用于人工骨的材料

合集下载

人工骨修复材料

人工骨修复材料

人工骨修复材料
人工骨修复材料是一种用于骨折、骨缺损或骨病变修复的生物材料,它能够替代真实骨骼组织,促进骨骼愈合和再生。

在临床实践中,人工骨修复材料已经得到广泛应用,并取得了显著的疗效。

本文将对人工骨修复材料的种类、特点及应用进行介绍。

首先,人工骨修复材料主要分为生物活性材料和生物惰性材料两大类。

生物活性材料是指能够促进骨细胞生长和骨组织再生的材料,如羟基磷灰石、β-三钙磷酸钙等;生物惰性材料则是指对骨细胞无刺激作用,主要用于填充和支撑作用,如氢氧化钙、聚乳酸等。

不同的材料具有不同的特点和适应范围,医生会根据患者的具体情况选择合适的材料进行修复。

其次,人工骨修复材料具有多种优点。

首先,它们能够有效促进骨细胞的增殖和分化,加速骨组织的再生和愈合过程。

其次,这些材料具有良好的生物相容性,不易引起排异反应,有利于患者术后恢复。

此外,人工骨修复材料还具有较好的机械性能,能够提供足够的支撑和稳定,有利于骨折或骨缺损部位的愈合。

最后,人工骨修复材料在临床应用中具有广泛的适用范围。

它们不仅可以用于骨折愈合、骨缺损修复,还可以应用于骨肿瘤切除术后的骨缺损修复、骨关节置换术后的骨修复等领域。

在这些领域的应用中,人工骨修复材料能够有效提高手术效果,减少患者的痛苦,并降低并发症的发生率。

总的来说,人工骨修复材料作为一种重要的生物材料,在骨科领域具有广泛的应用前景。

随着科学技术的不断进步和临床实践的不断积累,人工骨修复材料的种类和性能将会得到进一步的提升,为患者的康复和健康提供更好的支持和保障。

希望本文的介绍能够对人工骨修复材料的相关研究和临床应用有所帮助,促进其更好地发展和应用。

生物陶瓷人工骨纳通说明书

生物陶瓷人工骨纳通说明书

生物陶瓷人工骨纳通说明书一、产品介绍生物陶瓷人工骨纳通是一种用于骨缺损修复的人工骨材料。

它由生物陶瓷材料制成,具有良好的生物相容性和生物活性,能够促进骨细胞的生长和骨组织的再生。

该产品具有优异的力学性能和生物学性能,可广泛应用于骨科手术中,帮助患者恢复骨功能。

二、适应症生物陶瓷人工骨纳通适用于各种骨缺损修复,特别适用于以下情况:1. 骨折修复:例如骨折愈合不良、骨不连、骨缺损等。

2. 骨肿瘤切除:如骨肿瘤切除术后的骨缺损修复。

3. 骨关节疾病治疗:如骨关节炎、骨质疏松等。

三、产品特点1. 生物相容性高:生物陶瓷人工骨纳通经过特殊处理,能够降低免疫反应,减少异物排斥,降低感染风险。

2. 生物活性好:生物陶瓷人工骨纳通富含矿物质和微量元素,能够模拟天然骨组织,促进骨细胞的生长和骨组织的再生。

3. 力学性能优异:生物陶瓷人工骨纳通具有良好的强度和韧性,能够承受骨骼的负荷,提供稳定的支撑。

4. 使用方便:生物陶瓷人工骨纳通制作成各种规格和形状,可以根据患者的需要进行裁剪和塑形,便于手术操作。

四、使用方法1. 术前准备:手术前需进行全面的术前评估和准备,确保患者的骨质状况和手术需求。

2. 术中操作:根据患者的骨缺损情况,选择合适的生物陶瓷人工骨纳通,并进行必要的裁剪和塑形。

3. 骨缺损修复:将生物陶瓷人工骨纳通置入骨缺损区域,并固定在骨组织中,以促进骨细胞的生长和骨组织的再生。

4. 术后护理:术后需密切观察患者的伤口愈合情况,并进行相应的护理和康复训练。

五、注意事项1. 严格遵循手术操作规范,避免手术中的污染和感染风险。

2. 根据患者的骨质状况和手术需求,选择合适的生物陶瓷人工骨纳通,以确保修复效果。

3. 术后患者需遵循医生的嘱咐,定期复诊,进行术后康复训练,以促进骨组织的愈合和功能恢复。

4. 本产品仅限医疗专业人员使用,请勿随意使用或转让给他人。

六、不良反应生物陶瓷人工骨纳通具有良好的生物相容性,不良反应较少。

人工骨修复材料 羟基磷灰石 磷酸三钙 骨形态蛋白

人工骨修复材料 羟基磷灰石 磷酸三钙 骨形态蛋白

人工骨修复材料羟基磷灰石磷酸三钙骨形态蛋白文章标题:人工骨修复材料:探索羟基磷灰石、磷酸三钙和骨形态蛋白的应用与发展导言在医学领域,人工骨修复材料一直是备受关注的研究热点。

