教版七年级数学下册第二章--整式的乘法知识点

湘教版七年级数学下册第二章--整式的乘法知识点(总5页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除七年级下册第二章整式的乘法1.同底数幂相乘,底数不变,指数相加。

a n a m=a m+n(m,n是正整数)例:2.幂的乘方,底数不变,指数相乘。

(a n)m=a mn(m,n是正整数)例:3.积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

(ab)n=a n b n(m,n是正整数)例:4.单项式与单项式相乘,把它们的系数、同底数幂分别相乘。

例:5.单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加。

a(m+n)=am+an6.多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加。

(a+b)(m+n)=am+an+bm+bn例:7.平方差公式,即两个数的和与这两个数的差的积等于这两个数的平方差。

(a+b)(a-b)=a2-b2 (公式右边:符号相同项的平方-符号相反项的平方) 例:8.完全平方公式口诀:头平方和尾平方,头尾两倍在中央,中间符号是一样。

(a+b)2=a2+2ab+b2 =a2+b2+2ab (a-b)2=a2-2ab+b2=a2+b2-2ab例:9.公式的灵活变形:(a+b)2+(a-b)2=(a2+2ab+b2)+(a2-2ab+b2)=2a2+2b2,(a+b)2-(a-b)2=(a2+2ab+b2)-(a2-2ab+b2)=2ab+2ab=4ab,a2+b2=(a+b)2-2ab,④a2+b2= (a-b)2+2ab,⑤(a+b)2=(a-b)2+4ab,⑥(a-b)2=(a+b)2-4ab01各个击破命题点1幂的运算【例1】若a m+n·a m+1=a6,且m+2n=4,求m,n的值.【思路点拨】已知m+2n=4,只要再找到一个关于m,n的二元一次方程即可组成方程组求解.可根据同底数幂的乘法法则,由等式左右两边a的指数相等即可得到.【解答】【方法归纳】对于乘方结果相等的两个数,如果底数相等,那么指数也相等.1.(徐州中考)下列运算正确的是( )A.3a2-2a2=1 B.(a2)3=a5C.a2·a4=a6D.(3a)2=6a22.若2x=3,4y=2,则2x+2y的值为________.命题点2多项式的乘法【例2】化简:2(x-1)(x+2)-3(3x-2)(2x-3).【解答】【方法归纳】在计算多项式乘法时,要注意不漏项,不重项.多项式与多项式相乘,结果仍是多项式,在合并同类项之前,积的项数等于两个多项式项数的积.3.(佛山中考)若(x+2)(x-1)=x2+mx+n,则m+n=( )A.1 B.-2C.-1 D.24.下列各式中,正确的是( )A.(-x+y)(-x-y)=-x2-y2B.(x2-1)(x-2y2)=x3-2x2y2-x+2y2C.(x+3)(x-7)=x2-4x-4D.(x-3y)(x+3y)=x2-6xy-9y2命题点3适用乘法公式运算的式子的特点【例3】下列多项式乘法中,可用平方差公式计算的是( )A.(2a+b)(2a-3b) B.(x+1)(1+x)C.(x-2y)(x+2y) D.(-x-y)(x+y)【方法归纳】能用平方差公式进行计算的两个多项式,其中一定有完全相同的项,剩下的是互为相反数的项,其结果是相同项的平方减去相反项的平方.5.下列多项式相乘,不能用平方差公式的是( )A.(-2y-x)(x+2y)B.(x-2y)(-x-2y)C.(x-2y)(2y+x)D.(2y-x)(-x-2y)6.下列各式:①(3a-b)2;②(-3a-b)2;③(-3a+b)2;④(3a+b)2,适用两数和的完全平方公式计算的有________(填序号).命题点4利用乘法公式计算【例4】先化简,再求值:(2a-b)(b+2a)-(a-2b)2+5b2.其中a=-1,b=2.【思路点拨】把式子的前两部分分别运用平方差公式和完全平方公式化简.【解答】【方法归纳】运用平方差公式时,要看清两个因式中的相同项和相反数项,其结果是相同项的平方减去相反数项的平方.7.下列等式成立的是( )A.(-a-b)2+(a-b)2=-4abB.(-a-b)2+(a-b)2=a2+b2C.(-a-b)(a-b)=(a-b)2D.(-a-b)(a-b)=b2-a28.若(a2+b2+1)(a2+b2-1)=15,那么a2+b2的值是________.9.计算:(1)(a+b)2-(a-b)2-4ab;(2)[(x+2)(x-2)]2;(3)(a+3)(a-3)(a2-9).命题点5乘法公式的几何背景【例5】(1)如图,请用两种不同的方式表示图中的大正方形的面积;(2)你根据上述结果可以得到一个什么公式?(3)利用这个公式计算:1022.【思路点拨】根据图形可以得到:图形的面积有两种计算方法,一种是根据正方形的面积等于边长的平方计算;另一种方法是图形中两个长方形面积与两个正方形的面积的和,即可得到公式;然后利用公式计算即可.【解答】【方法归纳】根据同一个图形的面积的两种表示,所得到的代数式的值相等,由此可得到对应的代数恒等式.10.将图1中阴影部分的小长方形变换到图2位置,根据两个图形的面积关系可以得到一个关于a、b的恒等式为( )图 1 图2A.(a-b)2=a2-2ab+b2B.(a+b)2=a2+2ab+b2C.(a+b)(a-b)=a2-b2D.a(a-b)=a2-ab11.(枣庄中考)图1是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是( )A.2ab B.(a+b)2C.(a-b)2D.a2-b202整合集训一、选择题(每小题3分,共24分)1.(钦州中考)计算(a3)2的结果是( )A.a9B.a6C.a5D.a2.(巴彦淖尔中考)下列运算正确的是( )A.x3·x2=x5B.(x3)2=x5C.(x+1)2=x2+1 D.(2x)2=2x23.