高中数学数列复习题
高中数学数列练习题

高中数学数列练习题一、选择题:1. 已知数列{an}的前n项和为Sn,且满足a1=1,Sn=n2an,求a5的值。
A. 1B. 5C. 10D. 202. 等差数列{an}的前n项和为Sn,若a3+a7=16,S8=64,则公差d的值为:A. 2B. 4C. 6D. 83. 等比数列{bn}的公比q≠1,若b3b4=b5b2,则公比q为:A. 1/2B. 1/3C. 2/3D. 3/2二、填空题:1. 已知数列{an}满足an+1=2an-1,a1=2,求a4的值。
2. 若等差数列{an}的前n项和为Sn,且S5=15,S10=55,求公差d。
3. 已知等比数列{bn}的前n项和为Tn,若T3=21,b1=1,求b2的值。
三、解答题:1. 已知数列{an}的通项公式为an=3n-2,求数列的前10项和。
2. 已知等差数列{an}的前n项和为Sn,且a1=2,d=3,求S20。
3. 已知等比数列{bn}的通项公式为bn=2n-1,求数列的前8项和。
四、证明题:1. 证明:若数列{an}为等差数列,且a1=2,d=3,则数列的前n项和Sn=3n2-n。
2. 证明:若数列{bn}为等比数列,且b1=1,q=2,则数列的前n项和Tn=2n-1。
五、应用题:1. 某工厂生产的产品,每件产品的生产成本构成一个等差数列,首项为10元,公差为2元。
若生产第10件产品的成本为32元,求生产第20件产品的成本。
2. 某银行的存款利息构成一个等比数列,首项为100元,公比为1.05。
若存入第3个月时的利息为157.625元,求存入第6个月时的利息。
3. 某公司销售的电脑,其销售价格构成一个等比数列,首项为5000元,公比为0.9。
若第3个月的销售价格为3430.5元,求第6个月的销售价格。
注意:以上题目仅供参考,具体答案需要根据题目中给出的公式和条件进行计算。
高中数学--《数列》测试题(含答案)

高中数学--《数列》测试题(含答案)1.已知数列,它的第5项的值为()A. B. C. D.【答案解析】D2.若成等比数列,则下列三个数:①②③,必成等比数列的个数为()A、3B、2C、1D、0【答案解析】C3.在数列{}中,,则等于()。
A B 10 C 13 D 19【答案解析】解析:C。
由2得,∴{}是等差数列∵4.是成等比数列的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案解析】解析:不一定等比如若成等比数列则选D5.x=是a、x、b成等比数列的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【答案解析】D6.已知为等差数列,且-2=-1, =0,则公差d=(A)-2 (B)-(C)(D)2【答案解析】B解析:a7-2a4=a3+4d-2(a3+d)=2d=-1 Þ d=-7.(2009福建卷理)等差数列的前n项和为,且 =6,=4,则公差d等于A.1 B C.- 2 D 3【试题来源】【答案解析】C解析∵且.故选C8.(2009广东卷理)已知等比数列满足,且,则当时,A. B. C. D.【答案解析】C解析:由得,,则,,选C.9.(2009年广东卷)已知等比数列的公比为正数,且·=2,=1,则=A. B. C. D.2【答案解析】B解析:设公比为,由已知得,即,又因为等比数列的公比为正数,所以,故,选B10.已知数列…,则是该数列的A.第项B.第项C.第项D.第项【答案解析】C11.等差数列中,,那么的值是A. 12 B. 24 C .16 D. 48【答案解析】B12.等差数列,,,则数列前9项的和等于A.66 B.99 C. 144 D. 297【答案解析】B13.等差数列中,,则A.8 B.12 C.24 D.25【答案解析】B14.等比数列{an}中,a4=4,则等于A.4 B.8 C.16 D.32【答案解析】C15.设等比数列的公比q=2,前n项和为Sn,则=A. B. C. D.【答案解析】C17若数列的前项和,则A.7B.8C.9D.17【答案解析】A18.等差数列的前项和为,若,则A.1004B.2008C.2009D.2010【答案解析】C19.若等差数列{an}的前5项和S5=25,且a2=3,则a4=() A.12 B.7C.9 D.15【答案解析】B20.()A. B. C. D.【答案解析】D。
高中数学数列测试题

高中数学数列测试题题目一:等差数列1.已知等差数列的前三项分别为3, 7, 11,求该等差数列的通项公式,并计算第10项的值。
2.已知等差数列的前五项的和为50,公差为3,求该等差数列的通项公式,并计算第十项的值。
解答:1.设该等差数列的首项为a,公差为d。
由已知条件可得:a + 2d = 7 (1)a + 3d = 11 (2)将(2)式减去(1)式,可得:d = 4 (3)将(3)式的值代入(1)式或(2)式,可得:a + 2 * 4 = 7a = -1 (4)因此,该等差数列的通项公式为:an = -1 + 4n,其中n为项数。
计算第10项的值:a10 = -1 + 4 * 10a10 = 392.设该等差数列的首项为a,公差为d。
由已知条件可得:5a + 10d = 50 (5)d = 3 (6)将(6)式的值代入(5)式,可得:5a + 10 * 3 = 505a = 20a = 4 (7)因此,该等差数列的通项公式为:an = 4 + 3n,其中n为项数。
计算第十项的值:a10 = 4 + 3 * 10a10 = 34题目二:等比数列1.已知等比数列的第一项为2,公比为3/2,求该等比数列的通项公式,并计算第6项的值。
2.已知等比数列的前四项的和为24,公比为2,求该等比数列的通项公式,并计算第七项的值。
解答:1.设该等比数列的首项为a,公比为r。
由已知条件可得:ar^5 = 2 (8)r = 3/2 (9)将(9)式的值代入(8)式,可得:a * (3/2)^5 = 2a * 243/32 = 2a = 64/243 (10)因此,该等比数列的通项公式为:an = (64/243) * (3/2)^n,其中n为项数。