随着医学技术的不断进步和人们对健康的关注日益增强,对人工骨修复材料的需求也越来越大。

而羟基磷灰石、磷酸三钙和骨形态蛋白等材料因其优异的生物相容性和生物活性,成为当前研究和应用的热点之一。

本文将从深度和广度的角度,对这些人工骨修复材料进行全面探讨,并深入剖析其应用与发展。

一、羟基磷灰石的应用与发展1. 什么是羟基磷灰石羟基磷灰石是一种生物陶瓷材料,具有类似骨骼的化学成分和结构。

它在人工骨修复中起到了至关重要的作用。

2. 羟基磷灰石的优势羟基磷灰石具有优异的生物相容性和生物活性,能够促进骨细胞的生长和再生,有利于骨组织的修复和再生。

3. 羟基磷灰石的应用领域目前,羟基磷灰石已被广泛应用于骨科手术、牙科修复等领域,取得了显著的临床效果。

4. 羟基磷灰石的未来发展未来,随着生物技术和材料科学的不断进步,羟基磷灰石在人工骨修复领域的应用前景将更加广阔。

二、磷酸三钙的应用与发展1. 什么是磷酸三钙磷酸三钙是一种无机生物材料,能够与人体骨组织完美结合,成为人工骨修复材料的热门选择之一。

2. 磷酸三钙的优势磷酸三钙具有良好的生物相容性和降解性,对人体无害,同时还能刺激骨细胞的增生和成骨。

3. 磷酸三钙的应用领域磷酸三钙广泛应用于骨科、关节修复等领域,为临床治疗提供了有效的辅助。

4. 磷酸三钙的未来发展随着磷酸三钙材料制备技术的不断提升,其在人工骨修复领域的应用前景将更加广阔。

三、骨形态蛋白的应用与发展1. 什么是骨形态蛋白骨形态蛋白是一类能够诱导骨组织生长与修复的生物活性因子,对于人工骨修复具有重要的意义。

2. 骨形态蛋白的作用与机制骨形态蛋白能够促进间充质细胞向成骨细胞分化,从而促进骨生成和修复。

3. 骨形态蛋白的应用领域骨形态蛋白经过临床验证,已成功应用于髋关节、脊柱融合、骨折愈合等方面,取得了良好的疗效。

生物医学工程中的陶瓷材料人工骨应用研究

生物医学工程中的陶瓷材料人工骨应用研究

生物医学工程中的陶瓷材料人工骨应用研究引言在医学领域,骨组织的再生和修复一直是一个重要的研究领域。

当人体出现骨骼组织受损、骨折等情况时,即使经过外科手术治疗,也可能引起一系列的骨质失调和继发性骨疾病。

钛、镁合金等材料作为传统的人工骨修复材料已经被广泛应用,但是它们也存在着自身的缺陷。

然而,陶瓷材料因为其良好的生物相容性和耐磨性能,使其得到越来越多的研究和应用。

本文将探究陶瓷材料在生物医学工程中的应用研究。

1. 陶瓷材料在生物医学工程中的应用概述不同于传统的金属和合金等人工骨材料,陶瓷材料在生物医学工程中得到广泛的应用。

目前主要应用于人工骨、人工关节和医疗器械等方面。

陶瓷材料具有良好的生物相容性、生物活性、硬度、耐磨性和耐腐蚀性等特点。

其中,氧化铝陶瓷具有良好的生物相容性和生物活性,可以促进骨组织和材料的结合。

还有氧化锆陶瓷,它不仅具有良好的生物相容性,而且具有高强度和高韧性,可以作为人工关节的材料。

此外,钙磷陶瓷因其与骨组织的相似性,现在被广泛应用于骨组织的再生和修复。

2. 氧化铝陶瓷人工骨的研究进展氧化铝陶瓷是一种具有优异生物相容性和生物活性的陶瓷材料,已经广泛应用于人工骨领域。