如果a2n-1·a n+5=a16,那么n的值为( )A.3 B.4C .5D .64.下列各式中,与(1-a)(-a -1)相等的是( )A .a 2-1B .a 2-2a +1C .a 2-2a -1D .a 2+15.如果(x -2)(x +3)=x 2+px +q ,那么p 、q 的值为( )A .p =5,q =6B .p =-1,q =6C .p =1,q =-6D .p =5,q =-66.(-x +y)( )=x 2-y 2,其中括号内的是( )A .-x -yB .-x +yC .x -yD .x +y7.一个长方体的长、宽、高分别是3a -4、2a 、a ,它的体积等于( )A .3a 3-4a 2B .a 2C .6a 3-8aD .6a 3-8a 28.已知a =814,b =275,c =97,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .a <b <cD .b >c >a 二、填空题(每小题4分,共16分)9.若a x =2,a y =3,则a 2x +y=________.10.计算:3m 2·(-2mn 2)2=________.11.(福州中考)已知有理数a ,b 满足a +b =2,a -b =5,则(a +b)3·(a -b)3的值是________.12.多项式4x 2+1加上一个单项式后,使它能成为一个整式的完全平方,请写出所有可能的单项式为________. 三、解答题(共60分) 13.(12分)计算:(1)(-2a 2b)3+8(a 2)2·(-a)2·(-b)3; (2)a(a +4b)-(a +2b)(a -2b)-4ab ; (3)(2x -3y +1)(2x +3y -1).14.(8分)已知a +b =1,ab =-6,求下列各式的值.(1)a 2+b 2;(2)a 2-ab +b 2.15.(10分)先化简,再求值:(1)(常州中考)(x +1)2-x(2-x),其中x =2; (2)(南宁中考)(1+x)(1-x)+x(x +2)-1,其中x =12.16.(10分)四个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪ab c d ,定义⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,这个记号就叫做2阶行列式. 例如:⎪⎪⎪⎪⎪⎪1234=1×4-2×3=-2 . 若⎪⎪⎪⎪⎪⎪x +1 x +2x -2 x +1=10,求x 的值.17.(10分)如图,某校有一块长为(3a +b)米,宽为(2a +b)米的长方形地块,学校计划将阴影部分进行绿化,中间将修建一座雕像. (1)用含a 、b 的代数式表示绿化面积并化简; (2)求出当a =5米,b =2米时的绿化面积.18.(10分)小华和小明同时计算一道整式乘法题(2x +a)(3x +b).小华把第一个多项式中的“a”抄成了-a ,得到结果为6x 2+11x -10;小明把第二个多项式中的3x 抄成了x ,得到结果为2x 2-9x +10.(1)你知道式子中a ,b 的值各是多少吗?(2)请你计算出这道题的正确结果.参考答案各个击破【例1】 由已知得a 2m +n +1=a 6,所以2m +n +1=6,即2m +n =5.又因为m +2n =4,所以m =2,n =1.【例2】 原式=2(x 2+2x -x -2)-3(6x 2-9x -4x +6)=-16x 2+41x -22. 【例3】 C【例4】 原式=(4a 2-b 2)-(a 2-4ab +4b 2)+5b 2=3a 2+4ab.当a =-1,b =2时,原式=3×(-1)2+4×(-1)×2=-5.【例5】 (1)方法一:(a +b)2.方法二:a 2+2ab +b 2.(2)(a +b)2=a 2+2ab +b 2.(3)1022=(100+2)2=1002+2×100×2+22=10 404. 题组训练1.C 2.6 3.C 4.B 5.A 6.②④ 7.D 8.49.(1)原式=a 2+2ab +b 2-a 2+2ab -b 2-4ab =0.(2)原式=(x 2-4)2=x 4-8x 2+16.(3)原式=(a 2-9)(a 2-9)=a 4-18a 2+81. 10.C 11.C 整合集训1.B 2.A 3.B 4.A 5.C 6.A 7.D 8.A 9.12 10.12m 4n 411.1 000 12.±4x 或4x 413.(1)原式=-8a 6b 3-8a 6b 3=-16a 6b 3.(2)原式=a 2+4ab -(a 2-4b 2)-4ab =a 2+4ab -a 2+4b 2-4ab =4b 2.(3)原式=[2x -(3y -1)][2x +(3y -1)]=4x 2-(3y -1)2=4x 2-(9y 2-6y +1)=4x 2-9y 2+6y -1.14.(1)原式=(a +b)2-2ab =1+12=13.(2)原式=(a +b)2-3ab =12-3×(-6)=1+18=19.15.(1)原式=x 2+2x +1-2x +x 2=2x 2+1.当x =2时,原式=8+1=9. (2)原式=1-x 2+x 2+2x -1=2x.当x =12时,原式=2×12=1.16.(x +1)2-(x -2)(x +2)=2x +5=10,解得x =2.5. 17.(1)S 阴影=(3a +b)(2a +b)-(a +b)2=6a 2+3ab +2ab +b 2-a 2-2ab -b 2=5a 2+3ab(平方米).(2)当a =5,b =2时,5a 2+3ab =5×25+3×5×2=125+30=155(平方米).18.(1)根据题意,得(2x -a)(3x +b)=6x 2+(2b -3a)x -ab =6x 2+11x -10;(2x +a)(x +b)=2x 2+(a +2b)x +ab =2x 2-9x +10,所以⎩⎪⎨⎪⎧2b -3a =11,a +2b =-9. 解得⎩⎪⎨⎪⎧a =-5,b =-2.(2)正确的算式为:(2x -5)(3x -2)=6x 2-19x +10.。