计算第6项的值:a6 = (64/243) * (3/2)^6a6 ≈ 3.162.设该等比数列的首项为a,公比为r。
由已知条件可得:a(1 - r^4)/(1 - r) = 24 (11)r = 2 (12)将(12)式的值代入(11)式,可得:a(1 - 2^4)/(1 - 2) = 24a(1 - 16)/(-1) = 2415a = 24a = 8/5 (13)因此,该等比数列的通项公式为:an = (8/5) * (2)^n,其中n为项数。
高中数学数列必刷一百题

1.记函数()221xx nf =--的所有零点之和为n a ,数列{}n a 的前n 项和为n S ,下列说法正确的是()A .n S 有最大值21log 3+,没有最小值B .n S 有最大值21log 3+,有最小值2log 3C .n S 有最大值21log 3+,有最小值0D .n S 有最小值2log 3,没有最大值【答案】A【解析】当1n =时,()2210=--=xf x n得2log 3x =即21log 3=a 当2n =时,()2210=--=xf x n得1x =即21a =当2n >时()2210=--=xf x n 得1221=+x n 或2221=-x n所以()111222242221)(10(1,1++--∈===x xx x n n n所以n a 1222log (41)0=+=-<nx x 所以当2n =时n S 取得最大值21log 3+,没有最小值.故选:A 2.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 成等比数列,则sin cos tan sin cos tan A A CB B C++的取值范围是()A.13,)22+B.11(,)22-C.33()22+D.31()22-【答案】B【解析】sin sin cos sin cos tan cos sin sin cos tan sin cos cos C A AA A C C CB BC B B C++=++数列学霸必刷100题可得:sin cos tan sin cos cos sin sin cos tan sin cos cos sin A A C A C A CB BC B C B C++=++即()()sin sin cos tan sin sin cos tan sin sin A C A A C B B B C B C A ++==++,由sin sin a b A B =,所以sin cos tan sin cos tan A A C bB BC a+=+因为a 、b 、c 成等比数列,所以2b ac =,即2b c a =,令b t a =又a b c +>,则2b a b a +>,化简可得:210b b a a⎛⎫--< ⎪⎝⎭即210t t --<,所以1122t -<<,故选:B 3.数列{}n a 的首项123a =-,前n 项和为n S .已知12(2)nn n S a n S ++=≥,则使n S m ≥恒成立的最大实数m =()A .1-B .89-C .98-D .79-【答案】A【解析】由题,当2n ≥时,112n n n n S S S S -++=-,即112n nS S -+=-,所以1111n n S S -+=--,则()111n n n S S S -+=-+,所以1111n n n S S S -=-++,所以111111n n S S --=-++,所以111111n n S S --=++,当2n =时,22212S a S ++=,即1221212a a a a a +++=+,所以2112a =-,所以21234S a a =+=-,所以2114S +=,则()14221nn n S =+-=++,所以112n S n =-+,当1n =时,11121123a S ==-=-+,符合,所以1112n S n =->-+,所以n S m ≥最大实数m 为1-,故选:A4.设[]x 表示不超过x 的最大整数,如[ 3.14]4,[3.14]3-=-=.已知数列{}n a 满足:111,1n n a a a n +==++,则12111[...]na a a +++=()A .1B .2C .3D .4【答案】A【解析】∵11n n a a n +-=+,∴()12n n a a n n --=≥,∴()()()()11232211n n n n n a a a a a a a a a a ---=-+-++-+-+ ()n 1321n =+-++++ ()()122n n n +=≥,又11a =满足上式,∴()()*12n n n a n N +=∈.∴()1211211n a n n n n ⎛⎫==-⎪++⎝⎭,∴[)12111111111...21211,222311n a a a n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++=-+-++-=-∈ ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,∴12111...1n a a a ⎡⎤+++=⎢⎥⎣⎦.故选A .5.已知非常数列{}n a 满足()*12n nn a a a n N αβαβ+++=∈+,若0αβ+≠,则()A .存在α,β,对任意1a ,2a ,都有{}n a 为等比数列B .存在α,β,对任意1a ,2a ,都有{}n a 为等差数列C .存在1a ,2a ,对任意α,β,都有{}n a 为等差数列D .存在1a ,2a ,对任意α,β,都有{}n a 为等比数列【答案】B【解析】解:由题意,得112n n n n n a a a a a αβαβαβαβαβ++++==++++.令t βαα=+,则1t βαβ=-+,,αβ 为非零常数且0αβ+≠,,1t t ∴-均为非零常数,∴常数0t ≠,且1t ≠.故21(1)n n n a ta t a ++=+-.两边同时减去1n a +,可得()21111(1)(1)n n n n n n n a a ta a t a t a a +++++-=-+---=,∵常数0t ≠,且1t ≠,0t ∴≠,且10t -≠.