第一章《三角形的初步认识》测试卷(含答案)

合集下载

最新浙教版八年级数学上学期《三角形的初步认识》单元测试及答案解析.docx

最新浙教版八年级数学上学期《三角形的初步认识》单元测试及答案解析.docx

《第1章三角形的初步认识》一、填空题1.已知三角形的两边分别为4和9,则此三角形的第三边可能是()A.4 B.5 C.9 D.132.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50° B.30° C.20° D.15°3.如图所示,△ACB≌A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°4.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种5.尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具6.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50° B.40° C.70° D.35°7.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45° B.54° C.40° D.50°8.一副三角板如图叠放在一起,则图中∠α的度数为()A.75° B.60° C.65° D.55°9.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC∥AB,则∠BAD的度数为()A.30° B.35° C.40° D.50°10.如图所示,△ABC与△BDE都是等边三角形,AB<BD.若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为()A.AE=CD B.AE>CD C.AE<CD D.无法确定二、认真填一填11.若三角形的两边长分别为3、4,且周长为整数,这样的三角形共有个.12.如图,在△ABC和△DEF中,已知:AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件可以是.(只填写一个条件)13.若△ABC≌△DEF,且∠A=110°,∠F=40°,则∠E= 度.14.在△ABC中,∠A:∠B:∠C=1:2:3,则∠A= ,∠C= .15.如图,在△ABC中,∠B=60°,∠C=40°,AD⊥BC于D,AE平分∠BAC;则∠DAE= .16.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1﹣S2的值为.17.如图,将纸片△ABC沿DE折叠,点A落在点P处,已知∠1+∠2=100°,则∠A的大小等于度.18.如图,△ABC中,∠BAC=100°,EF,MN分别为AB,AC的垂直平分线,如果BC=12cm,那么△FAN的周长为cm,∠FAN= .三、解答题19.如图,点A、C、D、B 四点共线,且AC=DB,∠A=∠B,∠E=∠F.求证:DE=CF.20.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.21.如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.22.作图,如图已知三角形ABC内一点P(1)过P点作线段EF∥AB,分别交BC,AC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.23.如图,在△ABC中,AD平分∠BAC,AD的垂直平分线EF交BC的延长线于点F,连接AF,求证:∠CAF=∠B.24.如图,点D为锐角∠ABC内一点,点M在边BA上,点N在边BC上,且DM=DN,∠BMD+∠BND=180°.求证:BD平分∠ABC.25.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD的中点,动点P从A点出发,以每秒2cm的速度沿A→B→C→E运动,最终到达点E.若设点P运动的时间是t秒,那么当t取何值时,△APE的面积会等于10?26.(14分)课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C= ;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)《第1章三角形的初步认识》参考答案与试题解析一、填空题1.已知三角形的两边分别为4和9,则此三角形的第三边可能是()A.4 B.5 C.9 D.13【考点】三角形三边关系.菁优网版权所有【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于5,而小于13.故选C.【点评】本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.2.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50° B.30° C.20° D.15°【考点】平行线的性质;三角形的外角性质.菁优网版权所有【专题】计算题.【分析】首先根据平行线的性质得到∠2的同位角∠4的度数,再根据三角形的外角的性质进行求解.【解答】解:根据平行线的性质,得∠4=∠2=50°.∴∠3=∠4﹣∠1=50°﹣30°=20°.故选:C.【点评】本题应用的知识点为:三角形的外角等于与它不相邻的两个内角的和.两直线平行,同位角相等.3.如图所示,△ACB≌A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°【考点】全等三角形的性质.菁优网版权所有【分析】根据全等三角形性质求出∠ACB=∠A′CB′,都减去∠A′CB即可.【解答】解:∵△ACB≌A′CB′,∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,∴∠ACA′=∠BCB′,∵∠BCB′=30°,∴∠ACA′=30°,故选B.【点评】本题考查了全等三角形性质的应用,注意:全等三角形的对应角相等.4.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种【考点】三角形三边关系.菁优网版权所有【专题】常规题型.【分析】要把四条线段的所有组合列出来,再根据三角形的三边关系判断能组成三角形的组数.【解答】解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选:C.【点评】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.5.尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具【考点】作图—尺规作图的定义.菁优网版权所有【分析】根据尺规作图的定义作答.【解答】解:根据尺规作图的定义可知:尺规作图是指用没有刻度的直尺和圆规作图.故选C.【点评】尺规作图是指用没有刻度的直尺和圆规作图.6.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50° B.40° C.70° D.35°【考点】三角形内角和定理;角平分线的定义.菁优网版权所有【分析】根据数据线的内角和定理以及角平分线的定义,可以证明.【解答】解:∵BE、CF都是△ABC的角平分线,∴∠A=180°﹣(∠ABC+∠ACB),=180°﹣2(∠DBC+∠BCD)∵∠BDC=180°﹣(∠DBC+∠BCD),∴∠A=180°﹣2(180°﹣∠BDC)∴∠BDC=90°+∠A,∴∠A=2(110°﹣90°)=40°.故选B.【点评】注意此题中的∠A和∠BDC之间的关系:∠BDC=90°+∠A.7.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45° B.54° C.40° D.50°【考点】平行线的性质;三角形内角和定理.菁优网版权所有【分析】根据三角形的内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,然后根据两直线平行,内错角相等可得∠ADE=∠BAD.【解答】解:∵∠B=46°,∠C=54°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选:C.【点评】本题考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟记性质与概念是解题的关键.8.一副三角板如图叠放在一起,则图中∠α的度数为()A.75° B.60° C.65° D.55°【考点】三角形的外角性质;三角形内角和定理.菁优网版权所有【分析】因为三角板的度数为45°,60°,所以根据三角形内角和定理即可求解.【解答】解:如图,∵∠1=60°,∠2=45°,∴∠α=180°﹣45°﹣60°=75°,故选A.【点评】本题利用三角板度数的常识和三角形内角和定理,熟练掌握定理是解题的关键.9.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC∥AB,则∠BAD的度数为()A.30° B.35° C.40° D.50°【考点】旋转的性质.菁优网版权所有【分析】根据两直线平行,内错角相等可得∠ACB=∠CAB,根据旋转的性质可得AC=AE,∠BAC=∠DAE,再根据等腰三角形两底角相等列式求出∠CAE,然后求出∠DAB=∠CAE,从而得解.【解答】解:∵CE∥AB,∴∠ACB=∠CAB=75°,∵△ABC绕点A逆时针旋转到△AED,∴AC=AE,∠BAC=∠DAE,∴∠CAE=180°﹣70°×2=40°,∵∠CAE+∠CAD=∠DAE,∠DAB+∠CAD=∠BAC,∴∠DAB=∠CAE=40°.故选C.【点评】本题考查了旋转的性质,平行线的性质,等腰三角形两底角相等的性质,熟记各性质并求出∠DAB=∠CAE是解题的关键.10.如图所示,△ABC与△BDE都是等边三角形,AB<BD.若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为()A.AE=CD B.AE>CD C.AE<CD D.无法确定【考点】全等三角形的判定与性质;等边三角形的性质.菁优网版权所有【分析】本题可通过证△ABE和△CBD全等,来得出AE=CD的结论.两三角形中,已知了AB=BC、BE=BD,因此关键是证得∠ABE=∠CBD;由于△ABC和△BED都是等边三角形,因此∠EBD=∠ABC=60°,即∠ABE=∠CBD=120°,由此可得证.【解答】解:∵△ABC与△BDE都是等边三角形,∴AB=BC,BE=BD,∠ABC=∠EBD=60°;∴∠ACB+∠CBE=∠EBD+∠CBE=120°,即:∠ABE=∠CBD=120°;∴△ABE≌△CBD;∴AE=CD.故选A.【点评】本题考查了全等三角形的判定与性质,等边三角形的性质,当出现两个等边三角形时,一般要利用等边三角形的边和角从中找到一对全等三角形.二、认真填一填11.若三角形的两边长分别为3、4,且周长为整数,这样的三角形共有 5 个.【考点】三角形三边关系;一元一次不等式组的整数解.菁优网版权所有【分析】设第三边的长为x,根据三角形的三边关系的定理可以确定x的取值范围,进而得到答案.【解答】解:设第三边的长为x,则4﹣3<x<4+3,所以1<x<7.∵x为整数,∴x可取2,3,4,5,6.故答案为5.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形三边关系定理:三角形两边之和大于第三边.三角形的两边差小于第三边.12.如图,在△ABC和△DEF中,已知:AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件可以是AB=DE .(只填写一个条件)【考点】全等三角形的判定.菁优网版权所有【专题】开放型.【分析】根据“SSS”添加条件.【解答】解:若加上AB=DE,则可根据“SSS”判断△ABC≌△DEF.故答案为AB=DE.【点评】本题考查了全等三角形的判定:判定方法有“SSS”、“SAS”、“ASA”、“AAS”.13.若△ABC≌△DEF,且∠A=110°,∠F=40°,则∠E= 30 度.【考点】全等三角形的性质.菁优网版权所有【分析】根据全等三角形的性质得出∠D=∠A=110°,∠C=∠F=40°,进而得出答案.【解答】解:∵△ABC≌△DEF,∠A=110°,∠F=40°,∴∠D=∠A=110°,∠C=∠F=40°,∴∠DEF=180°﹣110°﹣40°=30°.故答案为:30;【点评】此题主要考查了全等三角形的性质,利用其性质得出对应角相等是解题关键.14.在△ABC中,∠A:∠B:∠C=1:2:3,则∠A= 30°.,∠C= 90°..【考点】三角形内角和定理.菁优网版权所有【分析】有三角形内角和180度,又知三角形内各角比,从而求出.【解答】解:由三角形内角和180°,又∵∠A:∠B:∠C=1:2:3,∴∠A=180°×=30°,∠C=180°×=90°.故填:30°,90°.【点评】本题考查三角形内角和定理,结合已知条件,从而很容易知道各角所占几分之几.而解得.15.如图,在△ABC中,∠B=60°,∠C=40°,AD⊥BC于D,AE平分∠BAC;则∠DAE= 10°.【考点】三角形内角和定理;三角形的外角性质.菁优网版权所有【分析】根据∠B=60°,∠C=40°可得∠BAC的度数,AE平分∠BAC,得到∠BAE和∠CAE 的度数,利用外角的性质可得∠AED的度数,再根据垂直定义,得到直角三角形,在直角△ABD中,可以求得∠DAE的度数.【解答】解:∵∠C=40°,∠B=60°,∴∠BAC=180°﹣40°﹣60°=80°,∵AE平分∠BAC,∴∠BAE=∠CAE=40°,∴∠AED=80°,∵AD⊥BC于D,∴∠ADC=90°,∴∠DAE=180°﹣80°﹣90°=10°,故答案为:10°.【点评】本题主要考查角平分线的定义和垂直的定义,外角性质,三角形内角和定理,综合利用各定理及性质是解答此题的关键.16.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1﹣S2的值为 1 .【考点】三角形的面积.菁优网版权所有【专题】压轴题.【分析】根据等底等高的三角形的面积相等求出△AEC的面积,再根据等高的三角形的面积的比等于底边的比求出△ACD的面积,然后根据S1﹣S2=S△ACD﹣S△ACE计算即可得解.【解答】解:∵BE=CE,∴S△ACE=S△ABC=×6=3,∵AD=2BD,∴S△ACD=S△ABC=×6=4,∴S1﹣S2=S△ACD﹣S△ACE=4﹣3=1.故答案为:1.【点评】本题考查了三角形的面积,主要利用了等底等高的三角形的面积相等,等高的三角形的面积的比等于底边的比,需熟记.17.如图,将纸片△ABC沿DE折叠,点A落在点P处,已知∠1+∠2=100°,则∠A的大小等于50 度.【考点】三角形内角和定理;翻折变换(折叠问题).菁优网版权所有【分析】根据已知求出∠ADP+∠AEP=360°﹣(∠1+∠2)=260°,根据折叠求出∠ADE+∠AED=×260°=130°,根据三角形内角和定理求出即可.【解答】解:∵∠1+∠2=100°,∴∠ADP+∠AEP=360°﹣(∠1+∠2)=260°,∵将纸片△ABC沿DE折叠,点A落在点P处,∴∠ADE=∠ADP,∠AED=∠AEP,∴∠ADE+∠AED=×260°=130°,∴∠A=180°﹣(∠ADE+∠AED)=50°,故答案为:50.【点评】本题考查了三角形的内角和定理和折叠的性质的应用,注意:三角形的内角和等于180°,题目比较好,难度适中.18.如图,△ABC中,∠BAC=100°,EF,MN分别为AB,AC的垂直平分线,如果BC=12cm,那么△FAN的周长为12 cm,∠FAN= 20°.【考点】线段垂直平分线的性质.菁优网版权所有【分析】由EF,MN分别为AB,AC的垂直平分线,可得AF=BF,AN=CN,即可得△FAN的周长等于BC;又由∠BAC=100°,求得∠BAF+∠CAN=∠B+∠C=180°﹣∠BAC=80°,继而求得答案.【解答】解:∵EF,MN分别为AB,AC的垂直平分线,∴AF=BF,AN=CN,∴△FAN的周长为:AF+FN+AN=BF+FN+CN=BC=12cm;∴∠BAF=∠B,∠CAN=∠C,∵△ABC中,∠BAC=100°,∴∠BAF+∠CAN=∠B+∠C=180°﹣∠BAC=80°,∴∠FAN=∠BAC﹣(∠BAF+∠CAN)=20°.故答案为:12,20°.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的判定与性质.此题难度不大,注意掌握数形结合思想与转化思想的应用.三、解答题19.如图,点A、C、D、B 四点共线,且AC=DB,∠A=∠B,∠E=∠F.求证:DE=CF.【考点】全等三角形的判定与性质.菁优网版权所有【专题】证明题.【分析】根据条件可以求出AD=BC,再证明△AED≌△BFC,由全等三角形的性质就可以得出结论.【解答】证明:∵AC=DB,∴AC+CD=DB+CD,即AD=BC,在△AED和△BFC中,∴△AED≌△BFC.∴DE=CF.【点评】本题考查了线段的数量关系,全等三角形的判定及性质的运用,解答时证明△AED≌△BFC是解答本题的关键.20.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【考点】全等三角形的判定.菁优网版权所有【专题】证明题.【分析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF 即可.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.【考点】作图—复杂作图.菁优网版权所有【分析】(1)利用直角三角板一条直角边与BC重合,沿BC平移使另一直角边过A 画BC边上的高AD即可;再根据角平分线的做法作∠A的角平分线AE;(2)首先计算出∠BAE的度数,再计算出∠BAD的度数,利用角的和差关系可得答案.【解答】解:(1)如图所示:(2)在△ABC中,∠BAC=180°﹣11°﹣40°=30°,∵AE平分∠BAC,∴∠BAE=∠BAC=15°,在Rt△ADB中,∠BAD=90°﹣∠B=50°,∴∠DAE=∠DAB﹣∠BAE=35°.【点评】此题主要考查了复杂作图,以及角的计算,关键是正确画出图形.22.作图,如图已知三角形ABC内一点P(1)过P点作线段EF∥AB,分别交BC,AC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.【考点】作图—基本作图.菁优网版权所有【分析】(1)根据过直线外一点作已知直线平行线的方法作图即可;(2)利用直角三角板,一条直角边与BC重合,沿BC平移,使另一条直角边过点P 画垂线即可.【解答】解:如图所示:.【点评】此题主要考查了基本作图,关键是掌握利用直尺做平行线的方法.23.如图,在△ABC中,AD平分∠BAC,AD的垂直平分线EF交BC的延长线于点F,连接AF,求证:∠CAF=∠B.【考点】线段垂直平分线的性质.菁优网版权所有【专题】证明题.【分析】EF垂直平分AD,则可得AF=DF,进而再转化为角之间的关系,通过角之间的平衡转化,最终得出结论.【解答】证明:∵EF垂直平分AD,∴AF=DF,∠ADF=∠DAF,∵∠ADF=∠B+∠BAD,∠DAF=∠CAF+∠CAD,又∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠CAF=∠B.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.24.如图,点D为锐角∠ABC内一点,点M在边BA上,点N在边BC上,且DM=DN,∠BMD+∠BND=180°.求证:BD平分∠ABC.【考点】全等三角形的判定与性质;角平分线的性质.菁优网版权所有【专题】证明题.【分析】在AB上截取ME=BN,证得△BND≌△EMD,进而证得∠DBN=∠MED,BD=DE,从而证得BD平分∠ABC.【解答】解:如图所示:在AB上截取ME=BN,∵∠BMD+∠DME=180°,∠BMD+∠BND=180°,∴∠DME=∠BND,在△BND与△EMD中,,∴△BND≌△EMD(SAS),∴∠DBN=∠MED,BD=DE,∴∠MBD=∠MED,∴∠MBD=∠DBN,∴BD平分∠ABC.【点评】本题考查了三角形全等的判定和性质,等腰三角形的判定和性质.25.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD的中点,动点P从A点出发,以每秒2cm的速度沿A→B→C→E运动,最终到达点E.若设点P运动的时间是t秒,那么当t取何值时,△APE的面积会等于10?【考点】一元一次方程的应用;三角形的面积.菁优网版权所有【专题】几何动点问题.【分析】分为三种情况讨论,如图1,当点P在AB上,即0<t≤4时,根据三角形的面积公式建立方程求出其解即可;如图2,当点P在BC上,即4<t≤7时,由S△APE=S﹣S△PCE﹣S△PAB建立方程求出其解即可;如图3,当点P在EC上,即7<t≤9四边形AECB时,由S△APE==10建立方程求出其解即可.【解答】解:如图1,当点P在AB上,即0<t≤4时,∵四边形ABCD是矩形,∴AD=BC=6,AB=CD=8.∵AP=2t,∴S△APE=×2t×6=10,∴t=.如图2,当点P在BC上,即4<t≤7时,∵E是DC的中点,∴DE=CE=4.∵BP=2t﹣8,PC=6﹣(2t﹣8)=14﹣2t.∴S=(4+8)×6﹣×(2t﹣8)×8﹣(14﹣2t)×4=10,解得:t=7.5>7舍去;当点P在EC上,即7<t≤9时,PE=18﹣2t.∴S△APE=(18﹣2t)×6=10,解得:t=.总上所述,当t=或时△APE的面积会等于10.【点评】本题考查了矩形的性质的运用,三角形的面积公式的运用,梯形的面积公式的运用.解答时灵活运用三角形的面积公式求解是关键.26.课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C= 50°;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案∠P=90°﹣∠A .3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)【考点】三角形的外角性质;三角形内角和定理.菁优网版权所有【专题】探究型.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠DBC+∠ECB ,再利用三角形内角和定理整理即可得解;(2)根据(1)的结论整理计算即可得解;(3)表示出∠DBC+∠ECB ,再根据角平分线的定义求出∠PBC+∠PCB ,然后利用三角形内角和定理列式整理即可得解;(4)延长BA 、CD 相交于点Q ,先用∠Q 表示出∠P ,再用(1)的结论整理即可得解.【解答】解:(1)∠DBC+∠ECB=180°﹣∠ABC+180°﹣∠ACB=360°﹣(∠ABC+∠ACB )=360°﹣(180°﹣∠A )=180°+∠A ;(2)∵∠1+∠2=∠180°+∠C ,∴130°+∠2=180°+∠C ,∴∠2﹣∠C=50°;(3)∠DBC+∠ECB=180°+∠A ,∵BP 、CP 分别平分外角∠DBC 、∠ECB ,∴∠PBC+∠PCB=(∠DBC+∠ECB )=(180°+∠A ),在△PBC 中,∠P=180°﹣(180°+∠A )=90°﹣∠A ;即∠P=90°﹣∠A ;故答案为:50°,∠P=90°﹣∠A ;(4)延长BA、CD于Q,则∠P=90°﹣∠Q,∴∠Q=180°﹣2∠P,∴∠BAD+∠CDA=180°+∠Q,=180°+180°﹣2∠P,=360°﹣2∠P.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,角平分线的定义,熟记性质并读懂题目信息是解题的关键.。