相对于其它的陶瓷材料,氧化铝陶瓷因其众多的优点而倍受青睐:耐腐蚀性好、硬度以及磨损性能优异、生物相容性高等。

同时,氧化铝陶瓷还可以与人体骨组织形成化学键,从而起到增强骨组织与人工骨之间结合的作用。

近年来,氧化铝陶瓷人工骨材料的研究受到了广泛的关注。

研究人员通过改变氧化铝陶瓷的配比和制备工艺,以期探究一种更加适用的人工骨材料。

例如,为提高氧化铝的延展性及热稳定性,有学者采用了碳纳米管进行增强,使得氧化铝更具生物相容性,也提高了人工骨的生物医学性能。

3. 钙磷陶瓷人工骨的研究进展钙磷陶瓷以其组织工程学的特性,即能够在体内诱导细胞生成类似于骨组织的模型而成为研究热潮。

在人工骨的研究领域中,钙磷陶瓷因其与真实骨骼相近的成分、结构和微观形貌,成为一个很受欢迎的研究领域。

人工骨的材料研究和应用

人工骨的材料研究和应用

人工骨的材料研究和应用随着科技的发展,人类已经找到了许多替代品来代替自然骨骼。

从一开始的金属板和螺钉到如今的人造骨骼,人类的医学技术已经取得了飞速的发展。

人工骨骼材料的研究和应用,为我们提供了更多的治疗选择,也让我们更能够照顾到身体功能受损的患者。

一、人工骨骼材料的起源人工骨的材料起始于二战时期,当时一些受伤的士兵因为缺乏骨骼支撑而变得身体局部失去功能。

对此医生们开始研究,发现使用钢板等材料来代替骨骼是十分有效的。

随着时间的推移,医疗技术不断进步,金属材料也逐渐过时了。

医师们开始使用人造骨和生物复合材料等材料,医学科研人员也为人工骨的研究奠定了坚实的基础。

二、人工骨的分类人工骨骼材料可以分为两类,一类是运用传统材料制造而成,如钛合金,深海珊瑚,高分子材料等。

另一类是运用纳米、分子提取技术制造而成,如生物可降解材料等。

钛合金一直是常用材料之一,这种具有强度高、生物相容性好、表面能够容易吸附骨组织等独特优势的材料已经成为最受癌症患者欢迎的人工骨材料之一。

三、人工骨的应用人工骨的应用范围很广,新技术的引入和创新就可以将应用范围提升到一个全新的水平。

目前,人工骨的最主要应用领域是骨折和骨缺损修复。

此外,它还能够用于植入骨组织生长因子和其他生物材料。

这些都可以用于增加自体骨的分化和生长,以及细胞移植和治疗脊椎病等。

四、人工骨的研究人工骨骼材料的研究对于发现更好的材料来说至关重要。

现在科学家们正在考虑更好的人造骨骼材料。

例如,研究人员正在以纳米技术的方式生产人造骨和生物复合材料等。

该研究不仅促进了人报骨材料的发展,同时也使得像关节软骨和神经细胞等类型的细胞生长更为容易。

总的来说,人造骨骼材料的研究和应用是改善患者生活质量的必要手段,同时也反映了当前医学技术的应用水平。

人工骨的材料研究和应用在未来一定会得到进一步的改善。

生物科技也将带着我们离开传统医疗的时间,更好地为我们的身体修复工作提供支持。

生物矿化医学材料的分类

生物矿化医学材料的分类

生物矿化医学材料的分类
生物矿化医学材料主要包括以下几类:
1. 生物陶瓷材料:如氧化铝、氧化锆、生物玻璃陶瓷等,它们具有稳定的物理化学性能。

