初中数学二元一次方程精品教案
二元一次方程教案

二元一次方程教案二元一次方程教案(精选8篇)作为一名为他人授业解惑的教育工作者,总不可避免地需要编写教案,教案有助于学生理解并掌握系统的知识。
怎样写教案才更能起到其作用呢?下面是店铺为大家整理的二元一次方程教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
二元一次方程教案篇1一、教学目标:1.理解二元一次方程及二元一次方程的解的概念;2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育二、教学重点、难点:重点:二元一次方程的意义及二元一次方程的解的概念难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程三、教学方法与教学手段:通过与一元一次方程的比较,加强学生的类比的思想方法;通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点四、教学过程:1.情景导入:新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=902 880。
2.新课教学:引导学生观察方程80a+150b=902 880与一元一次方程有异同?得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程做一做:1.根据题意列出方程:①小明去看望奶奶,买了5 kg苹果和3 kg梨共花去23元,分别求苹果和梨的单价,设苹果的单价x元/kg ,梨的单价y元/kg;②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:(2)课本P80练习2.判定哪些式子是二元一次方程方程。
合作学习:活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动。
问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人,团支书拟安排8个劳动组,2个文艺,单从人数上考虑,此方案是否可行?为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等?由学生检验得出代入方程后,能使方程两边相等,得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解。
七年级二元一次方程组教案(必备6篇)

七年级二元一次方程组教案(必备6篇)七年级二元一次方程组教案第1篇【教学目标】知识目标:①使学生初步理解二元一次方程与一次函数的关系。
②能根据一次函数的图象求二元一次方程组的近似解。
能力目标:通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组图象解法,同时培养学生初步的数形结合的意识和能力。
情感目标:通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发学生学习数学的兴趣。
重点要求:1、二元一次方程和一次函数的关系。
2、根据一次函数的图象求二元一次方程组的近似解。
难点突破:经历观察、思考、操作、探究、交流等数学活动,培养学生抽象思维能力,并体会方程和函数之间的对应关系,即数形结合思想。
【教学过程】一、学前先思师:请同学们思考,我们已经学过的二元一次方程组的解法有哪些?生:代入消元法、加减消元法。
师:请你猜测还有其他的解法吗?生:(小声议论,有人提出图象解法)师:看来的同学似乎已经提前做了预习工作,很好!那么对于课题“二元一次方程组的图象解法”,你想提什么问题?生:二元一次方程组怎么会有图象?它的图象应该怎样画?生:二元一次方程组的图象解法怎么做?师:同学们都问得很好!那你有喜欢的二元一次方程组吗?生:(比较害羞)师:看来大家比较害羞,那么请大家把各自喜欢的二元一次方程组留在心里。
让我们带着同学们提出的问题从二元一次方程开始今天的学习。
二、探究导学题目:判断上面几组解中哪些是二元一次方程的解?生:和不是,其余各组均是方程的解。
师:请在学案上的直角坐标系中先画出一次函数的图象,再标出以上述的方程的解中为横坐标,为纵坐标的点,思考:二元一次方程的解与一次函数图象上的点有什么关系?教学引入师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。
现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:场景一:正方形折叠演示师:这就是我们得到的正方形。
七年级数学二元一次方程组解法教案(优秀6篇)

七年级数学二元一次方程组解法教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!七年级数学二元一次方程组解法教案(优秀6篇)《二元一次方程与一次函数》教学设计这次漂亮的本店铺为亲带来了6篇《七年级数学二元一次方程组解法教案》,希望能够满足亲的需求。
数学《二元一次方程》教案

数学《二元一次方程》教案
一、教学目标:
1. 掌握解二元一次方程的方法。
2. 培养学生分析问题和解决问题的能力。
3. 提高学生的运算能力和口算能力。
4. 培养学生的合作精神和实践能力。
二、教学重点:
1. 解二元一次方程的方法。
2. 运用解题方法解决实际问题。
三、教学难点:
1. 运用解题方法解决实际问题。
四、教学方法:
1. 经验教学法。
2. 活动教学法。
3. 合作学习法。
五、教学过程:
(一)引入
引导学生复习一元一次方程的基本知识,并问学生:你们是否学过二元一次方程?二元一次方程是什么?
(二)讲解
1. 解二元一次方程的方法。
(1)消元法。
(2)代入法。
(3)变量相消法。
(4)图像法。
2. 运用解题方法解决实际问题。
(三)练习
1. 练习一:
解方程组:
x + y = 3
x - y = 1
2. 练习二:
甲乙两人一起骑自行车去上学,甲骑车两小时追上乙,甲需用时四小时到达目的地,问甲的速度是多少?
3. 练习三:
一水果商每斤买苹果1元,卖梨1.5元,现有现金10元,若他买了3斤苹果和3斤梨,请问他的利润是多少?
(四)总结
1. 点评练习中的错误和不足。
2. 总结本次学习的内容和方法,并展示一些习题解析的方法。
六、教学评价:
1. 学生理解和掌握解二元一次方程的方法和应用。
2. 学生的综合素质得到了进一步提高。
3. 学生积极参与合作学习,形成团结合作的良好氛围。
二元一次方程组教案3 篇