第一章三角形的初步认识测试卷含答案

第一章三角形的初步认识测试卷含答案

第一章三角形的初步认识 测试卷姓名姓名_________________________________班级班级班级一、选一选(30分,每题3分)1. 1. 以下列各组线段为边,能组成三角形的是以下列各组线段为边,能组成三角形的是以下列各组线段为边,能组成三角形的是( ) ( ) A A..2cm 2cm、、2cm 2cm、、4cm B 4cm B..2cm 2cm、、6cm 6cm、、3cmC C..8cm 8cm、、6cm 6cm、、3cmD 3cm D..11cm 11cm、、4cm 4cm、、6cm 2. 2. 如图如图如图, , , △△ABD 的一个外角是的一个外角是( ) ( )A. A. ∠∠CB.C B.∠∠CADC.CAD C.∠∠ADBD.ADB D.∠∠ADC ADC (第(第2题)题) 3. 3. 锐角三角形中任意两个锐角的和必大于锐角三角形中任意两个锐角的和必大于锐角三角形中任意两个锐角的和必大于( ) ( ) A. 120A. 120°° B. 110 B. 110°°C. 100C. 100°°D. 90D. 90°°4. 4. 下面关于三角形高的说法正确的是下面关于三角形高的说法正确的是下面关于三角形高的说法正确的是( ) ( )A A.三角形的高就是顶点和对边的垂线.三角形的高就是顶点和对边的垂线.三角形的高就是顶点和对边的垂线B B B.钝角三角形的三条高交于三角形外部.钝角三角形的三条高交于三角形外部.钝角三角形的三条高交于三角形外部C C.锐角三角形的高都在三角形内部.锐角三角形的高都在三角形内部.锐角三角形的高都在三角形内部D D D.直角三角形有且仅有一条高.直角三角形有且仅有一条高.直角三角形有且仅有一条高 5. 5. 若若AD 是△是△ABC ABC 的中线的中线,,则下列结论错误的是则下列结论错误的是( ) ( ) A.AD 平分∠平分∠BAC B.BD=DC C.BAC B.BD=DC C.BAC B.BD=DC C.点点D 为BC 中点中点 D.BC=2DC D.BC=2DC6. 6. 如图,如图,如图,AC AC 与BD 相交于点O.O.已知已知OA=OC,OB=OD, OA=OC,OB=OD, 则能说明△则能说明△则能说明△AOB AOB AOB≌△≌△≌△COD COD 的理由是(的理由是( )) A. SSSB. ASAC. SASD. AAS(第6题) () (第第7题)7. 7. 如图如图如图,,点P 是∠是∠BAC BAC 的平分线AD 上一点上一点,PE ,PE ,PE⊥⊥AC 于点E,PE=5,E,PE=5,则点则点P 到AB 的距离是( )) A. 15 B. 10 C. 6 D. 58.△ABC 中,AD 是BC 边上的中线边上的中线,,△ABD 与△与△ACD ACD 的周长差是3cm,AC=7cm,3cm,AC=7cm,则则AB 的长是( ))A. 4B. 10C. 4或10D. 10 D. 无法判断无法判断无法判断9. 9. 如图如图如图,,在ΔABC 中BC 边上的垂直平分线交AC 于点D,AB=3,AC=7,D,AB=3,AC=7,则则ΔABD 的周长为( )) A. 10 B. 11 C. 15 D. 12OCBA 第6题图10. 10. 下列说法正确的是下列说法正确的是下列说法正确的是( ) ( )A 、有两边和其中一边所对的角对应相等的两个三角形全等;、有两边和其中一边所对的角对应相等的两个三角形全等;B 、有三个角对应相等的两个钝角三角形全等;、有三个角对应相等的两个钝角三角形全等;C 、有一条边和两个角对应相等的两个三角形全等;、有一条边和两个角对应相等的两个三角形全等;D 、两条边对应相等的两个锐角三角形全等;、两条边对应相等的两个锐角三角形全等;二、填一填 (30分,每题3分)1. 1. 在△在△在△ABC ABC 中,若∠若∠A=A=A=∠∠B, B, ∠∠C=300,则∠则∠A=A=A=∠∠B= B= ;;2. 2. 在△在△在△ABC ABC 中,中,AB AB AB==3,BC BC==7,则AC 的长x 的取值范围是的取值范围是 ;;3. 3. 如图如图如图,AD ,AD 是△是△ABC ABC 的中线的中线, , , △△ABD 的面积为30cm 2,则△则△ABC ABC 的面积是的面积是 cm cm 2;4. 4. 起重机支架上的三角形钢条结构利用的一个三角形的原理是起重机支架上的三角形钢条结构利用的一个三角形的原理是起重机支架上的三角形钢条结构利用的一个三角形的原理是 ;;5. 5. 如图如图如图,,△ABC 中,EF 为AC 的垂直平分线的垂直平分线,,若AF=4,AF=4,△△BCE 周长为15,15,则△则△则△ABC ABC 周长为周长为 ;;6. 6. 如图如图如图,,△ABC 中,∠ABC 和∠和∠ACB ACB 的平分线交于点O,O,若∠若∠若∠A=80A=800,则∠则∠BOC= BOC= BOC= ;; 7. 7. 如图如图如图,,△ABC 中,高BD BD、、CE 相交于点H,H,若∠若∠若∠A=50A=500,则∠则∠BHC= BHC= BHC= ;;8. 8. 把一副常用的三角形如图所示拼在一起,那么如图把一副常用的三角形如图所示拼在一起,那么如图把一副常用的三角形如图所示拼在一起,那么如图,,则∠则∠ACB ACB 是 度;度;度; 9. 9. 已知△已知△已知△ABC ABC 中, , ∠∠A:A:∠∠B:B:∠∠C=5:6:9,C=5:6:9,则△则△则△ABC ABC 为 三角形;三角形;三角形;10.10.如图如图如图,,已知AD=AE,AD=AE,要说明△要说明△要说明△ABE ABE ABE≌△≌△≌△ACD,ACD,ACD,还需要添加的条件是还需要添加的条件是还需要添加的条件是 ( ( (只要填一个只要填一个只要填一个 你认为正确的条件你认为正确的条件),),),全等的理由是全等的理由是全等的理由是 (填(填SSS,SAS,ASA 或AAS AAS)).三、解答题(6+8+8+8+10=40分)第3题图DCBAFE第5题图CBADEHC B A 第7题图A B C 第8题图题图第10题图题图CBAab a1、如图⊿、如图⊿ABC,ABC,ABC,∠∠BAC 是钝角是钝角,,按要求完成下列画图按要求完成下列画图,,用适当的符号在图中表示(不写作法,写出结论):①用刻度尺画AB 边上的中线CD; ②用三角尺画AC 边上的高BE; ③用尺规作∠③用尺规作∠BAC BAC 的角平分线AF.2、尺规作图:已知线段a,b 和∠α.求作求作::ΔABC,ABC,使使BC=a , AC=b , BC=a , AC=b , ∠∠C=C=∠∠α (画出图形画出图形,,保留作图痕迹保留作图痕迹,,不写作法不写作法,,写出结论写出结论) )3、如图:已知△、如图:已知△ABC ABC 中,中,AD AD AD⊥⊥BC 于D ,AE 为∠为∠BAC BAC 的平分线,且∠的平分线,且∠B=30B=30B=30°,°,°, ∠C=60C=60°求°求°求(1)(1)(1)∠∠CAE 的度数;的度数;(2)(2)(2)∠∠DAE 的度数。