这种材料主要用于修复或替换人体组织、器官或增进其功能。

2. 医用金属材料:如钛和钛合金、不锈钢、钴-铬合金和镁锌合金等,它们
具有较强的机械强度、抗疲劳性、耐腐蚀性和优异的生物相容性。

这些材料主要用于骨关节固定设备、人工关节、矫形、脊柱矫形、颅骨修复、人工心脏瓣膜、心血管支架等。

3. 医用复合材料:由两种或两种以上材料复合而成的生物医学材料,如复合金属材料、复合陶瓷材料和复合聚合物材料。

这种材料具有良好的生物相容性,主要用于人工器官或组织的制造和人体组织的修复或更换。

4. 生物医学衍生材料:经过特殊处理的天然生物组织形成的生物医学材料,如人工心脏瓣膜、巩膜修复体、骨骼修复体、血液透析膜和纤维蛋白制品等。

以上信息仅供参考,如有需要,建议查阅相关文献或咨询专业医生。

骨再生材料的制备及其在临床中的应用

骨再生材料的制备及其在临床中的应用

骨再生材料的制备及其在临床中的应用自然界中,骨骼是人类身体内最坚固、最重要的组织之一。

然而,由于人类各种原因,骨骼受到损伤,而因为骨的特性,它是很难自己修复的。

因此,需要人工干预,使骨骼恢复原来的强度和形态。

这时,骨再生材料就被广泛应用,它们可以在人类体内与自身骨骼或细胞产生一种“化学反应”,从而实现骨赛生。

本文将讨论骨再生材料的制备及其在临床中的应用。

一、骨再生材料的分类骨再生材料是一类特殊的生物材料,主要用于骨缺损修复和骨折愈合。

目前,骨再生材料在医疗领域中已经广泛应用,而且随着技术的发展,不断出现新的骨再生材料。

按照其来源和性质,骨再生材料可以分为天然和人工合成两种。

1. 天然骨再生材料天然骨再生材料来源于人或动物体内组织化合物的提取物、制备物或分离和刺激生长因子等材料。

天然骨再生材料具有生物相容性高、易于附着和滋生细胞等优点,是最优秀的骨再生材料之一。

目前常用的天然骨再生材料主要包括以下几类:(1)自体骨:从患者自身身体中取出,经过一系列的处理和加工后,就成为一种天然的骨再生材料。

这种材料的优点是源自人体本身,不会被排异,而且在患者自我免疫上具有很好的效果。

(2)异体骨:从与患者血缘关系不太密切的“捐献者”体内取出,然后经过一定的检测和处理,可以转化为骨移植材料。

这种材料的特点是有充足的供应和种类,而且操作简单,但可能会对不同个体产生免疫作用,产生排斥反应。

(3)动物骨:从动物体内提取出来的骨组织,通常是牛、马、猪等动物的骨骼。

这种材料的特点是来源广泛,价格比较低廉,但生物相容性较弱,不能被自身骨结构所替代,并且可能引发动物骨源性感染。

2. 人工合成骨再生材料人工合成的骨再生材料是指人工合成的骨质组织材料,通过改变其物化特性,使其更符合人体组织的特性。

这种材料主要包括以下几类:(1)人工骨粉:由生物活性玻璃、氢氧化钙、三羟基磷灰石等材料制成,与自身骨组织能够形成化学键,容易被身体吸收和利用。

生物医用人工骨修复材料研究现状

生物医用人工骨修复材料研究现状

生物医用人工骨修复材料研究现状1.研究背景人体骨组织本身有一定的再生和自修复能力,但只限于小面积的骨缺损,并且随着年龄的增长、疾病、其他因素,这种能力会有所衰退。

