小学奥数勾股定理与弦图讲解教学文案

合集下载

通用版五年级奥数《勾股定理与弦图》讲义

通用版五年级奥数《勾股定理与弦图》讲义

华盛顿的傍晚亲爱的小朋友们:“在那山的那边海那边的的美国首都华盛顿,有一位中年人,他聪明又勤奋,他潜心探讨,他反复思考与演算……,那是1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员加菲尔德。

他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。

由于好奇心驱使,加菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。

只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。

于是加菲尔德便问他在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”加菲尔德答道:“是5呀。

”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”加菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩说:“先生,你能说出其中的道理吗?”加菲尔德一时语塞,无法解释了,心里很不是滋味。

加菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。

他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。

具体方法如下: 两个全等的Rt△ABC和Rt △BDE 可以拼成直角梯形ACDE , 则梯形面积等于三个直角三角形面积之和。

即(AC +DE )×CD÷2=AC×BC÷2+BD×DE÷2+AB×BE÷2 (a +b )2÷2=a×b÷2+a×b÷2+c×c÷2 化简整理得a 2+b 2=c 2课前预习勾股定理与弦图点评:此种解法主要利用了三角形的面积公式:底×高÷2,和梯形的面积公式:(上底+下底)×高÷2.而在我国对于勾股定理的证明又做出了那些贡献哪? 在我国古代,把直角三角形叫做勾股形。

小学勾股定理与弦图基础知识点

小学勾股定理与弦图基础知识点

小学勾股定理与弦图基础知识点
 小学勾股定理与弦图基础知识点
(一)勾股定理
1、勾股定理
在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理。

2、勾股定理的证明
如图,从两个大小相等的正方形中(边长都是a+b),减去4块一样的直角三角形后(直角三角形直角边为a、b,斜边为c),剩下的面积应该是相等的,所以得到:在直角三角形中,两个直角边和斜边满足一下数量关系
a[sup]2[/sup]+b[sup]2[/sup]=c[sup]2[/sup](其中a、b为直角边,c为斜边)。

《勾股定理》说课稿(精选5篇)

《勾股定理》说课稿(精选5篇)

《勾股定理》说课稿(精选5篇)作为一名教职工,通常需要用到说课稿来辅助教学,说课稿有利于教学水平的提高,有助于教研活动的开展。

怎么样才能写出优秀的说课稿呢?为了让您对于勾股定理说课稿的写作了解的更为全面,下面作者给大家分享了5篇《勾股定理》说课稿,希望可以给予您一定的参考与启发。

《勾股定理》说课稿篇一教材分析《勾股定理》是人教版新课标八年级数学第十八章一节一课时内容,勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,是中学数学几个重要定理之一。

它揭示了一个直角三角形三条边之间的数量关系,是解直角三角形的主要根据之一,在实际生活中用途很大。

勾股定理的发现、验证和应用蕴含着丰富的文化价值,它在理论上占有重要地位,学好本节至关重要。

教学目标根据新课程标准对学生知识、能力的要求,结合八年级学生实际水平、认知特点制定以下教学目标。

知识与技能:知道勾股定理的由来,理解和掌握勾股定理的证明方法。

能够灵活地运用勾股定理及其计算。

过程与方法:让学生经历观察-猜想-归纳-验证的数学过程,并从中体会数形结合及从特殊到一般的数学思想。

培养学生观察、比较、分析、推理的能力。

情感态度与价值观:介绍我国古代在研究勾股定理方面取得的伟大成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感在探索问题的过程中,培养学生的合作交流意识和探索精神。

(三)本节课的重点:是勾股定理的发现、验证和应用。

难点:是用拼图方法、面积法证明勾股定理教法和学法教法指导:数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,要展现获取知识和方法的思维过程,针对八年级学生的知识结构和心理特征,本节课采取自主探究发现式教学,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性。

让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。

使学生得到获得新知的成功感受,从而激发学生钻研新知。

《勾股定理》教学案例

《勾股定理》教学案例

《勾股定理》教学案例一、研究缘由《勾股定理》在八年级教材下册,这部分内容详细介绍了勾股定理的相关知识与探索过程,包含了大量应用习题,学生需要巧妙运用列式变形等方法验证勾股定理内容。