(浙教版)八年级上《第1章三角形的初步认识》单元试卷有答案(数学)

(浙教版)八年级上《第1章三角形的初步认识》单元试卷有答案(数学)

第1章一、选择题(每小题3分,共30分)(第1题)1.如图,已知MB =ND ,∠MBA =∠NDC ,则下列条件中不能判定△ABM ≌△CDN 的是(B ) A. ∠M =∠N B. AM =CN C. AB =CD D. AM ∥CN2.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是(C ) A. 5 B. 6 C. 12 D. 163.如图,图中∠1的度数为(D ) A. 40° B. 50° C. 60° D. 70°(第3题)(第4题)4.如图,把一块含有45°角的直角三角尺的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数为(C )A. 15°B. 20°C. 25°D. 30°(第5题)5.如图,在余料ABCD 中,AD ∥BC ,现进行如下操作:以点B 为圆心,适当长为半径画弧,分别交BA ,BC 于点G ,H ;再分别以点G ,H 为圆心,大于12GH 长为半径画弧,两弧在∠ABC 内部相交于点O ,画射线BO ,交AD 于点E .若∠A =96°,则∠EBC 的度数为(B )A. 45°B. 42°C. 36°D. 30°6.如图,已知∠1=∠2,AE ⊥OB 于点E ,BD ⊥OA 于点D ,AE ,BD 的交点为C ,则图中的全等三角形共有(C )A. 2对B. 3对C. 4对D. 5对, (第6题)) ,(第7题))7.如图,BE ⊥AC 于点D ,且AD =CD ,BD =E D.若∠ABC =72°,则∠E 等于(B ) A .18° B .36° C .54° D .72°【解】 可证△ADB ≌△CDE ,△ABD ≌△CBD ,∴∠E =∠ABD =12∠ABC =36°.(第8题)8.如图,△ABC 的三边AB ,BC ,CA 的长分别是100,110,120,其三条角平分线将△ABC 分为三个三角形,则S △ABO ∶S △BOC ∶S △CAO =(C )A .1∶1∶1B .9∶10∶11C .10∶11∶12D .11∶12∶13【解】 利用角平分线的性质定理可得△ABO ,△BOC ,△CAO 分别以AB ,BC ,AC 为底时,高线长相等,则它们的面积之比等于底之比.9.如图,BF 是∠ABD 的平分线,CE 是∠ACD 的平分线,BF 与CE 交于点G .若∠BDC =140°,∠BGC =110°,则∠A 的度数为(B )A. 70°B. 80°C. 50°D. 55° 【解】 连结B C.∵∠BDC =140°,∴∠DBC +∠DCB =40°. 又∵∠BGC =110°,∴∠GBC +∠GCB =70°. ∴∠GBD +∠GCD =30°. ∴∠ABD +∠ACD =60°.∴∠ABC +∠ACB =100°.∴∠A =80°.,(第9题)) ,(第10题))10.如图,在△ABC 中,AD 是∠BAC 的外角平分线,P 是AD 上异于A 的任意一点,设PB =m ,PC =n ,AB =c ,AC =b ,则m +n 与b +c 的大小关系是(A )A. m +n >b +cB. m +n <b +cC. m +n =b +cD. 无法确定(第10题解)【解】 如解图,在BA 的延长线上取一点E ,使AE =AC ,连结ED ,EP .∵AD 是∠BAC 的外角平分线, ∴∠CAD =∠EA D. 在△ACP 和△AEP 中,∵⎩⎨⎧AC =AE ,∠CAP =∠EAP ,AP =AP ,∴△ACP ≌△AEP (SAS ).∴PC =PE . 在△PBE 中,PB +PE >AB +AE , 即PB +PC >AB +A C.∵PB =m ,PC =n ,AB =c ,AC =b , ∴m +n >b +c .二、填空题(每小题3分,共30分)11.如图,已知△ABC 的周长为3 cm ,D ,E 分别是AB ,AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ′处,且点A ′在△ABC 外部,则图中阴影部分图形的周长为__3__cm.,(第11题)) , (第12题))12.如图,在△ABC 中,AB >AC ,按以下步骤作图:分别以点B 和点C 为圆心,大于12BC 长为半径作圆弧,两弧相交于点M 和点N ;作直线MN 交AB 于点D ;连结C D.若AB =8,AC =4,则△ACD 的周长为12.13.已知三角形的三边长分别为3,5,x ,则化简式子|x -2|+|x -9|=__7__. 【解】 提示:2<x <8.(第14题)14.如图,在△ABC 中,已知∠1=∠2,BE =CD ,AB =5,AE =2,则CE =__3__. 【解】 在△ABE 和△ACD 中,∵⎩⎨⎧∠1=∠2,∠A =∠A ,BE =CD ,∴△ABE ≌△ACD (AAS ). ∴AC =AB =5.∵AE =2,∴CE =3.15.如图,在4×5的网格中,每个小正方形的边长都为1,在图中找两个格点D 和E ,使∠ABE =∠ACD =90°,并使AC =DC ,AB =EB ,则四边形BCDE 的面积为__3__.,(第15题)),(第15题解))【解】 如解图,四边形BCDE 的面积为8-3-32-12=3.(第16题)16.如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△ABO ≌△ADO .有下列结论:①AC ⊥BD ;②CB =CD ;③△ABC ≌△ADC ;④AD =C D.其中正确结论的序号是①②③.【解】 ∵△ABO ≌△ADO ,∴∠AOB =∠AOD ,AB =AD ,∠BAO =∠DAO . ∵∠AOB +∠AOD =180°, ∴∠AOB =∠AOD =90°, ∴AC ⊥BD ,故①正确.在△ABC 和△ADC 中,∵⎩⎨⎧AB =AD ,∠BAC =∠DAC ,AC =AC ,∴△ABC ≌△ADC (SAS ), ∴CB =CD ,故②③正确.AD 与CD 不一定相等,故④错误. 综上所述,正确结论的序号是①②③.(第17题)17.如图,△ABC 三边的中线AD ,BE ,CF 的交点为G .若S △ABC =12,则图中阴影部分的面积是__4__.【解】 ∵△ABC 的三条中线AD ,BE ,CF 交于点G , ∴S △ABD =S △ACD ,S △AFG =S △BFG , S △AGE =S △CGE ,S △BDG =S △CDG , ∴S △ABG =S △ACG .∴S △BFG =S △CGE .同理,S △BFG =S △BDG ,∴图中6个小三角形的面积都相等.∴S 阴影=13S △ABC =4.18.如图,已知长方形纸片的一条边经过直角三角形纸片的直角顶点,若长方形纸片的一组对边与直角三角形的两条直角边相交成∠1,∠2,则∠2-∠1=90°.(第18题)(第18题解)【解】 如解图.∵AB ∥DC ,∴∠2=∠3.∵∠3+∠4=180°,∴∠2=180°-∠4. 又∵∠1+∠4=90°,即∠1=90°-∠4.∴∠2-∠1=180°-∠4-(90°-∠4)=90°.(第19题)19.如图,在△ABC 中,∠A =52°,∠ABC 与∠ACB 的平分线交于点D 1,∠ABD 1与∠ACD 1的平分线交于点D 2……依此类推,∠BD 5C 的度数是56°.【解】 ∵∠A =52°, ∴∠ABC +∠ACB =128°.∵BD 1,CD 1分别平分∠ABC 和∠ACB ,∴∠D 1BC +∠D 1CB =12(∠ABC +∠ACB )=64°.∴∠D 1=180°-64°=116°.同理,∠D 2=180°-64°-12×64°=84°……∴∠D 5=180°-64°-12×64°-⎝ ⎛⎭⎪⎫122×64°-⎝ ⎛⎭⎪⎫123×64°-⎝ ⎛⎭⎪⎫124×64°=56°.20.如图,图①是一块边长为1,周长记为P 1的等边三角形纸板,沿图①的底边剪去一块边长为12的等边三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的等边三角形纸板(即边长为前一块被剪掉等边三角形纸板边长的12)后得到图③……记第n (n ≥3)块纸板的周长为P n ,则P n -P n-1=⎝ ⎛⎭⎪⎫12n -1.(第20题)【解】 ∵P 1=3,P 2=212,P 3=234,P 4=278,∴P 4-P 3=18=⎝ ⎛⎭⎪⎫123=⎝ ⎛⎭⎪⎫124-1……故P n -P n -1=⎝ ⎛⎭⎪⎫12n -1.三、解答题(共40分) 21.(6分)如图,△ABC ≌△A 1B 1C 1,AD ,A 1D 1分别是△ABC 和△A 1B 1C 1的角平分线.求证:AD =A 1D 1.(第21题)【解】 ∵△ABC ≌△A 1B 1C 1,∴AB =A 1B 1,∠B =∠B 1,∠BAC =∠B 1A 1C 1.∵AD ,A 1D 1分别是△ABC 和△A 1B 1C 1的角平分线,∴∠BAD =12∠BAC ,∠B 1A 1D 1=12∠B 1A 1C 1.∴∠BAD =∠B 1A 1D 1. 在△ABD 与△A 1B 1D 1中,∵⎩⎨⎧∠BAD =∠B 1A 1D 1,AB =A 1B 1,∠B =∠B 1,∴△ABD ≌△A 1B 1D 1(ASA ). ∴AD =A 1D 1.(第22题)22.(6分)如图,在△ABC 中,AB =CB ,∠ABC =90°,D 为AB 延长线上一点,点E 在BC 边上,且BE =BD ,连结AE ,DE ,C D.(1)求证:△ABE ≌△CB D.(2)若∠CAE =27°,∠ACB =45°,求∠BDC 的度数. 【解】 (1)∵∠ABC =90°, ∴∠CBD =90°=∠AB C. 在△ABE 和△CBD 中,∵⎩⎨⎧AB =CB ,∠ABE =∠CBD ,BE =BD ,∴△ABE ≌△CBD (SAS ). (2)∵△ABE ≌△CBD , ∴∠AEB =∠CD B.∵∠AEB 为△AEC 的外角,∴∠AEB =∠CAE +∠ACB =27°+45°=72°, ∴∠BDC =72°.(第23题)23.(6分)如图,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的.若∠1∶∠2∶∠3=28∶5∶3,求∠α的度数.【解】∵∠1+∠2+∠3=180°,∠1∶∠2∶∠3=28∶5∶3,∴∠1=140°,∠2=25°,∠3=15°.设BE与CD的交点为F.∵△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,∴△ABE≌△ABC≌△AD C.∴∠2=∠ABE,∠3=∠AC D.∴∠FBC=2∠2=2×25°=50°,∠FCB=2∠3=2×15°=30°.∵∠α是△FBC的一个外角,∴∠α=∠FBC+∠FCB=50°+30°=80°.24.(6分)如图,已知BD,CE是△ABC的高线,点F在BD上,BF=AC,点G在CE的延长线上,CG=A B.求证:AG⊥AF.(第24题)【解】∵BD,CE是△ABC的高线,∴∠BEC=∠CDB=90°.∵∠EHB=∠DHC,∴∠EBH=∠DCH.又∵BF=CA,AB=GC,∴△ABF≌△GCA(SAS).∴∠BAF=∠G.∵∠AEG=90°,∴∠G+∠GAE=90°,∴∠BAF+∠GAE=90°,即∠GAF=90°,∴AG⊥AF.(第25题)25.(6分)如图,已知BE,CF分别是△ABC中AC,AB边上的高线,在BE的延长线上取点P,使PB=AC,在CF的延长线上取点Q,使CQ=A B.求证:AQ⊥AP.【解】∵BE,CF分别是△ABC中AC,AB边上的高线,∴∠AEB=∠AFC=90°,∴∠ABP+∠EAF=90°,∠ACQ+∠EAF=90°,∴∠ABP=∠ACQ.在△ABP 和△QCA 中,∵⎩⎨⎧PB =AC ,∠ABP =∠QCA ,AB =QC ,∴△ABP ≌△QCA (SAS ). ∴∠APB =∠QA C.∴∠APB +∠PAE =∠QAC +∠PAE , 即180°-∠AEP =∠PAQ . ∴∠PAQ =90°,即AQ ⊥AP .26.(10分)旧知新意:我们知道,三角形的一个外角等于与它不相邻的两个内角的和,那么三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?(1)尝试探究: 如图①,∠DBC 与∠ECB 分别为△ABC 的两个外角,试探究∠A 与∠DBC +∠ECB 之间的数量关系. (2)初步运用:如图②,在△ABC 纸片中剪去△CED ,得到四边形ABDE .若∠1=130°,则∠2-∠C =50°.小明联想到了曾经解决的一个问题:如图③,在△ABC 中,BP ,CP 分别平分外角∠DBC ,∠ECB ,则∠P与∠A 有何数量关系?请利用上面的结论直接写出答案:∠P =90°-12∠A .(3)拓展提升:如图④,在四边形ABCD 中,BP ,CP 分别平分外角∠EBC ,∠FCB ,则∠P 与∠A ,∠D 有何数量关系?(第26题)【解】 (1)∠DBC +∠ECB =(180°-∠ABC )+(180°-∠ACB )=360°-(∠ABC +∠ACB )=360°-(180°-∠A )=180°+∠A.(2)∵∠1+∠2=180°+∠C , ∴130°+∠2=180°+∠C , ∴∠2-∠C =50°.∵∠DBC +∠ECB =180°+∠A ,BP ,CP 分别平分外角∠DBC ,∠ECB ,∴∠PBC +∠PCB =12(∠DBC +∠ECB )=12(180°+∠A ),∴∠P =180°-(∠PBC +∠PCB )=180°-12(180°+∠A )=90°-12∠A ,即∠P =90°-12∠A.(第26题解)(3)如解图,延长BA ,CD 相交于点Q ,则∠P =90°-12∠Q ,∴∠Q =180°-2∠P ,∴∠BAD +∠CDA =180°+∠Q =180°+180°-2∠P =360°-2∠P .。