其中,软骨是一种致密的结缔组织。

关节软骨缺乏血供以及受伤后未分化的细胞难以迁移到受伤部位,所以其自身修复的能力较差。

因此对于创伤、感染、肿瘤以及发育异常的个原因引起较大的骨缺损,单纯依靠骨组织自身的修复自然无法自然自愈,需要进行骨移植手术治疗。

常用人工骨修复材料分为四类,为金属材料、有机高分子材料、无机非金属材料、复合材料[1]。

1.人工骨修复材料分类及特点2.1 金属材料用于人工骨的金属材料主要材料为不锈钢、钛合金、钴基合金,此外还有贵金属、纯金属钽、铌、锆。

金属材料的优点是力学强度高,缺点是可能有毒性、易腐蚀,应力遮挡效应,易造成骨质疏松[2]。

2.2 无机非金属材料无机非金属材料具有与天然骨良好的亲和性,可在人体内稳定存在,适合用作人体硬组织部位的替换材料。

磷酸钙、生物活性玻璃是骨修复研究中常用的无机非金属材料[3]。

磷酸钙有良好的生物降解性、理想的生物相容性和骨传导性。

磷酸钙表面能形成磷灰石层,与骨组织通过化学键稳定结合,进而提高与受损骨间的整合效果。

2.3 有机高分子材料骨组织工程研究中常用的有机高分子材料,根据来源可分为天然高分子与人工合成高分子两类。

其中,天然高分子包括胶原、纤维蛋白、丝素蛋白、甲壳素、透明质酸、海藻酸钠和壳聚糖等;人工合成高分子包括聚羟基乙酸(PGA)、聚乳酸(PLA)、羟基乙酸-乳酸共聚物(PLGA)和聚已内酯[4]。

胶原是天然骨中有机质的主要组成成分,具有良好的生物相容性。

它能为钙盐沉积提供位点,同时还能与调控细胞矿化的蛋白相结合,促进骨基质矿化。

但存在机械强度较低、降解过快等不可调控的缺陷。

2.4 复合材料复合材料是根据材料的优缺点,将两种或以上的不同材料进行复合制得,不仅兼具组分材料的性质,还可以得到单组分材料不具备的新性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用于人工骨的材料
目前用于骨修复的生物材料分为以下几种:医用生物陶瓷、医用高分子材料、医用复合材料、纳米人工骨
一.医用生物陶瓷材料
生物活性陶瓷, 主要指磷灰石(AP) ,包括羟基磷灰石(HAP)和磷酸三钙( TCP)等。

目前应用最多的是HAP。

人骨无机质的主要成分是HAP,它赋予骨抗压强度,
是骨组织的主要承力者,人工合成的HAP是十分重要的骨修复材料,这是由于它的组成性质与生物硬组织的HAP极为相似,并具有良好的生物相容性,可与自然骨形成强的骨键合,一旦细胞附着、伸展,即可产生骨基质胶原,以后进一步矿化,形成骨组织。

α2磷酸三钙(α2TCP)骨水泥具有水合硬化特性,可作为一种任意塑型的新型人
工骨用于骨缺损填充。

它在动物体内形成蜂窝状结构,动物组织可逐渐长入此蜂窝状结构中,形成牢固的骨性键合[ 3 ]。

β2TCP[ 4 ]属可吸收生物陶瓷,在体内要被逐渐降解和吸收,但其强度较低,主要用于骨修复或矫正小的骨缺损或骨缺陷, 如骨缺损腔填充。

尽管β2TCP植入体内可被降解和吸收,新骨将逐渐替换植入体,但由于其降解和吸收速度与骨形成速度难达到一致,所以不宜作为人体承
力部件。

目前磷酸钙陶瓷要用于作小的承力部件、涂层、低负载的植入体。

二.医用生物高分子材料
高分子聚合物已被广泛用作骨修复材料,可降解聚乳酸( PLA)用于口腔外科,聚甲基丙烯酸甲酯( PMMA)骨水泥用于骨填充,聚乙醇酸( PGA)作为可吸收螺钉用于骨固定。

生物降解材料制作的接骨材料,其弹性模量较金属更接近骨组织的弹性模量,有利于骨折愈合,且随着骨折的愈合,材料逐渐在体内降解,不需二次手术取出。

PLA[ 5 ]是一类有应用价值的生物材料,它的降解速度取决于它的分子量、分子取向、结晶度、物理及化学结构,但其降解的机制主要是因为酯键的水解。

目前PLA主要用于骨外科部件,例如骨针、骨板。

Minori et al[ 7 ]用不同分子量的PLA 和聚乙二醇( PEG)制成PLA2PEG 共聚物作为骨形成蛋白(BMP ) 的载体, 其中PLA 6 5002PEG3 000共聚物具有一定的弹性,是较好的BMP载体。