()(()21111221(1)(1))(1)n n n n n n n a a t a a t a a t a a -+---∴-=--=--=⋯=--,∵数列{}n a 是非常数数列,210a a ∴-≠,则当11t -=,即2t =,即2ααβ=+,即20αβ+=时,111221n n n n n n a a a a a a a a +----=-=-=⋯=-.此时数列{}n a 很明显是一个等差数列.∴存在,αβ,只要满足,αβ为非零,且20αβ+=时,对任意12,a a ,都有数列{}n a 为等差数列.故选:B.6.已知数列{}n a 中,12a =,若21n n n a a a +=+,设1212222111m m m a a a S a a a =++⋅⋅⋅++++,若2020m S <,则正整数m 的最大值为()A .1009B .1010C .2019D .2020【答案】B【解析】21n n n a a a +=+ ,12a =∴0n a >,∴210n n n a a a +-=>,即数列{}n a 为单调增数列,1(+16n n n a a a +∴=≥),即111111(+1+16n n n n n a a a a a +==-≤),1111+1n n n a a a +∴=-,212(1)11m m m a a a =-++ 1212222111m m m a a a S a a a ∴=++⋅⋅⋅++++121112(1)2(12(1111m a a a =-+-+⋅⋅⋅+-+++1211122()111m m a a a =-++⋅⋅⋅++++1312211111122()m m m a a a a a a +=--+-+⋅⋅⋅+-111122()m m a a +=--1221+m m a +=-223m ≤-,2020m S < ,2220203m ∴-<,即110103m <+,∴正整数m 的最大值为1010,故选:B.7.已知数列{}n a 的前n 项和为n S ,对于任意的*n N ∈都有21n n S S n ++=,若{}n a 为单调递增的数列,则1a 的取值范围为()A .11,22⎛⎫-⎪⎝⎭B .11,33⎛⎫- ⎪⎝⎭C .11,44⎛⎫-⎪⎝⎭D .11,43⎛⎫-⎪⎝⎭【答案】C【解析】 对于任意的n *∈N 都有21n n S S n ++=,①()2121n n S S n ++∴+=+,②②-①得()2212=121n n a a n n n ++++-=+,③则当2n ≥时,121n n a a n ++=-,④③-④得22n n a a +-=,也就是当2n ≥时,隔2项成等差数列,公差为2.{}n a 为单调递增的数列,∴只要保证1234a a a a <<<可以保证整个数列单调递增.当1n =时,1121a a a ++=,即2112a a =-,当2n =时,121234a a a a a ++++=,即123224a a a ++=,则31214222a a a a =--=+,421232a a a =+=-,代入1234a a a a <<<,得1111122232a a a a <-<+<-,即1111111212222232a a a a a a<-⎧⎪-<+⎨⎪+<-⎩,即111131414a a a ⎧<⎪⎪⎪>-⎨⎪⎪<⎪⎩,即11144a -<<,即1a 的取值范围为14⎛-⎝,14⎫⎪⎭故选:C8.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为()(注:2222(1)(21)1236n n n n ++++++=)A .1624B .1024C .1198D .1560【答案】B【解析】依题意n a :1,4,8,14,23,36,54,……两两作差得n b :3,4,6,9,13,18,……两两作差得n c :1,2,3,4,5,……设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b ,设{}n c 的前n 项和为n C .易n c n =,22n n n C +=,进而得21332n n n n b C ++=+=+,所以2(1)133222n n n n b n -=+=-+,则(1)(1)36n n n n B n +-=+,所以11n n a B +=+,所以191024a =.故选:B9.已知数列{}n a 与{}n b 前n 项和分别为n S ,n T ,且20,2,n n n n a S a a n >=+∈*N ,1121(2)(2)n n n n n n b a a +++=++,对任意的*,n n N k T ∈>恒成立,则k 的最小值是()A .1B .12C .13D .16【答案】C【解析】因为20,2,n n n n a S a a n >=+∈*N ,所以当1n =时,2111122a S a a ==+,解得11a =;当2n ≥时,21112n n n S a a ---=+.所以()()221112=22n n n n n n n a S S a a a a ----=+-+.于是()()22110n n n n a a a a ---+=-.由10n n a a -+≠,可得11n n a a --=,所以{}n a 是首项为1,公差为1的等差数列,即n a n =.所以1111212111(2)(2)(2)(21)221n n n n n n n n n n n b a a n n n n ++++++===-++++++++.所以121223111112122211221223n n n n T b b n n b +=+++=-+-+++++-+++ 11311213n n +=<++-.因为对任意的111,321n n n k T n +∈>=-++*N 恒成立,所以13k ≥,即k 的最小值是13.故选C.10.