最新浙教版 八年级数学初二上册《第1章三角形的初步认识》单元测试卷含答案解析

最新浙教版 八年级数学初二上册《第1章三角形的初步认识》单元测试卷含答案解析

《第1章三角形的初步认识》一、填空题1.已知三角形的两边分别为4和9,则此三角形的第三边可能是()A.4 B.5 C.9 D.132.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50° B.30° C.20° D.15°3.如图所示,△ACB≌A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°4.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种5.尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具6.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50° B.40° C.70° D.35°7.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45° B.54° C.40° D.50°8.一副三角板如图叠放在一起,则图中∠α的度数为()A.75° B.60° C.65° D.55°9.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC ∥AB,则∠BAD的度数为()A.30° B.35° C.40° D.50°10.如图所示,△ABC与△BDE都是等边三角形,AB<BD.若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为()A.AE=CD B.AE>CD C.AE<CD D.无法确定二、认真填一填11.若三角形的两边长分别为3、4,且周长为整数,这样的三角形共有个.12.如图,在△ABC 和△DEF 中,已知:AC=DF ,BC=EF ,要使△ABC ≌△DEF ,还需要的条件可以是 .(只填写一个条件)13.若△ABC ≌△DEF ,且∠A=110°,∠F=40°,则∠E= 度.14.在△ABC 中,∠A :∠B :∠C=1:2:3,则∠A= ,∠C= .15.如图,在△ABC 中,∠B=60°,∠C=40°,AD ⊥BC 于D ,AE 平分∠BAC ;则∠DAE= .16.如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD=2BD ,BE=CE ,设△ADC 的面积为S 1,△ACE 的面积为S 2,若S △ABC =6,则S 1﹣S 2的值为 .17.如图,将纸片△ABC 沿DE 折叠,点A 落在点P 处,已知∠1+∠2=100°,则∠A 的大小等于 度.18.如图,△ABC 中,∠BAC=100°,EF ,MN 分别为AB ,AC 的垂直平分线,如果BC=12cm ,那么△FAN 的周长为 cm ,∠FAN= .三、解答题19.如图,点A、C、D、B 四点共线,且AC=DB,∠A=∠B,∠E=∠F.求证:DE=CF.20.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.21.如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.22.作图,如图已知三角形ABC内一点P(1)过P点作线段EF∥AB,分别交BC,AC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.23.如图,在△ABC中,AD平分∠BAC,AD的垂直平分线EF交BC的延长线于点F,连接AF,求证:∠CAF=∠B.24.如图,点D为锐角∠ABC内一点,点M在边BA上,点N在边BC上,且DM=DN,∠BMD+∠BND=180°.求证:BD平分∠ABC.25.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD的中点,动点P从A点出发,以每秒2cm 的速度沿A→B→C→E运动,最终到达点E.若设点P运动的时间是t秒,那么当t取何值时,△APE 的面积会等于10?26.(14分)课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C= ;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)《第1章三角形的初步认识》参考答案与试题解析一、填空题1.已知三角形的两边分别为4和9,则此三角形的第三边可能是()A.4 B.5 C.9 D.13【考点】三角形三边关系.【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于5,而小于13.故选C.【点评】本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.2.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50° B.30° C.20° D.15°【考点】平行线的性质;三角形的外角性质.【专题】计算题.【分析】首先根据平行线的性质得到∠2的同位角∠4的度数,再根据三角形的外角的性质进行求解.【解答】解:根据平行线的性质,得∠4=∠2=50°.∴∠3=∠4﹣∠1=50°﹣30°=20°.故选:C.【点评】本题应用的知识点为:三角形的外角等于与它不相邻的两个内角的和.两直线平行,同位角相等.3.如图所示,△ACB≌A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°【考点】全等三角形的性质.【分析】根据全等三角形性质求出∠ACB=∠A′CB′,都减去∠A′CB即可.【解答】解:∵△ACB≌A′CB′,∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,∴∠ACA′=∠BCB′,∵∠BCB′=30°,∴∠ACA′=30°,故选B.【点评】本题考查了全等三角形性质的应用,注意:全等三角形的对应角相等.4.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种【考点】三角形三边关系.【专题】常规题型.【分析】要把四条线段的所有组合列出来,再根据三角形的三边关系判断能组成三角形的组数.【解答】解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选:C.【点评】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.5.尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具【考点】作图—尺规作图的定义.【分析】根据尺规作图的定义作答.【解答】解:根据尺规作图的定义可知:尺规作图是指用没有刻度的直尺和圆规作图.故选C.【点评】尺规作图是指用没有刻度的直尺和圆规作图.6.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50° B.40° C.70° D.35°【考点】三角形内角和定理;角平分线的定义.【分析】根据数据线的内角和定理以及角平分线的定义,可以证明.【解答】解:∵BE、CF都是△ABC的角平分线,∴∠A=180°﹣(∠ABC+∠ACB),=180°﹣2(∠DBC+∠BCD)∵∠BDC=180°﹣(∠DBC+∠BCD),∴∠A=180°﹣2(180°﹣∠BDC)∴∠BDC=90°+∠A,∴∠A=2(110°﹣90°)=40°.故选B.【点评】注意此题中的∠A和∠BDC之间的关系:∠BDC=90°+∠A.7.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45° B.54° C.40° D.50°【考点】平行线的性质;三角形内角和定理.【分析】根据三角形的内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,然后根据两直线平行,内错角相等可得∠ADE=∠BAD.【解答】解:∵∠B=46°,∠C=54°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选:C.【点评】本题考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟记性质与概念是解题的关键.8.一副三角板如图叠放在一起,则图中∠α的度数为()A.75° B.60° C.65° D.55°【考点】三角形的外角性质;三角形内角和定理.【分析】因为三角板的度数为45°,60°,所以根据三角形内角和定理即可求解.【解答】解:如图,∵∠1=60°,∠2=45°,∴∠α=180°﹣45°﹣60°=75°,故选A.【点评】本题利用三角板度数的常识和三角形内角和定理,熟练掌握定理是解题的关键.9.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC ∥AB,则∠BAD的度数为()A.30° B.35° C.40° D.50°【考点】旋转的性质.【分析】根据两直线平行,内错角相等可得∠ACB=∠CAB,根据旋转的性质可得AC=AE,∠BAC=∠DAE,再根据等腰三角形两底角相等列式求出∠CAE,然后求出∠DAB=∠CAE,从而得解.【解答】解:∵CE∥AB,∴∠ACB=∠CAB=75°,∵△ABC绕点A逆时针旋转到△AED,∴AC=AE,∠BAC=∠DAE,∴∠CAE=180°﹣70°×2=40°,∵∠CAE+∠CAD=∠DAE,∠DAB+∠CAD=∠BAC,∴∠DAB=∠CAE=40°.故选C.【点评】本题考查了旋转的性质,平行线的性质,等腰三角形两底角相等的性质,熟记各性质并求出∠DAB=∠CAE是解题的关键.10.如图所示,△ABC与△BDE都是等边三角形,AB<BD.若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为()A.AE=CD B.AE>CD C.AE<CD D.无法确定【考点】全等三角形的判定与性质;等边三角形的性质.【分析】本题可通过证△ABE和△CBD全等,来得出AE=CD的结论.两三角形中,已知了AB=BC、BE=BD,因此关键是证得∠ABE=∠CBD;由于△ABC和△BED都是等边三角形,因此∠EBD=∠ABC=60°,即∠ABE=∠CBD=120°,由此可得证.【解答】解:∵△ABC与△BDE都是等边三角形,∴AB=BC,BE=BD,∠ABC=∠EBD=60°;∴∠ACB+∠CBE=∠EBD+∠CBE=120°,即:∠ABE=∠CBD=120°;∴△ABE≌△CBD;∴AE=CD.故选A.【点评】本题考查了全等三角形的判定与性质,等边三角形的性质,当出现两个等边三角形时,一般要利用等边三角形的边和角从中找到一对全等三角形.二、认真填一填11.若三角形的两边长分别为3、4,且周长为整数,这样的三角形共有 5 个.【考点】三角形三边关系;一元一次不等式组的整数解.【分析】设第三边的长为x,根据三角形的三边关系的定理可以确定x的取值范围,进而得到答案.【解答】解:设第三边的长为x,则4﹣3<x<4+3,所以1<x<7.∵x为整数,∴x可取2,3,4,5,6.故答案为5.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形三边关系定理:三角形两边之和大于第三边.三角形的两边差小于第三边.12.如图,在△ABC和△DEF中,已知:AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件可以是AB=DE .(只填写一个条件)【考点】全等三角形的判定.【专题】开放型.【分析】根据“SSS”添加条件.【解答】解:若加上AB=DE,则可根据“SSS”判断△ABC≌△DEF.故答案为AB=DE.【点评】本题考查了全等三角形的判定:判定方法有“SSS”、“SAS”、“ASA”、“AAS”.13.若△ABC≌△DEF,且∠A=110°,∠F=40°,则∠E= 30 度.【考点】全等三角形的性质.【分析】根据全等三角形的性质得出∠D=∠A=110°,∠C=∠F=40°,进而得出答案.【解答】解:∵△ABC≌△DEF,∠A=110°,∠F=40°,∴∠D=∠A=110°,∠C=∠F=40°,∴∠DEF=180°﹣110°﹣40°=30°.故答案为:30;【点评】此题主要考查了全等三角形的性质,利用其性质得出对应角相等是解题关键.14.在△ABC中,∠A:∠B:∠C=1:2:3,则∠A= 30°.,∠C= 90°..【考点】三角形内角和定理.【分析】有三角形内角和180度,又知三角形内各角比,从而求出.【解答】解:由三角形内角和180°,又∵∠A:∠B:∠C=1:2:3,∴∠A=180°×=30°,∠C=180°×=90°.故填:30°,90°.【点评】本题考查三角形内角和定理,结合已知条件,从而很容易知道各角所占几分之几.而解得.15.如图,在△ABC中,∠B=60°,∠C=40°,AD⊥BC于D,AE平分∠BAC;则∠DAE= 10°.【考点】三角形内角和定理;三角形的外角性质.【分析】根据∠B=60°,∠C=40°可得∠BAC的度数,AE平分∠BAC,得到∠BAE和∠CAE的度数,利用外角的性质可得∠AED的度数,再根据垂直定义,得到直角三角形,在直角△ABD中,可以求得∠DAE的度数.【解答】解:∵∠C=40°,∠B=60°,∴∠BAC=180°﹣40°﹣60°=80°,∵AE平分∠BAC,∴∠BAE=∠CAE=40°,∴∠AED=80°,∵AD⊥BC于D,∴∠ADC=90°,∴∠DAE=180°﹣80°﹣90°=10°,故答案为:10°.【点评】本题主要考查角平分线的定义和垂直的定义,外角性质,三角形内角和定理,综合利用各定理及性质是解答此题的关键.16.如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD=2BD ,BE=CE ,设△ADC 的面积为S 1,△ACE 的面积为S 2,若S △ABC =6,则S 1﹣S 2的值为 1 .【考点】三角形的面积.【专题】压轴题.【分析】根据等底等高的三角形的面积相等求出△AEC 的面积,再根据等高的三角形的面积的比等于底边的比求出△ACD 的面积,然后根据S 1﹣S 2=S △ACD ﹣S △ACE 计算即可得解.【解答】解:∵BE=CE ,∴S △ACE =S △ABC =×6=3,∵AD=2BD ,∴S △ACD =S △ABC =×6=4,∴S 1﹣S 2=S △ACD ﹣S △ACE =4﹣3=1.故答案为:1.【点评】本题考查了三角形的面积,主要利用了等底等高的三角形的面积相等,等高的三角形的面积的比等于底边的比,需熟记.17.如图,将纸片△ABC 沿DE 折叠,点A 落在点P 处,已知∠1+∠2=100°,则∠A 的大小等于 50 度.【考点】三角形内角和定理;翻折变换(折叠问题).【分析】根据已知求出∠ADP+∠AEP=360°﹣(∠1+∠2)=260°,根据折叠求出∠ADE+∠AED=×260°=130°,根据三角形内角和定理求出即可.【解答】解:∵∠1+∠2=100°,∴∠ADP+∠AEP=360°﹣(∠1+∠2)=260°,∵将纸片△ABC沿DE折叠,点A落在点P处,∴∠ADE=∠ADP,∠AED=∠AEP,∴∠ADE+∠AED=×260°=130°,∴∠A=180°﹣(∠ADE+∠AED)=50°,故答案为:50.【点评】本题考查了三角形的内角和定理和折叠的性质的应用,注意:三角形的内角和等于180°,题目比较好,难度适中.18.如图,△ABC中,∠BAC=100°,EF,MN分别为AB,AC的垂直平分线,如果BC=12cm,那么△FAN的周长为12 cm,∠FAN= 20°.【考点】线段垂直平分线的性质.【分析】由EF,MN分别为AB,AC的垂直平分线,可得AF=BF,AN=CN,即可得△FAN的周长等于BC;又由∠BAC=100°,求得∠BAF+∠CAN=∠B+∠C=180°﹣∠BAC=80°,继而求得答案.【解答】解:∵EF,MN分别为AB,AC的垂直平分线,∴AF=BF,AN=CN,∴△FAN的周长为:AF+FN+AN=BF+FN+CN=BC=12cm;∴∠BAF=∠B,∠CAN=∠C,∵△ABC中,∠BAC=100°,∴∠BAF+∠CAN=∠B+∠C=180°﹣∠BAC=80°,∴∠FAN=∠BAC﹣(∠BAF+∠CAN)=20°.故答案为:12,20°.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的判定与性质.此题难度不大,注意掌握数形结合思想与转化思想的应用.三、解答题19.如图,点A、C、D、B 四点共线,且AC=DB,∠A=∠B,∠E=∠F.求证:DE=CF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据条件可以求出AD=BC,再证明△AED≌△BFC,由全等三角形的性质就可以得出结论.【解答】证明:∵AC=DB,∴AC+CD=DB+CD,即AD=BC,在△AED和△BFC中,∴△AED≌△BFC.∴DE=CF.【点评】本题考查了线段的数量关系,全等三角形的判定及性质的运用,解答时证明△AED≌△BFC 是解答本题的关键.20.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【考点】全等三角形的判定.【专题】证明题.【分析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.【考点】作图—复杂作图.【分析】(1)利用直角三角板一条直角边与BC重合,沿BC平移使另一直角边过A画BC边上的高AD即可;再根据角平分线的做法作∠A的角平分线AE;(2)首先计算出∠BAE的度数,再计算出∠BAD的度数,利用角的和差关系可得答案.【解答】解:(1)如图所示:(2)在△ABC中,∠BAC=180°﹣11°﹣40°=30°,∵AE平分∠BAC,∴∠BAE=∠BAC=15°,在Rt△ADB中,∠BAD=90°﹣∠B=50°,∴∠DAE=∠DAB﹣∠BAE=35°.【点评】此题主要考查了复杂作图,以及角的计算,关键是正确画出图形.22.作图,如图已知三角形ABC内一点P(1)过P点作线段EF∥AB,分别交BC,AC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.【考点】作图—基本作图.【分析】(1)根据过直线外一点作已知直线平行线的方法作图即可;(2)利用直角三角板,一条直角边与BC重合,沿BC平移,使另一条直角边过点P画垂线即可.【解答】解:如图所示:.【点评】此题主要考查了基本作图,关键是掌握利用直尺做平行线的方法.23.如图,在△ABC中,AD平分∠BAC,AD的垂直平分线EF交BC的延长线于点F,连接AF,求证:∠CAF=∠B.【考点】线段垂直平分线的性质.【专题】证明题.【分析】EF垂直平分AD,则可得AF=DF,进而再转化为角之间的关系,通过角之间的平衡转化,最终得出结论.【解答】证明:∵EF垂直平分AD,∴AF=DF,∠ADF=∠DAF,∵∠ADF=∠B+∠BAD,∠DAF=∠CAF+∠CAD,又∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠CAF=∠B.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.24.如图,点D为锐角∠ABC内一点,点M在边BA上,点N在边BC上,且DM=DN,∠BMD+∠BND=180°.求证:BD平分∠ABC.【考点】全等三角形的判定与性质;角平分线的性质.【专题】证明题.【分析】在AB上截取ME=BN,证得△BND≌△EMD,进而证得∠DBN=∠MED,BD=DE,从而证得BD平分∠ABC.【解答】解:如图所示:在AB上截取ME=BN,∵∠BMD+∠DME=180°,∠BMD+∠BND=180°,∴∠DME=∠BND,在△BND与△EMD中,,∴△BND≌△EMD(SAS),∴∠DBN=∠MED,BD=DE,∴∠MBD=∠MED,∴∠MBD=∠DBN,∴BD平分∠ABC.【点评】本题考查了三角形全等的判定和性质,等腰三角形的判定和性质.25.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD的中点,动点P从A点出发,以每秒2cm 的速度沿A→B→C→E运动,最终到达点E.若设点P运动的时间是t秒,那么当t取何值时,△APE 的面积会等于10?【考点】一元一次方程的应用;三角形的面积.【专题】几何动点问题.【分析】分为三种情况讨论,如图1,当点P在AB上,即0<t≤4时,根据三角形的面积公式建立方程求出其解即可;如图2,当点P在BC上,即4<t≤7时,由S△APE =S四边形AECB﹣S△PCE﹣S△PAB建立方程求出其解即可;如图3,当点P在EC上,即7<t≤9时,由S△APE==10建立方程求出其解即可.【解答】解:如图1,当点P在AB上,即0<t≤4时,∵四边形ABCD是矩形,∴AD=BC=6,AB=CD=8.∵AP=2t,∴S△APE=×2t×6=10,∴t=.如图2,当点P在BC上,即4<t≤7时,∵E是DC的中点,∴DE=CE=4.∵BP=2t﹣8,PC=6﹣(2t﹣8)=14﹣2t.∴S=(4+8)×6﹣×(2t﹣8)×8﹣(14﹣2t)×4=10,解得:t=7.5>7舍去;当点P在EC上,即7<t≤9时,PE=18﹣2t.∴S△APE=(18﹣2t)×6=10,解得:t=.总上所述,当t=或时△APE的面积会等于10.【点评】本题考查了矩形的性质的运用,三角形的面积公式的运用,梯形的面积公式的运用.解答时灵活运用三角形的面积公式求解是关键.26.课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C= 50°;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案∠P=90°﹣∠A .3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)【考点】三角形的外角性质;三角形内角和定理.【专题】探究型.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠DBC+∠ECB ,再利用三角形内角和定理整理即可得解;(2)根据(1)的结论整理计算即可得解;(3)表示出∠DBC+∠ECB ,再根据角平分线的定义求出∠PBC+∠PCB ,然后利用三角形内角和定理列式整理即可得解;(4)延长BA 、CD 相交于点Q ,先用∠Q 表示出∠P ,再用(1)的结论整理即可得解.【解答】解:(1)∠DBC+∠ECB=180°﹣∠ABC+180°﹣∠ACB=360°﹣(∠ABC+∠ACB )=360°﹣(180°﹣∠A )=180°+∠A ;(2)∵∠1+∠2=∠180°+∠C ,∴130°+∠2=180°+∠C ,∴∠2﹣∠C=50°;(3)∠DBC+∠ECB=180°+∠A ,∵BP 、CP 分别平分外角∠DBC 、∠ECB ,∴∠PBC+∠PCB=(∠DBC+∠ECB )=(180°+∠A ),在△PBC 中,∠P=180°﹣(180°+∠A )=90°﹣∠A ;即∠P=90°﹣∠A;故答案为:50°,∠P=90°﹣∠A;(4)延长BA、CD于Q,则∠P=90°﹣∠Q,∴∠Q=180°﹣2∠P,∴∠BAD+∠CDA=180°+∠Q,=180°+180°﹣2∠P,=360°﹣2∠P.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,角平分线的定义,熟记性质并读懂题目信息是解题的关键.。