三.医用复合材料
复合人工骨[ 13 ]的研究近年来取得了很大进展,其基本原理是将具有骨传导能力的材料与具有骨诱导能力的物质如骨生长因子、骨髓组织等复合制备成复合人工骨,使它们既具有骨传导作用,又具有骨诱导作用。

3. 1 磷酸钙复合人工骨主要包括TCP及HAP与胶原、骨生长因子等复合人工骨。

原位自体骨与磷酸钙人工骨混合植骨应用在脊柱侧凸畸形矫正术中, 是一种实用、简易、可靠的植骨方法。

3. 2 聚合物复合人工骨生物降解聚合物是近年生物材料研究领域中的一个
热点,通过技术工可合成各种结构形态,一定的生物降解特性的各种聚合物。


它们无骨诱导活性,需与其它骨诱导因子复合应用才能取得良好效果。

3. 3 红骨髓复合人工骨骨髓由造血系统和基质系统两部分组成。

健康红骨
髓的基质细胞中含有定向性骨祖细胞(DOPC)和可诱导性骨祖细胞( IOPC) 。

DOPC 具有定向分化为骨组织的能力,IOPC在诱导因子(如BMP)作用下才能分化成骨。

Zakrzewska et al[ 17 ]将骨髓细胞与HAP结合,并分别加入成纤维细胞生长因子( bFGF) 和(或) 成骨蛋白21(OP21) ,通过测定胸腺嘧啶掺入到DNA中的量、ALP 的活性及新生骨的形成,来了解它们的生物活性。

结果表明, bFGF能刺激骨髓细胞的增殖, OP21 能增加ALP的活性及刺激新生骨形成,并能促进骨髓细胞的分化。

四.纳米人工骨
纳米级骨材料就是一类由人工合成、具有多种优良理化特性(能自固化成型、机械强度高、使用方便等)和生物学特性(无毒副作用、可以吸收和降解、生物相容性好、能诱导骨细胞和血管生长等) 的新型骨修复材料,其主要用途是修复骨缺损时作为细胞外支架材料和骨折的固定材料。

下面将近年来纳米级骨修复材料的研究进展介绍如下。

4. 1 纳米羟基磷灰石( nHAP)国外已制备出含有二氧化锆的nHAP材料,其硬度、韧性等综合性能可达到甚至超过致密骨骼相应性能。

通过调节二氧化锆含量,可使该纳米人工骨材料具有优良的生物相容性。

4. 2 TCP合成纳米松质骨Clarke etal用聚氨酯海绵方法编织出具有三维网络结构的新型多孔聚磷酸钙骨架材料(CPP) ,并进行了离体、在体研究, 发现多孔的CPP骨架能促进骨生长。

多孔TCP合成松质骨与人体松质骨的结构和化学成份相似, Yuan et al[ 20 ]合成Vitoss无填料纳米松质骨,该松质骨具有广泛的孔隙, 孔径相通,利于营养连续供给和更多的细胞、组织长入、使骨修复更快、更完全。

4. 3 氧化锆/氧化铝Uchida et al[ 21 ]将氧化锆/氧化铝晶体纳米化合物团块浸在与生物体液相似的溶液中,其表面可生成骨样磷灰石层,提示在活体内
可能形成生物陶瓷如HAP、TCP等。

Luke et al[ 22 ]将大鼠颅骨的成骨细胞粘附在23 nm氧化铝上, 发现细胞形态具有很好的伸展性,且成骨细胞的黏附能力比在硼硅酸盐玻璃上增46% , 表明氧化铝纳米颗粒增强了细胞间的相互作用;细胞形态分析和材料毒性评价也表明:纳米复合陶瓷材料有良好的生物相容性。