已知数列{}n a 满足1212a a ++…2*1()n a n n n N n+=+∈,设数列{}n b 满足:121n n n n b a a ++=,数列{}n b 的前n 项和为n T ,若*()1n nT n N n λ<∈+恒成立,则λ的取值范围是()A .1(,) 4+∞B .1[,) 4+∞C .3[,) 8+∞D .3(,)8+∞【答案】D【解析】因为1212a a ++…2*1()n a n n n N n+=+∈,所以1212a a ++…()()2*1111(,2)1n a n n n N n n -+=-+-∈≥-,故12n a n n=即22n a n =,其中2n ≥.而令1n =,则22111221a =+==⨯,故22n a n =,1n ≥.()()2222211114411n n b n n n n ⎡⎤+==-⎢⎥⨯++⎢⎥⎣⎦,故()2222221111111412231nT n n ⎡⎤⎛⎫⎛⎫=-+-++-⎢⎥ ⎪ ⎪⎝⎭⎝⎭+⎢⎥⎣⎦ ()()22211214141n nn n ⎡⎤+=-=⎢⎥++⎢⎥⎣⎦,故*()1n n T n N n λ<∈+恒成立等价于()222141n n n n n λ+<++即()241n n λ+<+恒成立,化简得到()11441n λ+<+,因为()11113441488n +≤+=+,故38λ>.故选D.11.已知数列{}n a 的前n 项和为n S ,115a =,且满足()()21252341615n n n a n a n n +-=-+-+,已知*,n m N ∈,n m >,则n m S S -的最小值为()A .494-B .498-C .14-D .28-【答案】C【解析】根据题意可知1(25)(23)(25)(23)n n n a n a n n +-=-+--,式子的每一项都除以(25)(23)n n --,可得112325n na a n n +=+--,即112(1)525n n a an n +-=+--,所以数列25n a n ⎧⎫⎨⎬-⎩⎭是以15525=--为首项,以1为公差的等差数列,所以5(1)1625na n n n =-+-⋅=--,即(6)(25)n a n n =--,由此可以判断出345,,a a a 这三项是负数,从而得到当5,2n m ==时,n m S S -取得最小值,且5234536514n m S S S S a a a -=-=++=---=-,故选C.12.数列{}n a 中,11a =,()111n n a a n n +-=+,数列{}n b 是首项为4,公比为12的等比数列,设数列{}n a 的前n 项积为n C ,数列{}n b 的前n 项积为n D ,n n C D ⋅的最大值为()A .4B .20C .25D .100【答案】B【解析】由题,()111111n n a a n n n n +-==-++,则1111n n a a n n --=--,121121n n a a n n ---=---,…,21112a a -=-,则111-=-n a a n ,即1111211112n n a a n n n n -=+-=+-=-=,又数列{}n b 是首项为4,公比为12的等比数列,则1311422n n n b --⎛⎫⎛⎫=⋅= ⎪⎪⎝⎭⎝⎭,设31122n n n n u a b n -⎛⎫⎛⎫=⋅=- ⎪⎪⎝⎭⎝⎭,则数列{}n u 的积为n n C D ⋅,若求n n C D ⋅的最大值,则1n u ≥,即311212n n -⎛⎫⎛⎫-≥ ⎪⎪⎝⎭⎝⎭,则3122n n --≥,设()()121f x x x=-≥,()()321x g x x -=≥,则函数()f x 与()g x 的图象如图所示,设交点的横坐标为0x ,则()03,4x ∈,则当3x =时,()()33f g >;当4x =时,()()44f g <,即31u >,41u <,则当3n ≤时,1n u >;当4n ≥时,1n u <,所以当3n =时,n n C D ⋅取得最大值为()1323331231111121222022232u u u ---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⋅⋅=-⨯-⨯-= ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,故选:B13.已知点列()()*,n n n A a b n N∈均在函数()0,1xy a a a =>≠图像上,点列(),0nB n 满足1n n n n A B A B +=,若数列{}n b 中任意连续三项能构成三角形的三边,则a 的范围为()A .51510,22⎛⎫⎛⎫+∞ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭B .5151,11,22⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭C .31310,,22⎛⎫⎛⎫+∞ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭D .3131,11,22⎛⎫⎛⎫-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【答案】B【解析】由题意得,点()(,0),,n n n n B n A a b 满足1n n n n A B A B +=,由中点坐标公式,可得1n n B B +的中点为:1,02n ⎛⎫+ ⎪⎝⎭,即121,2n n n a n b a +=+=,当1a >时,以11,,n n n b b b -+为边长能构成一个三角形,11n n n b b b +->>,只需11n n n b b b -++>,即131222n n n a a a -+++>,即有21a a +<,解得1512a +<<;同理01a <<,解得5112a <<,综上,a的取值范围是112a +<<或112a -<<,故选:B .14.