2023-2024学年人教版八年级数学上册第一章《三角形的初步认识》检测卷附答案解析

2023-2024学年人教版八年级数学上册第一章《三角形的初步认识》检测卷附答案解析

2023-2024学年八年级数学上册第一章《三角形的初步认识》检测卷(满分120分)一、选择题(本大题共有10个小题,每小题3分,共30分)1.小芳有两根长度为4cm 和8cm 的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.3cm B.5cm C.12cm D.17cm2.等腰三角形的两条边长分别为8和4,则它的周长等于()A.12B.16C.20D.16或203.下面四个图形中,线段BD 是ABC 的高的图形是()A.B.C.D.4.下列判定两直角三角形全等的方法,错误的是()A.两条直角边对应相等B.斜边和一直角边对应相等C.两个锐角对应相等D.斜边和一锐角对应相等5.如图,为估计池塘岸边A、B 的距离,小方在池塘的一侧选取一点O,测得OA=19米,OB=10米,A、B 间的距离不可能是()A.26米B.12米C.9米D.15米6.如图,点B ,E ,C ,F 在同一直线上,AB DE =,BC EF =,添加一个条件能判定ABC DEF ≌△△的是()A.AB DE ∥B.A D ∠=∠C.ACB F ∠=∠D.AC DF∥7.如图,AD ,AE ,AF 分别是ABC 的中线,角平分线,高.则下列各式中错误..的是()A.90AFB ∠=︒B.AE CE =C.2BC CD =D.12BAE BAC∠=∠8.如图,在ABC 中,已知点,,D E F 分别为边,,BC AD CE 的中点,且ABC 的面积是12,则BEF △的面积是()A.3B.4C.6D.89.如图,在ABC 中,30A ∠=︒,50B ∠=︒,将点A 与点B 分别沿MN 和EF 折叠,使点A 、B 与点C 重合,则NCF ∠的度数为()A.10︒B.15︒C.20︒D.30︒10.如图,在Rt△ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以M ,N 为圆心,大于1MN 2的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列说法中:①AD 是∠BAC 的平分线;②点D 在线段AB 的垂直平分线上;③S △DAC :S △ABC =1:2.正确的是()A.①②B.①③C.②③D.①②③二、填空题(本大题共有6个小题,每小题3分,共18分)11.已知等腰三角形的两边长分别是4cm 和8cm ,则周长为_______12如图,将Rt ABC △绕直角顶点C 顺时针旋转90︒,得到A B C ''' ,连接AA ',若65B ∠=︒,则1∠的度数是_______13.如图,ABC DEF ≌△△,点,,,B E C F 在一条直线上.已知8,5BC EC ==,则CF 的长为______14.如图,AB AC =,AD AE BAC DAE =∠=∠,,点B 、D 、E 在同一条直线上,若125360∠=︒∠=︒,,则2∠的度数为___________15.如图,在ABC 中,AD 是高,AE 是角平分线,若118∠=︒,68C ∠=︒,则BAC ∠的度数为_____16.如图△ABC 中,∠C =90°,以顶点A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交干点P ,作射线AP 交边BC 于点D ,若CD =4,BD =5,AC =12,则△ABD 的面积是________;三、解答题(本大题共有6个小题,共52分)17.如图,已知AB CD =,AB CD ,BE CF =,求证A D ∠=∠.18.已知:如图,AB DE ∥,AB DE =,AF DC =.求证:B E ∠=∠.19.如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB DE =,AB DE ∥,A D ∠=∠.(1)求证:ABC DEF ≌△△;(2)若10BE =,3BF =,求FC 的长度.20.已知:如图,AB //CD ,AB =CD ,BF =CE .(1)求证: ABF ≌ DCE .(2)已知∠AFC =80°,求∠DEC 的度数.21.已知:如图,在Rt ABC △中,90ACB ∠=︒,过点C 作CD AB ⊥,垂足为D .在射线CD 上截取CE CA =,过点E 作EF CE ⊥,交CB 的延长线于点F .(1)求证:ABC CFE △△≌;(2)若9AB =,4EF =,求BF 的长.22.在ABC 中,90o ACB AC BC ∠=,=,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①ACD CBE ≌;②DE AD BE =+.(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE AD BE -=;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE AD BE 、、具有怎样的等量关系?请写出这个等量关系解答卷二、选择题(本大题共有10个小题,每小题3分,共30分)1.小芳有两根长度为4cm 和8cm 的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.3cm B.5cm C.12cm D.17cm【答案】B2.等腰三角形的两条边长分别为8和4,则它的周长等于()A.12B.16C.20D.16或20【答案】C3.下面四个图形中,线段BD 是ABC 的高的图形是()A.B.C.D.【答案】D4.下列判定两直角三角形全等的方法,错误的是()A.两条直角边对应相等B.斜边和一直角边对应相等C.两个锐角对应相等D.斜边和一锐角对应相等【答案】C5.如图,为估计池塘岸边A、B 的距离,小方在池塘的一侧选取一点O,测得OA=19米,OB=10米,A、B 间的距离不可能是()A.26米B.12米C.9米D.15米【答案】C6.如图,点B ,E ,C ,F 在同一直线上,AB DE =,BC EF =,添加一个条件能判定ABC DEF ≌△△的是()A.AB DE ∥B.A D ∠=∠C.ACB F ∠=∠D.AC DF∥【答案】A7.如图,AD ,AE ,AF 分别是ABC 的中线,角平分线,高.则下列各式中错误..的是()A.90AFB ∠=︒B.AE CE =C.2BC CD =D.12BAE BAC∠=∠【答案】B9.如图,在ABC 中,已知点,,D E F 分别为边,,BC AD CE 的中点,且ABC 的面积是12,则BEF △的面积是()A.3B.4C.6D.8【答案】A9.如图,在ABC 中,30A ∠=︒,50B ∠=︒,将点A 与点B 分别沿MN 和EF 折叠,使点A 、B 与点C 重合,则NCF ∠的度数为()A.10︒B.15︒C.20︒D.30︒【答案】C10.如图,在Rt△ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以M ,N 为圆心,大于1MN 2的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列说法中:①AD 是∠BAC 的平分线;②点D 在线段AB 的垂直平分线上;③S △DAC :S △ABC =1:2.正确的是()A.①②B.①③C.②③D.①②③【答案】A四、填空题(本大题共有6个小题,每小题3分,共18分)11.已知等腰三角形的两边长分别是4cm 和8cm ,则周长为_______【答案】20cm12如图,将Rt ABC △绕直角顶点C 顺时针旋转90︒,得到A B C ''' ,连接AA ',若65B ∠=︒,则1∠的度数是_______【答案】20°13.如图,ABC DEF ≌△△,点,,,B E C F 在一条直线上.已知8,5BC EC ==,则CF 的长为______【答案】315.如图,AB AC =,AD AE BAC DAE =∠=∠,,点B 、D 、E 在同一条直线上,若125360∠=︒∠=︒,,则2∠的度数为___________【答案】35︒15.如图,在ABC 中,AD 是高,AE 是角平分线,若118∠=︒,68C ∠=︒,则BAC ∠的度数为_____【答案】80°16.如图△ABC 中,∠C =90°,以顶点A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交干点P ,作射线AP 交边BC 于点D ,若CD =4,BD =5,AC =12,则△ABD的面积是________;【答案】30五、解答题(本大题共有6个小题,共52分)17.如图,已知AB CD =,AB CD ,BE CF =,求证A D ∠=∠.证明:∵AB CD ,∴B C ∠=∠,又∵AB DC =,BE CF =,∴()SAS ABE DCF ≌△△,∴A D ∠=∠.18.已知:如图,AB DE ∥,AB DE =,AF DC =.求证:B E ∠=∠.证明:∵AB DE ∥,∴A D ∠=∠,∵AF DC =,∴AF CF DC CF+=+即AC DF=在ABC 与DEF 中AC DFA D AB DE=⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABC DEF ≌△△,∴B E ∠=∠.20.如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB DE =,AB DE ∥,A D ∠=∠.(1)求证:ABC DEF ≌△△;(2)若10BE =,3BF =,求FC 的长度.解:(1)证明:∵AB DE ∥,∴ABC DEF ∠=∠,在ABC 和DEF 中,A DAB DE ABC DEF∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA ABC DEF ≌△△;(2)解:由(1)知()ASA ABC DEF ≌△△,∴BC EF =,∴BF FC CE FC +=+,∴3BF CE ==,∵10BE =,∴10334FC BE BF CE =--=--=,∴FC 的长度是4.20.已知:如图,AB //CD ,AB =CD ,BF =CE .(1)求证: ABF ≌ DCE .(2)已知∠AFC =80°,求∠DEC的度数.(1)证明:∵AB //CD ,∴∠B =∠C ,在 ABF 与 DCE 中,AB DC B C BF CE=⎧⎪∠=∠⎨⎪=⎩,∴ ABF ≌DCE (SAS ).(2)解:∵∠AFB +∠AFC =180°,∠AFC =80°,∴∠AFB =180°﹣∠AFC =100°,由(1)知, ABF ≌ DCE ,∴∠AFB =∠DEC ,∴∠DEC =100°.22.已知:如图,在Rt ABC △中,90ACB ∠=︒,过点C 作CD AB ⊥,垂足为D .在射线CD 上截取CE CA =,过点E 作EF CE ⊥,交CB 的延长线于点F.(1)求证:ABC CFE △△≌;(2)若9AB =,4EF =,求BF 的长.解:(1)∵CD AB ⊥,EF CE ⊥,∴AB EF ∥,∴ABC F ∠=∠,在ABC 和CFE 中,ABC FACB E AC CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ABC CFE △△≌;(2)∵ABC CFE △△≌,∴9AB CF ==,4BC EF ==,∴5BF CF BC =-=.22.在ABC 中,90o ACB AC BC ∠=,=,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E.(1)当直线MN 绕点C 旋转到图1的位置时,求证:①ACD CBE ≌;②DE AD BE =+.(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE AD BE -=;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE AD BE 、、具有怎样的等量关系?请写出这个等量关系解:(1)如图①∵90ADC ACB ∠=∠=︒,∴123290︒∠∠∠∠+=+=,∴13∠=∠.又∵AC BC =,90ADC CEB ∠=∠=︒,∴ADC CEB ≅ .②∵ADC CEB ≅ ,∴CE AD =,CD BE =,∴DE CE CD AD BE =+=+.(2)∵90ACB CEB ∠=∠=︒,∴12290CBE ∠∠∠∠︒+=+=,∴1CBE ∠=∠.又∵90AC BC ADC CEB ∠∠︒=,==,∴ACD CBE ≅ ,∴CE AD CD BE =,=,∴DE CE CD AD BE =-=-.(3)当MN 旋转到图3的位置时,AD DE BE 、、所满足的等量关系是DE BE AD =-(或AD BE DE BE AD DE -+=,=等).∵90ACB CEB ∠=∠=︒,∴90ACD BCE CBE BCE ∠∠∠∠︒+=+=,∴ACD CBE ∠=∠,又∵90AC BC ADC CEB ∠∠︒=,==,∴ACD CBE ≅ ,∴AD CE CD BE ==,,∴DE CD CE BE AD =-=-.。