教师需要做到数形结合,发展学生的形象思维。

勾股定理属于基础性知识,在中考几何证明题中运用广泛,只有学生熟练掌握,才能挖掘出题目当中的隐含信息,为此,教师需要对勾股定理的教学方法进行研究,提高学生知识迁移能力。

二、教学实践初中阶段的学生已经具有了一定的数学基础,对三角形的相关性质、面积、周长等概念比较熟悉,能够完成计算等任务。

在本节课的教学中,教师可以引导学生开展自主探究,让学生分析勾股定理的产生过程,从多个角度研究勾股定理。

【教学片段一】运用传统数学经典,导入教学内容师:在《周髀算经》中,有这样一段话,“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五……”同学们知道这段话当中所蕴含的数学定理吗?生:勾股定理。

师:非常聪明,同学们能够抓住这段话的关键字,知道描述的是勾股定理,也就是我们今天要学习的内容。

师:在2500多年前,毕达哥拉斯就从地板砖上发现了一些三角形的规律,现在大家打开课本,看看能够发现什么奥秘呢?师:大家看课本中的地板砖示意图,其中为我们描绘了大正方形、小正方形,大家可以拿出笔算一算,能发现什么?生:两个小正方形面积相加,可以得到大正方形的面积。

师:正方形的面积是边的平方,所以等腰直角三角形的三边关系是怎样的呢?生:两条直角边的平方和等于斜边的平方。

师:非常好,说出了老师想要听的答案。

【分析思考】教师运用我国传统的数学名著引入新知识,能够有效调动学生学习兴趣,激发学生数学文化素养,培养学生热爱祖国、传承传统文化的意识。

在勾股定理的探索过程中,教师从课本中的方格图形入手,引导学生自主探究,让学生通过计算、变式等方法,从面积关系转移到边长关系,增强对勾股定理的理解。

【教学片段二】开展小组合作探究,完成知识迁移师:现在教师用多媒体课件呈现了普通直角三角形,用不同颜色呈现了相应的正方形,现在大家分小组探究,看刚才得出的结论能否应用在这些直角三角形当中。

勾股定理教案范本 勾股定理教案教学方法优秀6篇

勾股定理教案范本 勾股定理教案教学方法优秀6篇

勾股定理教案范本勾股定理教案教学方法优秀6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!勾股定理教案范本勾股定理教案教学方法优秀6篇作为一位优秀的人·民教师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。

勾股定理知识讲解

勾股定理知识讲解

勾股定理知识点学习要求:学习重点是利用计算面积和拼图的方法探索并验证勾股定理借助三角形三边关系来判断一个三角形是否是直角三角形。

难点是各种拼图的理解和勾股定理的应用。

中考热点:主要考查勾股定理及直角三角形判定条件的应用和勾股数常与三角形其他知识结合考查。

一、探索勾股定理: 1.勾股定理(重点)内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 即:直角三角形的三边关系为:两直角边的平方和等于斜边的平方注:勾股定理揭示的是直角三角形三边关系的定理,只使用与直角三角形。

使用勾股定理时首先确定最长边即斜边。

2.勾股定理的证明(难点)勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCBA方法二:见右图四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形(22a b +>2c )和钝角三角形(22a b +<2c 的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用(重点)①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c b ,a = ②知道直角三角形一边,可得另外两边之间的数量关系。

勾股定理教学设计

勾股定理教学设计

《勾股定理》教学设计一、教学目标:(一)知识与技能目标:掌握勾股定理的几种证明方法,能够熟练地运用勾股定理由直角三角形的任意两边求得第三边。

(二)过程与方法目标:通过探究勾股定理的发现与证明,渗透数形结合的思想方法,增强逻辑思维能力,操作探究能力和培养学生的探索精神和合作交流的能力。

(三)情感态度与价值观目标:通过对勾股定理的探索,培养学生对数学问题孜孜以求的探究精神和科学态度.通过了解我国古代在勾股定理研究方面的成就,激发热爱祖国,热爱祖国悠久文化的思想感情。

二、教学重、难点:1.探索和证明勾股定理。

2. 用拼图方法证明勾股定理。

三、教学方法:启发、合作交流和直观演示。

四、教具准备:相同规格的直角三角形纸片若干张。

五、教学过程:(一)故事引入,激发兴趣毕达哥拉斯有次应邀参加一位富有政要的餐会,这位主人豪华宫殿般的餐厅铺着是正方形美丽的大理石地砖,由于大餐迟迟不上桌,这些饥肠辘辘的贵宾颇有怨言;这位善于观察和理解的数学家却凝视脚下这些排列规则、美丽的方形磁砖,但毕达哥拉斯不只是欣赏磁砖的美丽,而是想到它们和[数]之间的关系,于是拿了画笔并且蹲在地板上划来划去,回到家中不停演算,最后证明了勾股定理。