已知符号函数1,0sgn()0,01,0x x x x >⎧⎪==⎨⎪-<⎩,设()13sgn 2n n a n +=-,n S 为数列{}n a 的前n 项和,则使0n S =的所有n 值的和为()A .15B .16C .17D .18【答案】A【解析】令()132n f n n +-=,则函数()f n 的零点为1320n n +-=,当2n =时,()0f n =当8n =时,()0f n =,根据指数函数的增长速度大于幂函数的增长速度可知,函数()f n 只有这两个零点而当1n =时,1320n n +->,当28,n n N <<∈时,1320n n +-<当8,n n N <∈时,1320n n +->而由符号函数1,0sgn()0,01,0x x x x >⎧⎪==⎨⎪-<⎩,()13sgn 2n n a n +=-,n S 为数列{}n a 的前n 项和因为()()()10,20,30f f f >=<所以()()()12311,20,31a f a f a f ======-,即()31231010S a a a =++=++-=同理可得38,n n N <<∈时,()1n a f n ==-,即45674a a a a +++=-而8,n n N <∈时,()1n a f n ==,若0n S =,则需91011124a a a a +++=所以1234567891011120S S a a a a a a a a a =+++++++++=综上可知,满足0n S =时n 的值分别为3n =和12n =所以0n S =时n 的值的和为31215+=,故选:A 15.已知数列{}n a 满足101a <<,()142n n n a ta t R a ++=∈+,若对于任意*n N ∈,都有103n n a a +<<<,则t 的取值范围是()A .(]1,3-B .[]0,3C .()3,8D .()8,+∞【答案】B【解析】解:用排除法:当3t =时,1432n n n a a a ++=+,明显有0n a >,下面用数学归纳法证明3n a <,当1n =时,1013a <<<,成立;假设当n k =时,3k a <成立,则当1n k =+时,143554432232k k k k a a a a ++==-<-=+++,所以当1n k =+时,13k a +<成立,综上:对任意*n N ∈,都有3n a <;另外()21(3)1434320222n n n n n n n n n n n n a a a a a a a a a a a a +-++++---=-==>+++,所以1n n a a +<,所以当3t =时,103n n a a +<<<恒成立,排除CD ;当12t =-时,14212n n n a a a +=+-,若1n =,则1214122a a a -=+,因为101a <<,此时20a <是有可能的,故排除A ,故选:B.16.已知数列{}n a 满足1223n n na a a +=+-,n ∈+N ,其首项1a a =,若数列{}n a 是单调递增数列,则实数a 的取值范围是()A .()()0,12,⋃+∞B .()10,2,2⎛⎫+∞ ⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .()0,1【答案】B【解析】数列{}n a 是递增数列,122=+3302n n n n nn n a a a a a a a ++-=--->即2320n n na a a -+>,可解得01n a <<或2n a >,1a a =,则01a <<或2a >,2112223=23a a a a a =+-+-,由201a <<或22a >得:.即20231a a <+-<或2232a a+->,可解得102a <<或2a >.又由123=221()3n n n n n a a a a a +=+-+-,由函数12(3y x x=+-在(0,1)上单调递减,在(1,)+∞上单调递增,则当102n a <<或2n a >时,都有12n a +>成立,即由101a <<或12a >可得,22a >得,由22a >可得32a >,由此类推可得2n a >,则有10n n a a +->,所以102a <<或2a >时,都有10n n a a +->,即数列{}n a 是递增数列.故选:B 17.已知数列{}n a ,{}n b 满足:12n n n a a b +=+,()*1312lnn n n n b a b n N n++=++∈,110a b +>,给出下列四个命题:①数列{}n n a b -单调递增;②数列{}n n a b +单调递增;③数列{}n a 从某项以后单调递增;④数列{}n b 从某项以后单调递增.这四个命题中的真命题是:()A .②③④B .②③C .①④D .①②③④【答案】A【解析】12n n na ab +=+①1312lnn n n n b a b n ++=++②①-②得:+1+131ln n n n n n a b a b n+-=--,当1n =,2211ln 2a b a b -=--,所以2211-<-a b a b ,故①错,①-②得:()11313lnn n n n n a b a b n ++++=++,()()11ln 13ln n n n n a b n a b n +++-+=--,所以(){}ln n n a b n +-是等比数列,通项为()()111ln 3n n n a b n a b -+-=+⋅,所以()()111ln 3n n n a b n a b -+=++⋅,故②正确,因为()()1+1112ln 3n n n n n a a b a n a b -=+=+++⋅,所以()()1111ln 30n n n a a n a b -+-=++⋅>,故③正确,因为131lnn n n n n b b a b n++=+++,所以()()1111ln 12ln 3n n n b b n n a b -+-=+-++⋅,根据指数函数的性质,知{}n b 从某项以后单调递增,故④正确.故选:A18.已知数列{}n a 的前n 项和为n S ,112n n S a =-,设12n n T a a a =L,n b =,则3n n a +的最小值为()A.B .92C.22+D .316【答案】C【解析】当2,n n N *≥∈时,112n n S a =-,11112n n S a --=-,两式相减得1111122n n n a a -=--+,即113n n a a -=又111112a S a ==-,123a =,23n n a ∴=.