浙教版 八年级数学上册 第1章 三角形的初步认识 单元测试卷 (含解析)

浙教版 八年级数学上册 第1章  三角形的初步认识 单元测试卷 (含解析)

八年级(上)数学第1章三角形的初步认识单元测试卷一.选择题(共10小题)1.下面有四个图案,其中不是轴对称图形的是A.B.C.D.2.等腰三角形的一个内角是,则另外两个角的度数分别是A.B.C.或D.3.下列条件中不能判定两个直角三角形全等的是A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和一条斜边分别对应相等4.已知直角三角形的两边长分别为3和4,则斜边长为A.4B.5C.4或5D.5或5.用反证法证明“”时应先假设A.B.C.D.6.如图和△中,,再添两个条件不能够全等的是A.,B.,C.,D.,7.已知,如图,在中,,,是的平分线,,则图中等腰三角形一共有A.2个B.3个C.4个D.5个8.已知等腰三角形的两边长分别为、,且、满足,则此等腰三角形的周长是A.8B.11C.12D.11或139.将两个底边相等的等腰三角形按照如图所示的方式拼接在一起(隐藏互相重合的底边)的图形俗称为“筝形”.假如“筝形”下个定义,那么下面四种说法中,你认为最能够描述“筝形”特征的是A.有两组邻边相等的四边形称为“筝形”B.有两组对角分别相等的四边形称为“筝形”C.两条对角线互相垂直的四边形称为“筝形”D.以一条对角线所在直线为对称轴的四边形称为“筝形”10.如图,在等腰中,为的平分线,,,,则A.B.C.D.二.填空题(共8小题)11.已知等腰三角形的两边长分别是2和4,那么这个等腰三角形的周长是.12.已知在中,,,,那么.13.等腰,,平分交于,如果,则.14.如果在直角三角形中,一个锐角是另一个锐角的3倍,那么这个三角形中最小的一个角等于度.15.如图,直角中,,,当时,.16.如图,,,垂足分别是,,(若要用“”得到,则应添加的条件是.(写一种即可)17.如图,在中,度,如果过点画一条直线能把分割成两个等腰三角形,那么度.18.如图,是一个钢架结构,在角内部最多只能构造五根等长钢条,且满足,则的度数最大为度.三.解答题(共6小题)19.用反证法证明一个三角形中不能有两个角是直角.20.如图,中,,是中点,.求的长.21.如图,已知,平分.求证:是等腰三角形.22.如图,,是上的一点,且,,求证:.23.如图,在中,,是的平分线,,交于点.(1)求证:.(2)若,求的度数.24.如图,已知中,,,,、是边上的两个动点,其中点从点开始沿方向运动,且速度为每秒,点从点开始沿方向运动,且速度为每秒,它们同时出发,设出发的时间为秒.(1)出发2秒后,求的长;(2)当点在边上运动时,出发几秒钟后,能形成等腰三角形?(3)当点在边上运动时,求能使成为等腰三角形的运动时间.参考答案一.选择题(共10小题)1.下面有四个图案,其中不是轴对称图形的是A.B.C.D.解:、不是轴对称图形,故本选项符合题意;、是轴对称图形,故本选项不符合题意;、是轴对称图形,故本选项不符合题意;、是轴对称图形,故本选项不符合题意.故选:.2.等腰三角形的一个内角是,则另外两个角的度数分别是A.B.C.或D.解:,,①当底角时,则,;②当顶角时,,,;即其余两角的度数是,或,,故选:.3.下列条件中不能判定两个直角三角形全等的是A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和一条斜边分别对应相等解:、两个锐角对应相等,不能说明两三角形能够完全重合,符合题意;、可以利用边角边判定两三角形全等,不符合题意;、可以利用边角边或判定两三角形全等,不符合题意;、可以利用角角边判定两三角形全等,不符合题意.故选:.4.已知直角三角形的两边长分别为3和4,则斜边长为A.4B.5C.4或5D.5或解:直角三角形的两边长分别为3和4,①4是此直角三角形的斜边;②当4是此直角三角形的直角边时,斜边长为.综上所述,斜边长为4或5.故选:.5.用反证法证明“”时应先假设A.B.C.D.解:用反证法证明“”时,应先假设.故选:.6.如图和△中,,再添两个条件不能够全等的是A.,B.,C.,D.,解:选项,,,可利用判定△,同理选项,也可利用判定△,选项,,可利用判定△,选项,,,只能证明△,不能证明△.故选:.7.已知,如图,在中,,,是的平分线,,则图中等腰三角形一共有A.2个B.3个C.4个D.5个解:,是等腰三角形;,是等腰三角形;是的平分线,,,,是等腰三角形;和为等腰三角形;图中等腰三角形的个数有5个;故选:.8.已知等腰三角形的两边长分别为、,且、满足,则此等腰三角形的周长是A.8B.11C.12D.11或13解:解得:,当4为腰时,三边为3,3,5,由三角形三边关系定理可知,周长为:.当5为腰时,三边为5,5,3,符合三角形三边关系定理,周长为:.故选:.9.将两个底边相等的等腰三角形按照如图所示的方式拼接在一起(隐藏互相重合的底边)的图形俗称为“筝形”.假如“筝形”下个定义,那么下面四种说法中,你认为最能够描述“筝形”特征的是A.有两组邻边相等的四边形称为“筝形”B.有两组对角分别相等的四边形称为“筝形”C.两条对角线互相垂直的四边形称为“筝形”D.以一条对角线所在直线为对称轴的四边形称为“筝形”解:由题意:“筝形”的一条对角线是另一条对角线的垂直平分线,所以:“筝形”是轴对称图形,对称轴是对角线所在的直线.故选:.10.如图,在等腰中,为的平分线,,,,则A.B.C.D.解:在等腰中,为的平分线,,,,,,,,,,故选:.二.填空题(共8小题)11.已知等腰三角形的两边长分别是2和4,那么这个等腰三角形的周长是10.解:2是腰长时,三角形的三边分别为2、2、4,,不能组成三角形,2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长.故答案为:10.12.已知在中,,,,那么.解:如图所示:可知为的一个直角边,在中,根据勾股定理有:,即,解得:.故答案为:.13.等腰,,平分交于,如果,则3.解:,平分,,故答案为:3.14.如果在直角三角形中,一个锐角是另一个锐角的3倍,那么这个三角形中最小的一个角等于22.5度.解:在直角三角形中,设最小的锐角的度数为,则另一个锐角的度数则为.则,即,解得,,即这个直角三角形中最小的一个角等于.故答案是:22.5.15.如图,直角中,,,当时,.解:设,,,,,,,,,,,故答案为:.16.如图,,,垂足分别是,,(若要用“”得到,则应添加的条件是或.(写一种即可)解:若添加,在和中,,;若添加,在和中,,.故答案为:或.17.如图,在中,度,如果过点画一条直线能把分割成两个等腰三角形,那么度.解:如图,设过点的直线与交于点,则与都是等腰三角形,度,,,,,,,故答案为.18.如图,是一个钢架结构,在角内部最多只能构造五根等长钢条,且满足,则的度数最大为150度.解:,,,,,,,,,最小为,的度数最大为,故答案为:150.三.解答题(共6小题)19.用反证法证明一个三角形中不能有两个角是直角.【解答】证明:假设三角形的三个内角、、中有两个直角,不妨设,则,这与三角形内角和为相矛盾,不成立;所以一个三角形中不能有两个直角.20.如图,中,,是中点,.求的长.解:,点是中点,,,,点是中点,.21.如图,已知,平分.求证:是等腰三角形.【解答】证明:,,平分,,,是等腰三角形.22.如图,,是上的一点,且,,求证:.【解答】证明:,.,和是直角三角形,而.23.如图,在中,,是的平分线,,交于点.(1)求证:.(2)若,求的度数.【解答】(1)证明:是的平分线,,,,,.(2)解:,,,,.24.如图,已知中,,,,、是边上的两个动点,其中点从点开始沿方向运动,且速度为每秒,点从点开始沿方向运动,且速度为每秒,它们同时出发,设出发的时间为秒.(1)出发2秒后,求的长;(2)当点在边上运动时,出发几秒钟后,能形成等腰三角形?(3)当点在边上运动时,求能使成为等腰三角形的运动时间.解:(1),,,;(2),,根据题意得:,解得:,即出发秒钟后,能形成等腰三角形;(3)①当时,如图1所示,则,,.,,,,,秒.②当时,如图2所示,则,秒.③当时,如图3所示,过点作于点,则,,,,秒.综上所述:当为11秒或12秒或13.2秒时,为等腰三角形.。