4. 4 纳米复合材料由于单一类型材料难以满足骨组织工程细胞外基质材料
的要求, 研究者将几种单一材料进行适当组合,结合有机材料与无机材料的优缺点,合成有机/无机、HA /多聚体复合材料,在实际应用中取得良好效果。

4. 4. 1 nHAP /聚左旋乳酸( PLLA )
Saeed et al[ 23 ]对合成的HAP纳米棒表面进行修饰, 然后与PLLA聚合成nHAP / PLLA纳米化合物。

OMS和OTS化合物有较高的弹力系数,在HAP /PLLA纳米化合物中加入1%的OTS, 它的弹力系数上升40% ,使HAP /PLLA的负载传导性得到明显改善。

4. 2 HAP /聚砜、HAP /聚乙烯复合物
多聚体生物瓷性增强研究发现:聚砜是具有一定机械力学特性的多聚体,高密
度聚乙烯是一种具有韧性的热塑性多聚体,两者均被证明具有良好的生物相容性。

HAP与这两种多聚体聚合为新化合物,通过两轴疲劳试验表明:该化合物有良好的力学性能。

4. 4. 3 纳米AP /聚酰胺( PA)复合材料
苏勤等用共沉淀法制成了纳米磷灰石/聚酰胺复合材料,通过常压共溶法直接
用纳米磷灰石浆液制备了纳米HAP晶体/聚酰胺生物活性材料。

都获得了高nHAP
含量和分散均匀的复合材料。

测试表明: 约65%的HAP以纳米级均匀地分散在PA 基体中,在复合材料的两相界面间有化学键形成;此复合材料的抗压、抗弯强度和弹性模量与人体皮质骨类似。

4.4.4 硫酸钙/ 纳米羟基磷灰石复合材料
羟基磷灰石(HA)是一种可靠的骨修复材料,而HA的塑型性能很差,体内降解也比较慢。

半水硫酸钙(CSH)也是一种良好的骨诱导材料,其塑型性能颇为理想,目前国外已开发出CSH的新型骨诱导材料,并在创伤、脊柱外科等领域获得了广泛的应用和良好的临床效果
4. 5 纳米仿生骨天然骨是胶原纤维贯穿于HAP形成的复合材料、HAP占骨的7% ,胶原纤维为交联的螺旋状多肽链,赋予骨很好的强度,且使骨受应力时可弯曲。

骨内部保持成骨细胞和破骨细胞的生理平衡,工程化骨就是利用支架培养细胞使骨组织再生。

常用多孔陶(孔径200~400μm)作为支架,在体外培养细胞,使其扩增,形成骨组织再植入体内。

HAP能吸收各种蛋白质,其中包括骨形成与骨吸收相关细胞因子、生长因子及细胞黏附蛋质。

4. 5. 1 多孔仿珊瑚人工骨杨加峰等[ 28 ]用HAP为原料,采用湿化学法合成粉料,该粉料微粒呈细针状和类晶须结构, «15~50 nm,用粉料制成的块料具有天然骨类似结构。

实验证明,这种梯度结构多孔体的力学性能较普通珊瑚人工骨有较大提高,其抗压缩强度大于人松质骨的压缩强度,可满足大多数临床需要。

4. 5. 2 纳米磷酸钙/胶原材料Wei etal[ 29 ]在研究大段骨的细胞载体材料时,根据仿生矿化原理,采用纳米自组装技术研制出成分和结构都与天然骨组织高度相似的纳米磷酸钙/胶原基骨材料,其磷酸钙/胶原层间距为1117 nm,与天然骨组织里的711 nm十分接近,即均为倾斜的层状结构。

实验证明,成骨细胞在该支架上能生长并分泌骨基质。

4. 5. 3 脱钙骨基质/胶原材料胶原表面含有沉积矿物的位点,当与非胶原基质蛋白特别是生长因子结合,可有效地引发和控制矿化过程,促进骨形成并诱导至植入物中。

L i et al[ 30 ]发现,在胶原中加入HAP和TCP制得复合物,其骨再生能力得到明显提高。

脱钙骨基质中含有BMP,具有骨诱导作用,试验证明:用脱钙骨基质治疗骨不连、骨肿瘤和纤维损伤等骨科难症获得良好疗效。

相关文档
最新文档