(1)1222233nn n n n nT ++++==L,32n n b =,63332nn n n a +=+⋅,令,nx n N *=∈,考虑函数263()2f x x x =+,333(8)()2x f x x-'=,所以()f x 在(0,2)上递减,在(2,)+∞上递增,,nx n N*=∈离2近,25f =+<,31(3)56f =>,又(3)f f <,3n n a的最小值为2+.故选:C .19.已知a ,b 是不相等的两个正数,在a ,b 之间插入两组实数:x 1,x 2,…,x n 和y 1,y 2,…,y n ,(n ∈N *,且n ≥2),使得a ,x 1,x 2,…,x n ,b 成等差数列,a ,y 1,y 2,…,y n ,b 成等比数列,给出下列四个式子:①()122n n a b x x x ++++=;②()2121)2n x x x n +++>;③=2a b+<.其中一定成立的是()A .①②③B .①②④C .①③④D .②③④【答案】B【解析】依题意12,,,,,n a x x x b 成等差数列,令12n n S a x x x b =+++++ ,则121n n n S b x x x x a -=++++++ ,两式相加,利用等差数列的性质化简得()()22n n a b S ++=,所以()()()()1222n n n a b x x x S a b a b +++++=-+=-+ ()2n a b =+.所以①正确.所以()1212n a b x x x n ++++=2(42a b++=,由于,a b是不相等的正数,所以20442a a bb ++=->+,所以()2121)2n x x x n +++> 成立,所以②正确.依题意12,,,,,n a y y y b 成等比数列,设其公比为q,则==.当q 为负数时,则n0<,所以③不正确.由③的分析可知,当q 为负数时,则n<2a b+<;当q为12n a q+=⋅===,由于,a b 是不相等的正数,所以由基2a b+<.所以④正确.故选:B20.数列{}n a 满足1a Z ∈,123n n a a n ++=+,且其前n 项和为n S .若13m S a =,则正整数m =()A .99B .103C .107D .198【答案】B【解析】由123n n a a n ++=+得()()1111n n a n a n +-+-=---,∴{}1n a n --为等比数列,∴()()11112n n a n a ---=--,∴()()11121n n a a n -=--++,()()11121m m a a m -=--++,∴()()131231213S a a a a a =+++++ ()112241236102a a =+⨯++++⨯=+ ,①m 为奇数时,1121102a m a -++=+,103m =.②m 为偶数时,()1121102a m a --++=+,1299m a =+,∵1a Z ∈,1299m a =+只能为奇数,∴m 为偶数时,无解.综上所述,103m =.故选:B.21.等差数列{}n a 满足:10a >,31047a a =.记12n n n n a a a b ++=,当数列{}n b 的前n 项和n S 取最大值时,n =()A .17B .18C .19D .20【答案】C 【解析】设等差数列{}n a 的公差为d ,依题意10a >,31047a a =,则()()114279a d a d +=+,即1550,03a d d =-><.所以数列{}n a 的通项公式为()()155581133n a a n d d n d dn d =+-=-+-⋅=-.所以12n n n n b a a a ++=585552333dn d dn d dn d ⎛⎫⎛⎫⎛⎫=-⋅-⋅- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3585552333d n n n ⎛⎫⎛⎫⎛⎫=⋅-⋅-⋅- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由于30d <,所以当117n ≤≤时,35855520333d n n n ⎛⎫⎛⎫⎛⎫⋅-⋅-⋅-> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当33185855528181818033327b d d ⎛⎫⎛⎫⎛⎫=⋅-⋅-⋅-=⋅< ⎪ ⎝⎭⎝⎭⎝⎭,331958555210191919033327b d d ⎛⎫⎛⎫⎛⎫=⋅-⋅-⋅-=-⋅> ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,当20n ≥时,35855520333d n n n ⎛⎫⎛⎫⎛⎫⋅-⋅-⋅-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由于318192027b b d +=->,所以当19n =时,n S 取得最大值.故选:C 22.已知数列1、1、2、1、2、4、1、2、4、8、1、2、4、8、16、…,其中第一项是02,接下来的两项是02、12,再接下来的三项是02、12、22,以此类推,若100N >且该数列的前N 项和为2的整数幂,则N 的最小值为()A .440B .330C .220D .110【答案】A【解析】把题设中的数列分成如下的组:()()()()1,1,2,1,2,4,1,2,4,8, ,记前k 组的和为k T 。
高中数学数列多选题专项训练100含解析