浙教版八年级数学上《第1章三角形的初步认识》单元测试含答案

浙教版八年级数学上《第1章三角形的初步认识》单元测试含答案

《第1章三角形的初步认识》一、选择题1.下列各组线段中,能组成三角形的是()A.4,6,10 B.3,6,7 C.5,6,12 D.2,3,62.在△ABC中,∠A﹣∠C=∠B,那么△ABC是()A.等边三角形B.锐角三角形C.钝角三角形D.直角三角形3.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA4.如图AB⊥AD,AB⊥BC,则以AB为一条高线的三角形共有()个.A.1 B.2 C.3 D.45.如图所示,△BDC′是将长方形纸片ABCD沿BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形()对.A.2 B.3 C.4 D.5A.作两条相交直线B.∠α和∠β相等吗?C.全等三角形对应边相等 D.若a2=4,求a的值A.垂直于同一直线的两条直线平行B.有两边和其中一边上的高对应相等的两个三角形全等C.三角形三个内角中,至少有2个锐角D.有两条边和一个角对应相等的两个三角形全等8.如图,对任意的五角星,结论正确的是()A.∠A+∠B+∠C+∠D+∠E=90° B.∠A+∠B+∠C+∠D+∠E=180°C.∠A+∠B+∠C+∠D+∠E=270°D.∠A+∠B+∠C+∠D+∠E=360°9.如图,在△ABC中,∠C=90°,AC=BC,AD是△ABC的角平分线,DE⊥AB于E.若AB=6cm,则△DEB的周长为()A.5cm B.6cm C.7cm D.8cm10.如图,BF是∠ABD的平分线,CE是∠ACD的平分线,BF与CE交于G,若∠BDC=130°,∠BGC=100°,则∠A的度数为()A.60° B.70° C.80° D.90°二、填空题11.工人师傅在做完门框后,为防止变形常常像图中所示的那样上两条斜拉的木条(即图中的AB,CD两根木条),这样做的依据是______.13.如图,在△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠DAE=15°,∠B=35°,则∠C=______°.14.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是______(添加一个条件即可).16.已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|=______.17.如图,在△ABC中,AB=AC,AB的中垂线DE交AC于点D,交AB于点E,如果BC=10,△DBC的周长为22,那么AB=______.18.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是______.(将你认为正确的结论的序号都填上)19.已知,∠α=50°,且∠α的两边与∠β的两边互相垂直,则∠β=______.20.若三角形的周长为13,且三边均为整数,则满足条件的三角形有______种.三、解答题21.如图,已知△ABC,请按下列要求作图:(1)用直尺和圆规作△ABC的角平分线CG.(2)作BC边上的高线(本小题作图工具不限).(3)用直尺和圆规作△DEF,使△DEF≌△ABC.22.阅读填空:如图,已知∠AOB.要画出∠AOB的平分线,可分别在OA,OB上截取OC=OD,OE=OF,连结CF,DE,交于P点,那么射线OP就是∠AOB的平分线.要证明这个作法是正确的,可先证明△EOD≌△______,判定依据是______,由此得到∠OED=∠______;再证明△PEC≌△______,判定依据是______,由此又得到PE=______;最后证明△EOP≌△______,判定依据是______,从而便可证明出∠AOP=∠BOP,即OP平分∠AOB.24.已知:如图,在△ABC中,∠BAC=90°,AB=AC,MN是经过点A的直线,BD⊥MN,CE⊥MN,垂足分别为D、E.(1)求证:①∠BAD=∠ACE;②BD=AE;(2)请写出BD,DE,CE三者间的数量关系式,并证明.《第1章三角形的初步认识》参考答案与试题解析一、选择题1.下列各组线段中,能组成三角形的是()A.4,6,10 B.3,6,7 C.5,6,12 D.2,3,6【解答】解:A、∵4+6=10,不符合三角形三边关系定理,∴以4、6、10为三角形的三边,不能组成三角形,故本选项错误;B、∵3+6>7,6+7<3,3+7>6,符合三角形三边关系定理,∴以3、6、7为三角形的三边,能组成三角形,故本选项正确;C、∵5+6<12,不符合三角形三边关系定理,∴以5、6、12为三角形的三边,不能组成三角形,故本选项错误;D、∵2+3<6,不符合三角形三边关系定理,∴以2、3、6为三角形的三边,不能组成三角形,故本选项错误;故选B.2.在△ABC中,∠A﹣∠C=∠B,那么△ABC是()A.等边三角形B.锐角三角形C.钝角三角形D.直角三角形【解答】解:∵∠A+∠B+∠C=180°,∴∠C+∠B=180°﹣∠A,而∠A﹣∠C=∠B,∴∠C+∠B=∠A,∴180°﹣∠A=∠A,解得∠A=90°,∴△ABC为直角三角形.故选D.3.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选:B.4.如图AB⊥AD,AB⊥BC,则以AB为一条高线的三角形共有()个.A.1 B.2 C.3 D.4【解答】解:∵AB⊥AD,AB⊥BC,∴以AB为一条高线的三角形有△ABD,△ABE,△ABC,△ACE,一共4个.故选D.5.如图所示,△BDC′是将长方形纸片ABCD沿BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形()对.A.2 B.3 C.4 D.5【解答】解:∵△BDC′是将长方形纸片ABCD沿BD折叠得到的,∴C′D=CD,BC′=BC,∵BD=BD,∴△CDB≌△C′DB(SSS),同理可证明:△ABE≌△C′DE,△ABD≌△C′DB,△ABD≌△CDB三对全等.所以,共有4对全等三角形.故选C.A.作两条相交直线B.∠α和∠β相等吗?C.全等三角形对应边相等 D.若a2=4,求a的值故选C.A.垂直于同一直线的两条直线平行B.有两边和其中一边上的高对应相等的两个三角形全等C.三角形三个内角中,至少有2个锐角D.有两条边和一个角对应相等的两个三角形全等故选C.8.如图,对任意的五角星,结论正确的是()A.∠A+∠B+∠C+∠D+∠E=90° B.∠A+∠B+∠C+∠D+∠E=180°C.∠A+∠B+∠C+∠D+∠E=270°D.∠A+∠B+∠C+∠D+∠E=360°【解答】解:∵∠1=∠2+∠D,∠2=∠A+∠C,∴∠1=∠A+∠C+∠D,∵∠1+∠B+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°,故选:B.9.如图,在△ABC中,∠C=90°,AC=BC,AD是△ABC的角平分线,DE⊥AB于E.若AB=6cm,则△DEB的周长为()A.5cm B.6cm C.7cm D.8cm【解答】解:∵AD是△ABC的角平分线,DE⊥AB,∴CD=DE,∴△DEB的周长=BD+DE+BE,=BD+CD+BE,=BC+BE,=AC+BE,=AE+BE,=AB,∵AB=6cm,∴△DEB的周长=6cm.故选B.10.如图,BF是∠ABD的平分线,CE是∠ACD的平分线,BF与CE交于G,若∠BDC=130°,∠BGC=100°,则∠A的度数为()A.60° B.70° C.80° D.90°【解答】解:连接BC.∵∠BDC=130°,∴∠DBC+∠DCB=180°﹣130°=50°,∵∠BGC=100°,∴∠GBC+∠GCB=180°﹣100°=80°,∵BF是∠ABD的平分线,CE是∠ACD的平分线,∴∠GBD+∠GCD=∠ABD+∠ACD=30°,∴∠ABC+∠ACB=110°,∴∠A=180°﹣110°=70°.故选B.二、填空题11.工人师傅在做完门框后,为防止变形常常像图中所示的那样上两条斜拉的木条(即图中的AB,CD两根木条),这样做的依据是三角形的稳定性.【解答】解:这样做的依据是三角形的稳定性,故答案为:三角形的稳定性.【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.13.如图,在△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠DAE=15°,∠B=35°,则∠C=65 °.【解答】解:如图,∵AD⊥BC,∴∠ADE=90°.又∵∠DAE=15°,∴∠AED=75°.∵∠B=35°,∴∠BAE=∠AED﹣∠B=40°.又∵AE为∠BAC的平分线,∴∠BAC=2∠BAE=80°,∴∠C=180°﹣∠B﹣∠BAC=65°.故答案是:65.14.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是∠B=∠C或AE=AD (添加一个条件即可).【解答】解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△ACD.故答案为:∠B=∠C或AE=AD.故答案为:假,x=1.16.已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|= 8 .【解答】解:∵三角形的三边长分别是3、x、9,∴6<x<12,∴x﹣5>0,x﹣13<0,∴|x﹣5|+|x﹣13|=x﹣5+13﹣x=8,故答案为:8.17.如图,在△ABC中,AB=AC,AB的中垂线DE交AC于点D,交AB于点E,如果BC=10,△DBC的周长为22,那么AB= 12 .【解答】解:∵AB的中垂线DE交AC于点D,交AB于点E,∴AD=BD,∵△DBC的周长为22,∴BC+CD+BD=BC+CD+AD=BC+AC=22,∵BC=10,∴AC=12.∵AB=AC,∴AB=12.故答案为:12.18.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是①②③.(将你认为正确的结论的序号都填上)【解答】解:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF,∴AC=AB,BE=CF,即结论②正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM,∴ACN≌△ABM,即结论③正确;∵∠BAE=∠CAF,∵∠1=∠BAE﹣∠BAC,∠2=∠CAF﹣∠BAC,∴∠1=∠2,即结论①正确;∴△AEM≌△AFN,∴AM=AN,∴CM=BN,∴△CDM≌△BDN,∴CD=BD,∴题中正确的结论应该是①②③.故答案为:①②③.19.已知,∠α=50°,且∠α的两边与∠β的两边互相垂直,则∠β=130°或50°.【解答】解:①如图1,∵∠a+∠β=180°﹣90°﹣90°=180°,∠α=50°,∴∠β=130°,②如图2,若∠a的两边分别与∠β的两边在同一条直线上,∴∠a=∠β=50°,综上所述,∠β=130°或50°.故答案是:130°或50°.20.若三角形的周长为13,且三边均为整数,则满足条件的三角形有 4 种.【解答】解:设三边长分别为a≤b≤c,则a+b=13﹣c>c≥,∴≤c<,故c=5,或6;分类讨论如下:①当c=5时,b=4,a=4或b=3,a=5;②当c=6时,b=5,a=2或b=4,a=3;∴满足条件的三角形的个数为4,故答案为:4.三、解答题21.如图,已知△ABC,请按下列要求作图:(1)用直尺和圆规作△ABC的角平分线CG.(2)作BC边上的高线(本小题作图工具不限).(3)用直尺和圆规作△DEF,使△DEF≌△ABC.【解答】解:(1)如图1,CG为所作;(2)如图1,AH为所作;(3)如图2,△DEF为所作.22.阅读填空:如图,已知∠AOB.要画出∠AOB的平分线,可分别在OA,OB上截取OC=OD,OE=OF,连结CF,DE,交于P点,那么射线OP就是∠AOB的平分线.要证明这个作法是正确的,可先证明△EOD≌△FOC ,判定依据是SAS ,由此得到∠OED=∠OFC ;再证明△PEC≌△PFD ,判定依据是AAS ,由此又得到PE= PF ;最后证明△EOP≌△FOP ,判定依据是SSS ,从而便可证明出∠AOP=∠BOP,即OP平分∠AOB.【解答】解:作法:(1)分别在OA,OB上截取OC=OD,OE=OF,连接CF,DE,交于P点,(2)连接OP即可,在△EOD与△FOC中,,∴△EOD≌△FOC(SAS),∴∠OED=∠OFC,在△PEC与△PFD中,,∴△PEC≌△PFD(AAS),∴PE=PF.在△EOP与△FOP中,,∴△EOP≌△FOP(SSS),∴∠AOP=∠BOP,即OP平分∠AOB.故答案为:FOC,SAS,OFC;PFD,AAS,PF;△FOP,SSS,【解答】解:已知:如图,△ABC≌△EFC,AD、EH分别是△ABC和△EFC的对应边BC、FG上的高.求证:AD=EH.证明:∵△ABC≌△EFC,∴AB=EF,∠B=∠F,∵AD、EH分别是△ABC和△EFC的对应边BC、FG上的高,∴∠ADB=∠EHF=90°,在△ABD和△EFH中,∴△ABD≌△EFH(AAS),∴AD=EH.24.已知:如图,在△ABC中,∠BAC=90°,AB=AC,MN是经过点A的直线,BD⊥MN,CE⊥MN,垂足分别为D、E.(1)求证:①∠BAD=∠ACE;②BD=AE;(2)请写出BD,DE,CE三者间的数量关系式,并证明.【解答】解:(1)①∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵CE⊥MN,∴∠ACE+∠CAE=90°,∴∠BAD=∠ACE;②∵BD⊥MN,∴∠BDA=∠AEC=90°,在△ABD和△CAE中,,∴△ABD≌△CAE,∴BD=AE;(2)∵△ABD≌△CAE,∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=CE+DE.。

浙教版八上数学第一章 三角形的初步知识 单元练习卷(含答案)

浙教版八上数学第一章 三角形的初步知识 单元练习卷(含答案)