七年级下册数学2章知识点

七年级下册数学2章知识点

七年级下册数学2章知识点数学,作为一门基础学科,为我们的生活提供了必要的数学工具和技能。

数学不仅仅是一门学科,而且是一种思考方式。

在七年级下册数学的第二章中,我们将学习一些重要的数学知识点。

下面就让我们一起来了解这些知识点吧!一、有理数加减法在第二章中,我们将学习有理数的加减法。

有理数是可以表示为两个整数之比的数(其中分母不等于零)。

在加减法中,我们需要注意符号的运用。

当两个数的符号相同时,我们将它们的绝对值相加,符号不变。

例如:3 + 5 = 8-3 + (-5) = -8当两个数的符号不同时,我们将它们的绝对值相减,结果的符号与绝对值较大的数的符号相同。

例如:-3 + 5 = 23 + (-5) = -2二、有理数乘法在有理数乘法中,我们需要注意正负号的运用。

当两个数的符号相同时,它们的积为正数。

例如:3 × 5 = 15-3 × (-5) = 15当两个数的符号不同时,它们的积为负数。

例如:3 × (-5) = -15-3 × 5 = -15三、有理数除法有理数除法可以看作是有理数乘法的逆运算。

在有理数除法中,我们需要将除数的倒数乘以被除数。

例如:6 ÷ 3 = 2,等价于 6 × 1/3 = 2-6 ÷ (-3) = 2,等价于 -6 × 1/(-3) = 2四、分数的意义和性质在第二章中,我们还将学习分数的意义和性质。

分数是由一个整数(分子)和一个非零自然数(分母)构成的数。

分数有多种意义,如:部分、比例、运算、度量等。

四分之一、三分之二等常见分数都有自己的含义和应用。

另外,分数还有一些重要的性质,如:分数的大小比较、分数的化简、分数的加减乘除等。

五、小数的意义和性质小数是指一个由整数部分和小数部分组成的有限或无限循环的数。

小数在我们的日常生活中使用非常广泛,如:货币、时间、长度、重量等。

我们还需要学习小数的一些性质,如:小数和分数的关系、小数的大小比较、小数的加减乘除等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三一文库()/初中一年级〔初一下册数学第二章知识点〕
为大家整理的初一下册数学第二章知识点的文章,供大家学习参考!更多最新信息请点击
一、目标与要求
1.理解对顶角和邻补角的概念,能在图形中辨认;
2.掌握对顶角相等的性质和它的推证过程;
3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力。

二、重点
在较复杂的图形中准确辨认对顶角和邻补角;
两条直线互相垂直的概念、性质和画法;
同位角、内错角、同旁内角的概念与识别。

三、难点
在较复杂的图形中准确辨认对顶角和邻补角;
对点到直线的距离的概念的理解;
对平行线本质属性的理解,用几何语言描述图形的性质;
能区分平行线的性质和判定,平行线的性质与判定的混合应用。

四、知识点、概念总结
1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。

5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。

7.垂线性质
(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。

(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

相关文档
最新文档