你想知道毕达哥拉斯是怎样利用地砖证明这个定理的吗?(二)故事场景,发现新知(1)观察两个正方形面积与两个小正方形面积关系。

(2)用a、b、c三个字母表示直角三角形三边,用这三个字母来表示这三个正方形的面积关系。

(3)是不是所有的三角形三边都满足这样的关系呢?(三) 深入探究,交流归纳(1)等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也具有“两直角边的平方和等于斜边的平方”呢?(2)想一想,怎样利用小方格计算正方形A、B、C面积?直角三A 积B 单位A 角形三边关系、B 、C 面积关系图2图1C 的面(单位面积)的面积(面积)的面积(单位面积)(3)正方形A 、B 、C 面积之间的关系是什么?(4)直角三角形三边之间的关系用命题形式怎样表述? 师生共同讨论、交流、逐步完善,得到命题1:如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么a 2 + b 2 =c 2 (四)拼图验证,加深理解:(1)用手中的四个全等的三角形平成一个正方形。

勾股定理(基础)知识讲解

勾股定理(基础)知识讲解

勾股定理(基础)【学习目标】1.掌握勾股定理的内容,了解勾股定理的多种证明方法,体验数形结合的思想;2.能够运用勾股定理求解三角形中相关的边长(只限于常用的数);3.通过对勾股定理的探索解决简单的实际问题,进一步运用方程思想解决问题.【要点梳理】【高清课堂 勾股定理 知识要点】要点一、勾股定理直角三角形两条直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为a b ,,斜边长为c ,那么222a b c +=.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式: 222a c b =-,222b c a =-, ()222c a b ab =+-.要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以. 要点三、勾股定理的作用1. 已知直角三角形的任意两条边长,求第三边;2. 用于解决带有平方关系的证明问题;3. 与勾股定理有关的面积计算;4.勾股定理在实际生活中的应用.【典型例题】类型一、勾股定理的直接应用1、在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c .(1)若a =5,b =12,求c ;(2)若c =26,b =24,求a .【思路点拨】利用勾股定理222a b c +=来求未知边长.【答案与解析】解:(1)因为△ABC 中,∠C =90°,222a b c +=,a =5,b =12,所以2222251225144169c a b =+=+=+=.所以c =13.(2)因为△ABC 中,∠C =90°,222a b c +=,c =26,b =24,所以222222624676576100a c b =-=-=-=.所以a =10.【总结升华】已知直角三角形的两边长,求第三边长,关键是先弄清楚所求边是直角边还是斜边,再决定用勾股原式还是变式.举一反三:【变式】在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c .(1)已知b =6,c =10,求a ;(2)已知:3:5a c =,b =32,求a 、c .【答案】解:(1)∵ ∠C =90°,b =6,c =10,∴ 2222210664a c b =-=-=,∴ a =8.(2)设3a k =,5c k =,∵ ∠C =90°,b =32,∴ 222a b c +=.即222(3)32(5)k k +=.解得k =8.∴ 33824a k ==⨯=,55840c k ==⨯=.类型二、与勾股定理有关的证明2、(2015•丰台区一模)阅读下面的材料勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍的一种拼图证明勾股定理的方法.先做四个全等的直角三角形,设它们的两条直角边分别为a,b,斜边为c,然后按图1的方法将它们摆成正方形.由图1可以得到(a+b)2=4×,整理,得a2+2ab+b2=2ab+c2.所以a2+b2=c2.如果把图1中的四个全等的直角三角形摆成图2所示的正方形,请你参照上述证明勾股定理的方法,完成下面的填空:由图2可以得到,整理,得,所以.【答案与解析】证明:∵S大正方形=c2,S大正方形=4S△+S小正方形=4×ab+(b﹣a)2,∴c2=4×ab+(b﹣a)2,整理,得2ab+b2﹣2ab+a2=c2,∴c2=a2+b2.故答案是:;2ab+b2﹣2ab+a2=c2;a2+b2=c2.【总结升华】本题考查利用图形面积的关系证明勾股定理,解题关键是利用三角形和正方形边长的关系进行组合图形.