浙教版八上数学第一章一、单选题1.下列生活实例中,利用了“三角形稳定性”的是( )A.B.C.D.2.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为( )A.1cm B.2cm C.3cm D.4cm3.如图,在△ABC中,∠C=90°,AD是∠A角平分线,DE⊥AB于点E,CD=2,BC=6,则BE=( )A.2B.22C.23D.64.如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是( )作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于1DE的长为半径画弧,两弧在∠AOB内交于一点C;2③画射线OC,射线OC就是∠AOB的角平分线.A.ASA B.SAS C.SSS D.AAS5.如图,将△ABC绕点A逆时针旋转一定的角度,得到△ADE,且AD⊥BC.若∠CAE=45°,∠E=60°,则∠BAC的大小是( )A.60°B.65°C.75°D.95°6.如图,已知锐角∠AOB,根据以下要求作图.(1)在射线OA上取点C和点E,以点O为圆心,OC,OE的长为半径画弧,分别交射线OB于点D,F;(2)连接CF,DE交于点P.则下列结论错误的是( )A.CE=DFB.点P在∠AOB的平分线上C.PE=PFD.若∠AOB=60°,则∠CPD=120°7.三边长度都是整数的三角形称为整数边三角形,若一个三角形的最长边长为8,则满足条件的整数边三角形共有( )A.8个B.10个C.12个D.20个8.如图所示,在△ABC中,点O是∠BCA与∠ABC的平分线的交点,已知△ABC的面积是12,周长是8,则点O到边BC的距离OD是( )A.1B.2C.3D.49.如右图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处,若∠1=129°,则∠2的度数为( )A.49°B.50°C.51°D.52°10.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90∘;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD,四个结论中成立的是( )A.①②④B.①②③C.③④D.①③二、填空题11.已知三角形的三边长分别是2、7、x,且x为奇数,则x= .12.“两直线平行,同位角相等”是 命题(真、假).13.如图,在△ABC中,∠BDC=125°,如果∠ABC与∠ACB的平分线交于点D,那么∠A= 度.14.在△ABC中,BD平分∠ABC,如果AB=12,BC=8,△ABD的面积为24,则△CBD的面积为 15.如图,在Rt△ABC中,DE是斜边AB的垂直平分线,连接BD,若∠CBD=26°,则∠A= 度.16.如图,已知AD为△ABC的中线,AB=10cm,AC=7cm,△ACD的周长为20cm,则△ABD的周长为 cm.三、解答题17.如图,在△ABC中,∠ADB=∠ABD,∠DAC=∠DCA,∠BAD=32°,求∠BAC的度数.18.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.19.如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)∠BAC的度数为______,∠DAF的度数为______;(2)若△DAF的周长为20,求BC的长.20.如图,已知在△ABC中,AB=AC=10cm,BC=8cm,D为AB的中点.点P在线段BC上以3cm/s 的速度由点B出发向终点C运动,同时点Q在线段CA上以acm/s的速度由点C出发向终点A运动,设点P的运动时间为ts.(1)求CP的长;(用含t的式子表示)(2)若以C、P、Q为顶点的三角形和以B,D,P为顶点的三角形全等,且∠B和∠C是对应角,求t,a 的值.21.定义:在一个三角形中,如果有一个角是另一个角的1,我们称这两个角互为“和谐角”,这个2三角形叫做“和谐三角形” .例如:在△ABC中,如果∠A=70°,∠B=35°,那么∠A与∠B互为“和谐角”,△ABC为“和谐三角形”.问题1:如图1,△ABC中,∠ACB=90°,∠A=60°,点D是线段 A BB 上一点(不与A、B 重合),连接CD(1)如图1,△ABC 是“和谐三角形”吗?为什么?(2)如图1,若CD⊥AB,则△ACD、△BCD是“和谐三角形” 吗?为什么?(3)问题2:如图2,△ABC 中,∠ACB=60°,∠A=80°,点 D 是线段AB 上一点(不与A、B 重合),连接CD,若△ACD 是“和谐三角形”,求∠ACD 的度数.22.“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)23.(1)阅读理解:问题:如图1,在四边形ABCD中,对角线BD平分∠ABC,∠A+∠C=180°.求证:DA=DC.思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在BC上截取BM=BA,连接DM,得到全等三角形,进而解决问题;方法2:延长BA到点N,使得BN=BC,连接DN,得到全等三角形,进而解决问题.结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.(2)问题解决:如图2,在(1)的条件下,连接AC,当∠DAC=60°时,探究线段AB,BC,BD之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形ABCD中,∠A+∠C=180°,DA=DC,过点D作DE⊥BC,垂足为点E,请直接写出线段AB、CE、BC之间的数量关系.答案解析部分1.【答案】B2.【答案】D3.【答案】C4.【答案】C5.【答案】C6.【答案】D7.【答案】C8.【答案】C9.【答案】C10.【答案】A11.【答案】712.【答案】真13.【答案】7014.【答案】1615.【答案】3216.【答案】2317.【答案】解:在三角形ABD中,(180°﹣32°)=74°,∠ADB=∠ABD=12在三角形ADC中,∠ADB=37°,∠DAC=∠DCA=12∴∠BAC=∠DAC+∠BAD=37°+32°=69°.18.【答案】证明:∵∠1=∠2,∴∠1+∠FBE=∠2+∠FBE,即∠ABE=∠CBF在△ABE与△CBF中,{AC=CB∠ABE=∠CBFBE=BF∴△ABE≌△CBF(SAS).19.【答案】(1)100°,20°;(2)20.20.【答案】(1)CP =(8﹣3t )cm(2)t =43,a =154或t =1,a =321.【答案】(1)解:ΔABC 是“和谐三角形”,理由如下:∵∠ACB =90°,∠A =60°,∴∠B =30°,∴∠B =12∠A ,∴ΔABC 是“和谐三角形”;(2)解:ΔACD 、ΔBCD 是“和谐三角形”,理由如下:∵∠ACB =90°,∠A =60°,∴∠B =30°,∵CD ⊥AB ,∴∠ADC =∠BDC =90°,∴∠ACD =30°,∠BCD =60°.在ΔACD 中,∵∠A =60°,∠ACD =30°,∴∠ACD =12∠A ,∴ΔACD 为和谐三角形”;在ΔBCD 中,∵∠BCD =60°,∠B =30°,∴∠B =12∠BCD ,∴ΔBCD 为和谐三角形”;(3)解:若ΔACD 是“和谐三角形”,由于点D 是线段AB 上一点(不与A 、B 重合),则∠ACD =12∠A 或∠ACD =12∠ADC .当∠ACD =12∠A 时,∠ACD =12∠A =40°;当∠ACD =12∠ADC 时,∠A +3∠ACD =180°,即3∠ACD =100°,∴∠ACD =100°3.综上,∠ACD 的度数为40°或100°3.22.【答案】(1)解:如图,∵∠1=∠2+∠D=∠B+∠E+∠D ,∠1+∠A+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°(2)解:∵∠1=∠2+∠F=∠B+∠E+∠F ,∠1+∠A+∠C+∠D=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°(3)解:∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=180×5+180=1080°.23.【答案】(1)解:方法1:在 BC 上截 BM =BA ,连接 DM ,如图.∵BD 平分 ∠ABC ,∴∠ABD =∠CBD .在 ΔABD 和 ΔMBD 中, {BD =BD∠ABD =∠MBD BA =BM ,∴ΔABD≌ΔMBD ,∴∠A =∠BMD , AD =MD .∵∠BMD +∠CMD =180° , ∠C +∠A =180° .∴∠C =∠CMD .∴DM =DC ,∴DA =DC .方法2:延长 BA 到点N ,使得 BN =BC ,连接 DN ,如图.∵BD 平分 ∠ABC ,∴∠NBD =∠CBD .在 ΔNBD 和 ΔCBD 中, {BD =BD∠NBD =∠CBD BN =BC ,∴ΔNBD≌ΔCBD .∴∠BND =∠C , ND =CD .∵∠NAD +∠BAD =180° ,∠C +∠BAD =180° .∴∠BND =∠NAD ,∴DN =DA ,∴DA =DC .(2)解: AB 、 BC 、 BD 之间的数量关系为: AB +BC =BD . (或者: BD ―CB =AB , BD ―AB =CB ).延长 CB 到点P ,使 BP =BA ,连接 AP ,如图2所示.由(1)可知 AD =CD ,∵∠DAC =60° .∴ΔADC 为等边三角形.∴AC =AD , ∠ADC =60° .∵∠BCD +∠BAD =180° ,∴∠ABC =360°―180°―60°=120° .∴∠PBA =180°―∠ABC =60° .∵BP =BA ,∴ΔABP 为等边三角形.∴∠PAB =60° , AB =AP .∵∠DAC =60° ,∴∠PAB +∠BAC =∠DAC +∠BAC ,即 ∠PAC =∠BAD .在 ΔPAC 和 ΔBAD 中, {PA =BA∠PAC =∠BAD AC =AD ,∴ΔPAC≌ΔBAD .∴PC =BD ,∵PC =BP +BC =AB +BC ,∴AB +BC =BD .(3)BC ―AB =2CE。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3题图
D C
B
A
第4题图
D
C
B A F
E
第5题图
C
B
A O
C
B
A 第6题图D E
H C
B
A
第7题图
第一章《三角形的初步认识》测试卷
姓名___________
一、填空题 (30分) :
1、在Rt △ABC 中,一个锐角为250, 则另一个锐角为________;
2、 在△ABC 中,AB =3,BC =7,则AC 的长x 的取值范围是________;
3、如图,AD 是△ABC 的中线, △ABC 的面积为100cm 2,则△ABD 的面积是
______cm 2;
4、如图, △ABC 中, ∠ABC=740,AD 为△ABC 的高,则∠BAD=_______;
5、如图, △ABC 中,AB=12,EF 为AC 的垂直平分线,若EC=8,则BE 的长为_______;
6、如图, △ABC 中,∠ABC 和∠ACB 的平分线交于点O,若∠A=700,则∠BOC=_______;
7、如图, △ABC 中,高BD 、CE 相交于点H,若∠A=600,则∠BHC=_____;
8、 如上右图,∠1∶∠2∶∠3=1∶2∶3,则∠4=________;
9、已知△ABC 中, ∠A= ∠B= ∠C,则△ABC 为___________ 三角形;
10、 如图,四边形ABCD 是一防洪堤坝的横截面,AE ⊥CD ,BF ⊥CD ,且AE=BF ,∠D=∠C ,问AD 与BC 是否相等?说明你的理由。

解:在△ADE 和△BCF 中, ∠D=∠C ( ) ∠AED=∠ (垂直的意义) AE=BF ( ) ∴△ADE ≌△BCF (_______ ) ∴AD=BC (______________________)
二、选择题(30分):
2
131
43
2
1
1、以下列各组线段为边,能组成三角形的是( ); A .2cm 、2cm 、4cm B .2cm 、6cm 、3cm C .8cm 、6cm 、3cm D .11cm 、4cm 、6cm
2、 有下列关于两个三角形全等的说法: ㈠三个角对应相等的两个三角形全等;㈡三条边对应相等的两个三角形全等;㈢两角与一边对应相等的两个三角形全等;㈣两边和一角对应相等的两个三角形全等.其中正确的个数是( );
A.1
B.2
C.3
D.4
3、如右图,三角形的外角是( ); A. ∠1 B.∠2 C.∠3 D.∠4
4、若三角形的一个外角小于和它相邻的内角,则这个三角形为( ); A.锐角三角形 B.钝角三角形 C. 直角三角形 D 无法确定
5、对于三角形的内角,下列判断中不正确的是( ); A.至少有两个锐角 B.最多有一个直角 C.必有一个角大于600 D.至少有一个角不小于600
6、下列四组中一定是全等三角形的是( );
A .两条边对应相等的两个锐角三角形
B .面积相等的两个钝角三角形
C .斜边相等的两个直角三角形
D .周长相等的两个等边三角形 7、若AD 是△ABC 的中线,则下列结论错误的是( ); A.AD 平分∠BAC B.BD=DC C.AD 平分BC D.BC=2DC
8.如果三角形的一个内角等于其他两个内角的差,那么这个三角形是 ( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定 9. 如图,在ΔABC 中,BC 边上的垂直平分线交AC 于点D, 已知AB=3,AC=7,BC=8,则ΔABD 的周长为: A.10 B.11 C.15 D.12
10.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是 ( )
A.锐角三角形
B.钝角三角形
C.直角三角形
D.无法确定
三、解答题(6+8+8+8+10=40分):
1、如图,在⊿ABC 中, ∠BAC 是钝角,按要求完成下列画图,并用适当的符号在图中表示(必须写出结论):
C
B
A
a
b
a E D
C
B
A
2
1
①∠BAC 的角平分线 ②AC 边上的高 ③AB 边上的中线
2、尺规作图:已知线段a,b 和∠α. 求作:ΔABC,使BC=a , AC=b , ∠C=∠α (画出图形,保留作图痕迹,不写作法,写出结论)
3、如图:已知△ABC 中,AD ⊥BC 于D ,AE 为∠BAC 的平分线,且∠B=35°, ∠C=65°求∠DAE 的度数。

4、如图,已在AB=AC,AD=AE, ∠1=∠2,试说明ΔABD ≌ΔACE 的理由. 解:∵∠1=∠2( ) ∴∠1+∠ =∠2+∠
即:∠BAD=∠CAE 在△BAD 和△CAE 中 AB=AC ( ) ∠BAD=∠CAE
AD=AE ( ) ∴△BAD ≌△CAE( )
5、如图.在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,下面有四个条件.请你在其中选三个作为已知条件,余下的一个作为结论,写出—个正确的结沦,并说明理由。

①AB =DE ;②AC =DF ;③∠ABC =∠DEF ;④BE =CF .(填写序号即可) 已知: ; 结沦: ;
A
B
E D
C
理由:
四、附加题(9+11=20分):
1、设计三种不同方案,把ΔABC 的面积三等分
2、如图,点E 、A 、B 、F 在同一条直线上,AD 与BC 交于点O,已知∠CAE=∠DBF,AC=BD. 说出∠CAD=∠DBC 的理由
参考答案:
一、填空题:
1、650
2、4<x<10
3、50
4、160
5、4
6、1250
7、1200
8、720
9、直角
10、已知,BFC,已知,AAS,全等三角形的对应边相等。

二、选择题:
三、解答题:
1、(略).
2、(略).
3、150.
4、已知,BAE,BAE,已知,已知,SAS.
5、答案不唯一.
四、附加题:
1、(略);
2、解:∵∠CAE=∠DBF(已知)
∴∠CAB=∠DBA(等角的补角相等)
在△ABC和△DBA中
AC=BD(已知)
∠CAB=∠DBA
AB=BA(公共边)
∴△ABC≌△DBA(SAS)
∴∠ABC=∠BAD(全等三角形的对应角相等)∴∠CAB-∠BAD=∠DBA-∠ABC
即:∠CAD=∠DBC。

相关文档
最新文档