二元一次方程组教案3 篇一、学习内容分析:执教者钱嘉颖时间XXXX年6月12日1、选自初一年级(下)数学学科第八章(第一单元)第一节(课)(1课时45分钟)2、教材内容简要分析教材以引言中的一个实际例子,“一班和二班进行篮球比赛,总共打了22场。
每胜一场得2分,每负一场得1分,已知比赛结束一班累计得了40分,思考:一班胜了多少场,负了多少场”来开展这次课程。
以本例来首先回忆已学过的一元一次方程的知识内容,以此作为切入点,引导学生思考用两个未知数来表示方程,借此进入二元一次方程的介绍。
之后,引导学生利用一元一次方程的解法特点来思考二元一次方程组的解答方法,本次课程内容主要介绍了代入解答法(也称消元法)的详细解答过程,以及二元一次方程组的实际运用及解答,让学习者更好的吸收及掌握二元一次方程组和二元一次方程组的消元法。
另外,在本单元结束介绍了作为课外知识的“二元一次方程古代表示方法”。
3、学习内容分析表:知识点重点难点编号内容1二元一次方程组定义及特点二元一次方程组的两个特点二元一次方程组成立的条件(未知数要同时满足两个条件)2二元一次方程组代入消元法代入消元法的具体解法消元法与一元一次方程解法间的联系3二元一次方程组实际运用以实际例题列出方程并解答未知数的假设以及运用已知条件列出正确方程。
二、学习者分析:本次教学的对象是云南省某中学的初中一年级学生,平均年龄12岁。
初一年级是学生由幼稚的童年向青年转化和个性逐渐成型的重要转折点,初一年级学生具有其特殊性。
初一年级学生由于刚刚接触完全不同于小学的学习生活而有手足无措的情况。
而在这个时期的学生生理和心理飞速发展变化,自我意识开始强烈,有了自己的兴趣,独立性增强,感情趋于丰富复杂化,有一定独立思考的能力、一定程度的抽象思维能力和逻辑思维能力,处于识记能力最强的时期。
此时,进行的教育可以更加重视独立思考,在数学教学中更加重视引导教学,致使学习者能够更加深刻的理解所学知识,达到教学目标。
公式法解二元一次方程教案六篇

公式法解二元一次方程教案六篇教案一:用公式法解简单的二元一次方程一、教学目标1、理解并掌握二元一次方程的求根公式。
2、能够熟练运用公式法解二元一次方程。
二、教学重难点1、重点(1)求根公式的推导过程。
(2)运用求根公式解二元一次方程。
2、难点求根公式的推导。
三、教学方法讲授法、练习法四、教学过程1、复习导入(1)回顾一元二次方程的一般形式:$ax^2 + bx + c =0$($a≠0$)。
(2)提问一元二次方程的配方法。
2、公式推导(1)将一元二次方程$ax^2 + bx + c = 0$($a≠0$)进行配方:\\begin{align}ax^2 + bx + c &= 0\\ax^2 + bx &= c\\x^2 +\frac{b}{a}x &=\frac{c}{a}\\x^2 +\frac{b}{a}x +(\frac{b}{2a})^2 &=(\frac{b}{2a})^2 \frac{c}{a}\\(x +\frac{b}{2a})^2 &=\frac{b^2 4ac}{4a^2}\end{align}\(2)当$b^2 4ac≥0$时,开方得到求根公式:$x =\frac{b ±\sqrt{b^2 4ac}}{2a}$3、公式讲解(1)强调公式中$a$、$b$、$c$的含义。
(2)说明判别式$b^2 4ac$的作用:判断方程根的情况。
4、例题讲解例 1:用公式法解方程$x^2 4x 5 = 0$(1)分析:$a = 1$,$b =-4$,$c =-5$(2)计算判别式:$b^2 4ac =(-4)^2 4×1×(-5) = 36 > 0$,方程有两个不相等的实数根。
(3)代入求根公式:$x =\frac{4 ±\sqrt{36}}{2×1} =\frac{4 ± 6}{2}$,解得$x_1 = 5$,$x_2 =-1$5、课堂练习让学生练习用公式法解下列方程:(1)$x^2 + 2x 3 = 0$(2)$2x^2 5x + 1 = 0$6、课堂小结(1)总结公式法解二元一次方程的步骤。
初中二元一次方程数学教案三篇