一、数列多选题1.设数列{}n a 满足1102a <<,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列说法正确的是( ) A .2112a << B .{}n a 是递增数列 C .2020312a <<D .2020314a << 答案:ABD 【分析】构造函数,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】 由, 设, 则,所以当时,,即在上为单调递增函数, 所以函数在为单调递增函数, 即, 即, 所以 ,解析:ABD 【分析】构造函数()()ln 2f x x x =+-,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】由()1ln 2n n n a a a +=+-,1102a << 设()()ln 2f x x x =+-, 则()11122xf x x x-'=-=--, 所以当01x <<时,0f x,即()f x 在0,1上为单调递增函数, 所以函数在10,2⎛⎫ ⎪⎝⎭为单调递增函数,即()()102f f x f ⎛⎫<<⎪⎝⎭,即()131ln 2ln ln 1222f x <<<+<+=, 所以()112f x << , 即11(2)2n a n <<≥, 所以2112a <<,2020112a <<,故A 正确;C 不正确; 由()f x 在0,1上为单调递增函数,112n a <<,所以{}n a 是递增数列,故B 正确; 2112a <<,所以 23132131113ln(2)ln ln 222234a a a e =+->+>+=+> 因此20202020333144a a a ∴<><>,故D 正确 故选:ABD 【点睛】本题考查了数列性质的综合应用,属于难题. 2.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212na t a t a a n<--++-+恒成立,则实数a 可能为( ) A .-4B .-2C .0D .2答案:AB 【分析】由题意可得,利用裂项相相消法求和求出,只需对于任意的恒成立,转化为对于任意的恒成立,然后将选项逐一验证即可求解. 【详解】 ,, 则,,,,上述式子累加可得:,, 对于任意的恒成立解析:AB 【分析】 由题意可得11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.【详解】111n n n a a n n++-=,11111(1)1n n a a n n n n n n +∴-==-+++,则11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111122a a -=-, 上述式子累加可得:111n a a n n -=-,122n a n n∴=-<,()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦,包含[]1,2,故A 正确;对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦,包含[]1,2,故B 正确;对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故C 错误;对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故D 错误, 故选:AB. 【点睛】本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.3.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .911a a = C .当9n =或10时,n S 取得最大值D .613S S =答案:ABD 【分析】由题意利用等差数列的通项公式、求和公式可得,结合等差数列的性质,逐一判断即可得出结论. 【详解】∵等差数列的前项和为,, ∴,解得, 故,故A 正确;∵,,故有,故B 正确; 该数【分析】由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论. 【详解】∵等差数列{}n a 的前n 项和为n S ,1385a a S +=, ∴()111875282a a d a d ⨯++=+,解得19a d =-, 故10190a a d =+=,故A 正确;∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119222n n n n S na d d d n -=+=-⋅ ,它的最值,还跟d 的值有关,故C 错误; 由于61656392S a d d ⨯=+=-,131131213392S a d d ⨯=+=-,故613S S =,故D 正确, 故选:ABD. 【点睛】思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果. 4.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )A .若100S =,则50a >,60a <;B .若412S S =,则使0n S >的最大的n 为15;C .若150S >,160S <,则{}n S 中7S 最大;D .若89S S <,则78S S <.答案:ABD 【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】对于A :因为正数,公差不为0,且,所以公差, 所以,即,根据等差数列的性质可得,又, 所以,,故A 正解析:ABD 【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案.