举一反三:【变式】如图,在△ABC中,∠C=90°,D为BC边的中点,DE⊥AB于E,则AE2-BE2等于()A.AC2B.BD2C.BC2D.DE2【答案】连接AD 构造直角三角形,得,选A .类型三、与勾股定理有关的线段长【高清课堂 勾股定理 例3】3、如图,长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( )A .3B .4C .5D .6【答案】D ;【解析】解:设AB =x ,则AF =x ,∵ △ABE 折叠后的图形为△AFE ,∴ △ABE ≌△AFE .BE =EF ,EC =BC -BE =8-3=5,在Rt △EFC 中,由勾股定理解得FC =4,在Rt △ABC 中,()22284x x +=+,解得6x =. 【总结升华】折叠问题包括“全等形”、“勾股定理”两大问题,最后通过勾股定理求解. 类型四、与勾股定理有关的面积计算4、如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为( )A .6B .5C .11D .16【思路点拨】本题主要考察了全等三角形与勾股定理的综合应用,由b 是正方形,可求△ABC ≌△CDE .由勾股定理可求b 的面积=a 的面积+c 的面积.【答案】D【解析】解:∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°,∴∠ACB=∠DEC , 在△ABC 和△CDE 中,∵ABC CDE ACB DEC AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CDE∴BC=DE∵222AB BC AC +=∴222AB DE AC +=∴b 的面积为5+11=16,故选D .【总结升华】此题巧妙的运用了勾股定理解决了面积问题,考查了对勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.举一反三:【变式】(2015•东莞模拟)如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S 1=4,S 2=9,S 3=8,S 4=10,则S=( )A.25B.31C.32D.40【答案】解:如图,由题意得:AB 2=S 1+S 2=13,AC 2=S 3+S 4=18,∴BC 2=AB 2+AC 2=31,∴S=BC 2=31,故选B .类型五、利用勾股定理解决实际问题5、一圆形饭盒,底面半径为8cm ,高为12cm ,若往里面放双筷子(精细不计),那么筷子最长不超过多少,可正好盖上盒盖?【答案与解析】解:如图所示,因为饭盒底面半径为8cm ,所以底面直径DC 长为16cm .则在Rt △BCD 中,22222=16+12=400BD DC BC =+,所以20BD = (cm ).答:筷子最长不超过20cm ,可正好盖上盒盖.【总结升华】本题实质是求饭盒中任意两点间的最大距离,其最大距离是以饭盒两底面的一对平行直径和相应的两条高组成的长方形的对角线长.举一反三:【变式】如图所示,一旗杆在离地面5m 处断裂,旗杆顶部落在离底部12m 处,则旗杆折断前有多高?【答案】解:因为旗杆是垂直于地面的,所以∠C =90°,BC =5m ,AC =12m ,∴ 22222512169AB BC AC =+=+=.∴ 13AB =(m ).∴ BC +AB =5+13=18(m ).∴ 旗杆折断前的高度为18m .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数勾股定理与
弦图讲解
的面积。

⑴大正方形边长为:a+b
⑵小正方形边长为:a-b
一个直角三角形的斜边长 8 厘米,两个直角边的长度差为2 厘米,求这个三角形的面积?
【例 7】(★★★★★)
从一块正方形玻璃上裁下宽为16 分米的一长方形条后,剩下的那块长方形的面积为336 平方分米,原来正方形的面积是多少平方分米?
自我检测
1.将长为10 米的梯子斜靠在墙上,若梯子上端到墙的底端距离为
6 米,则梯足到墙的底端距离为__________米.
2.若直角三角形一直角边和斜边分别为17 和145 ,则另一直角边
为___________。

3.已知一个直角三角形的两边长分别为3 和4,则第三边长的平方
是。

4.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 cm,则正方形A,B,C,D的面积之和为___________cm2.
5.如图在△ABC中,AB =15,AC=13,高AD=12,则△ABC的面积为?
易错题
(1)某人以匀速行走在一条公路上,公路两端的车站每隔相同的时间开出一辆公共汽车,该行人发现每隔30分钟就会有一辆公共汽车追上他;而每隔20分钟有一辆公共汽车迎面开来.问车站每隔多少分钟开出一辆车?。

相关文档
最新文档