【导语】教案是教师为顺利⽽有效地开展教学活动,根据课程标准,教学⼤纲和教科书要求及学⽣的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学⽅法等进⾏的具体设计和安排的⼀种实⽤性教学⽂书。
©⽆忧考⽹准备了以下内容,供⼤家参考!篇⼀:应⽤⼆元⼀次⽅程组——鸡兔同笼 教学⽬标: 知识与技能⽬标: 通过对实际问题的分析,使学⽣进⼀步体会⽅程组是刻画现实世界的有效数学模型,初步掌握列⼆元⼀次⽅程组解应⽤题.初步体会解⼆元⼀次⽅程组的基本思想“消元”。
培养学⽣列⽅程组解决实际问题的意识,增强学⽣的数学应⽤能⼒。
过程与⽅法⽬标: 经历和体验列⽅程组解决实际问题的过程,进⼀步体会⽅程(组)是刻画现实世界的有效数学模型。
情感态度与价值观⽬标: 1.进⼀步丰富学⽣数学学习的成功体验,激发学⽣对数学学习的好奇⼼,进⼀步形成积极参与数学活动、主动与他⼈合作交流的意识. 2.通过"鸡兔同笼",把同学们带⼊古代的数学问题情景,学⽣体会到数学中的"趣";进⼀步强调课堂与⽣活的联系,突出显⽰数学教学的实际价值,培养学⽣的⼈⽂精神。
重点: 经历和体验列⽅程组解决实际问题的过程;增强学⽣的数学应⽤能⼒。
难点: 确⽴等量关系,列出正确的⼆元⼀次⽅程组。
教学流程: 课前回顾 复习:列⼀元⼀次⽅程解应⽤题的⼀般步骤 情境引⼊ 探究1:今有鸡兔同笼, 上有三⼗五头, 下有九⼗四⾜, 问鸡兔各⼏何? “雉兔同笼”题:今有雉(鸡)兔同笼,上有35头,下有94⾜,问雉兔各⼏何? (1)画图法 ⽤表⽰头,先画35个头 将所有头都看作鸡的,⽤表⽰腿,画出了70只腿 还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿 四条腿的是兔⼦(12只),两条腿的是鸡(23只) (2)⼀元⼀次⽅程法: 鸡头+兔头=35 鸡脚+兔脚=94 设鸡有x只,则兔有(35-x)只,据题意得: 2x+4(35-x)=94 ⽐算术法容易理解 想⼀想:那我们能不能⽤更简单的⽅法来解决这些问题呢? 回顾上节课学习过的⼆元⼀次⽅程,能不能解决这⼀问题? (3)⼆元⼀次⽅程法 今有鸡兔同笼,上有三⼗五头,下有九⼗四⾜,问鸡兔各⼏何? (1)上有三⼗五头的意思是鸡、兔共有头35个, 下有九⼗四⾜的意思是鸡、兔共有脚94只. (2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只; 鸡⾜有2x只;兔⾜有4y只. 解:设笼中有鸡x只,有兔y只,由题意可得: 鸡兔合计头xy35⾜2x4y94 解此⽅程组得: 练习1: 1.设甲数为x,⼄数为y,则“甲数的⼆倍与⼄数的⼀半的和是15”,列出⽅程为_2x+05y=15 2.⼩刚有5⾓硬币和1元硬币各若⼲枚,币值共有六元五⾓,设5⾓有x枚,1元有y枚,列出⽅程为05x+y=65. 三、合作探究 探究2:以绳测井。
七年级数学《二元一次方程》教学设计(精选9篇)

七年级数学《二元一次方程》教学设计(精选9篇)作为一位杰出的老师,通常需要准备好一份教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。
那么写教学设计需要注意哪些问题呢?以下是小编为大家整理的七年级数学《二元一次方程》教学设计(精选9篇),仅供参考,欢迎大家阅读。
七年级数学《二元一次方程》教学设计篇1一、教学目标1、通过与一元一次方程的比较,能说出二元一次方程的概念,并会辨别一个方程是不是二元一次方程;2、通过探索交流,会辨别一个解是不是二元一次方程的解,能写出给定的二元一次方程的解,了解方程解的不唯一性;3、会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。
过程与方法目标:经历观察、比较、猜想、验证等数学学习活动,培养分析问题的能力和数学说理能力;情感与态度目标1、通过与一元一次方程的类比,探究二元一次方程及其解的概念,进一步培养运用类比转化的思想解决问题的能力;2、通过对实际问题的分析,培养关注生活,进一步体会方程是刻画现实世界的有效数学模型,培养良好的数学应用意识。
二、重点、难点重点:二元一次方程的概念及二元一次方程的解的概念。
难点1、了解二元一次方程的解的不唯一性和相关性。
即了解二元一次方程的解有无数个,但不是任意的两个数是它的解。
2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
三、教学方法与教学手段1、通过创设问题情境,让学生在寻求问题解决的过程中认识二元一次方程,了解二元一次方程的特点,体会到二元一次方程的引入是解决实际问题的需要。
2、通过观察、思考、交流等活动,激发学习情绪,营造学习气氛,给学生一定的时间和空间,自主探讨,了解二元一次方程的解的不唯一性和相关性。
3、通过学练结合,以游戏的形式让学生及时巩固所学知识。
四、教学过程创设情境导入新课1、一个数的3倍比这个数大6,这个数是多少?2、写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?思考:这个问题中,有几个未知数?能列一元一次方程求解吗?如果设黄卡取x张,蓝卡取y张,你能列出方程吗?3、在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程
教学目标:
一、知识与技能目标:
1.理解二元一次方程的定义;
2.能够准确叙述处二元一次方程的解的概念;
3.能熟练的求出二元一次方程的一个解。
二、过程与方法目标:
经历探索二元一次方程的解的过程,培养学生的数学交流和归纳猜想的能力;
三、情感态度与价值观目标:
体会到数学推理的奥妙,能用数学知识解决实际问题。
重点:
1.探索二元一次方程的解的过程;
2.利用一元一次方程求解的方法求二元一次方程的一个解。
难点:二元一次方程的解的求解。
教学过程:
一、课前回顾
我们在前面的学习中,已经知道了一元一次方程的概念,主要讲了一元一次方程的定义的相关概念。
我们一起回忆一下相关概念。
一元一次方程是指“含有一个未知数,并且未知数的的项的次数为一次的方程”。
例如“x=3x 、2x=6x-1 、9x-6=2x”都是一元一次方程,特别注意的是这里的一元是指含有一个未知数,一次是指未知数的次数为一
次。
那么如果含有两个未知数,那又是什么方程呢?那么这节课,我们将进一步走近方程,来学习有两个未知数的方程的相关知识。
二、活动探究
在高速公路上,一辆轿车行驶2小时的路程比一辆卡车行驶3小时的路程多20千米.设轿车的速度为a千米/时,卡车的速度为b千米/时,可列方程:____________.
(1)它是一元一次方程吗?
(2)一元一次方程是怎样的?
(3)你觉得它应该叫什么?
探究结果:
阅读书本32页,书上的说法与你的说法有何不同?
三、课堂练习
课堂练习,巩固概念,介绍二元一次方程解的概念.
归纳:(1)解的形式(成对出现);(2)一般情况下,二元一次方程的解有无数个.
三、例题讲解
归纳:
提问:根据表格,你能写出该方程的一个解吗?
例2 已知方程3x+2y=10.
(1)用关于x的代数式表示y.
(2)求当x=-2,0,3时对应的y值,并写出3x+2y=10的三个解.
分析:要用关于x的代数式表示y,只要把3x+2y=10看做未知数是y的一元一次方程.
解:(1)移项,得2y=10-3x.
(2)当x=-2时,y=5-3/2×(-2)=8;
当x=0时,y=5-3/2×0=5;
当x=3时,y=-3/2×3=1/2。
由二元一次方程的解的意义,可以得到x=2,y=8;x=0,y=5;x=3,y=1/2 都是方程
3x+2y=10的解.
四、课堂练习
完成书本作业题
五、课堂小结
本节课我们学习了二元一次方程的相关知识,现在我们一起再来回忆一遍:
1.二元一次方程是指:含有两个未知数,且未知数的项的次数都是一
次的方程。
2.二元一次方程的解是指:使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。
3.特别注意的是:二元一次方程有无数个解,求解的关键是将二元一次方程转换为一元一次方程,即“消元法”。
六、布置作业
1.作业本
2.1
2.课时2.1。