对于A :因为正数,公差不为0,且100S =,所以公差0d <, 所以1101010()02a a S +==,即1100a a +=, 根据等差数列的性质可得561100a a a a +=+=,又0d <, 所以50a >,60a <,故A 正确; 对于B :因为412S S =,则1240S S -=,所以561112894()0a a a a a a ++⋅⋅⋅++=+=,又10a >, 所以890,0a a ><, 所以115815815()15215022a a a S a +⨯===>,116891616()16()022a a a a S ++===, 所以使0n S >的最大的n 为15,故B 正确; 对于C :因为115815815()15215022a a a S a +⨯===>,则80a >, 116891616()16()022a a a a S ++===,则890a a +=,即90a <, 所以则{}n S 中8S 最大,故C 错误;对于D :因为89S S <,则9980S a S =->,又10a >, 所以8870a S S =->,即87S S >,故D 正确, 故选:ABD 【点睛】解题的关键是先判断d 的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题. 5.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有m n m n a a a +=+,则下列结论正确的是( )A .11285a a a a +=+B .56110a a a a <C .若该数列的前三项依次为x ,1x -,3x ,则10103a = D .数列n S n ⎧⎫⎨⎬⎩⎭为递减的等差数列 答案:AC 【分析】令,则,根据,可判定A 正确;由,可判定B 错误;根据等差数列的性质,可判定C 正确;,根据,可判定D 错误.令,则,因为,所以为等差数列且公差,故A 正确; 由,所以,故B 错误;解析:AC 【分析】令1m =,则11n n a a a +-=,根据10a >,可判定A 正确;由256110200a a a a d -=>,可判定B 错误;根据等差数列的性质,可判定C 正确;122n d d n a n S ⎛⎫=+- ⎪⎝⎭,根据02>d ,可判定D 错误. 【详解】令1m =,则11n n a a a +-=,因为10a >,所以{}n a 为等差数列且公差0d >,故A 正确;由()()22225611011119209200a a a a a a d daa d d -=++-+=>,所以56110a a a a >,故B错误;根据等差数列的性质,可得()213x x x -=+,所以13x =,213x -=, 故1011109333a =+⨯=,故C 正确; 由()111222nn n na dS d d n a nn -+⎛⎫==+- ⎪⎝⎭,因为02>d ,所以n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列,故D 错误. 故选:AC . 【点睛】解决数列的单调性问题的三种方法;1、作差比较法:根据1n n a a +-的符号,判断数列{}n a 是递增数列、递减数列或是常数列;2、作商比较法:根据1(0n n na a a +>或0)n a <与1的大小关系,进行判定; 3、数形结合法:结合相应的函数的图象直观判断.6.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S >D .若67S S >则56S S >.答案:BC 【分析】根据等差数列的前项和性质判断. 【详解】A 错:;B 对:对称轴为7;C 对:,又,;D 错:,但不能得出是否为负,因此不一定有. 故选:BC . 【点睛】关键点点睛:本题考查等差数列解析:BC 【分析】根据等差数列的前n 项和性质判断. 【详解】A 错:67895911415000S a a a a a S a S ⇒+++<>⇒+<⇒<;B 对:n S 对称轴为n =7;C 对:6770S S a >⇒<,又10a >,887700a S a d S ⇒⇒<<⇒<>;D 错:6770S S a >⇒<,但不能得出6a 是否为负,因此不一定有56S S >. 故选:BC . 【点睛】关键点点睛:本题考查等差数列的前n 项和性质,(1)n S 是关于n 的二次函数,可以利用二次函数性质得最值;(2)1n n n S S a -=+,可由n a 的正负确定n S 与1n S -的大小;(3)1()2n n n a a S +=,因此可由1n a a +的正负确定n S 的正负. 7.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <答案:AD 【分析】利用等差数列的通项公式可以求,,即可求公差,然后根据等差数列的性质判断四个选项是否正确. 【详解】 因为,所以 , 因为,所以, 所以等差数列公差, 所以是递减数列,故最大,选项A解析:AD 【分析】利用等差数列的通项公式可以求70a >,80a <,即可求公差0d <,然后根据等差数列的性质判断四个选项是否正确. 【详解】因为67S S <,所以7670S S a -=> , 因为78S S >,所以8780S S a -=<, 所以等差数列{}n a 公差870d a a =-<, 所以{}n a 是递减数列,故1a 最大,选项A 正确;选项B 不正确;10345678910770S S a a a a a a a a -=++++++=>,所以310S S ≠,故选项C 不正确;当8n ≥时,80n a a ≤<,即0n a <,故选项D 正确; 故选:AD 【点睛】本题主要考查了等差数列的性质和前n 项和n S ,属于基础题. 8.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( ) A .45n a n =-B .23n a n =+C .223n S n n =-D .24n S n n =+答案:AC 【分析】由求出,再由可得公差为,从而可求得其通项公式和前项和公式 【详解】由题可知,,即,所以等差数列的公差, 所以,. 故选:AC. 【点睛】本题考查等差数列,考查运算求解能力.解析:AC 【分析】由535S =求出37a =,再由411a =可得公差为434d a a =-=,从而可求得其通项公式和前n 项和公式 【详解】由题可知,53535S a ==,即37a =,所以等差数列{}n a 的公差434d a a =-=, 所以()4445n a a n d n =+-=-,()2451232n n n S n n --==-.故选:AC. 【点睛】本题考查等差数列,考查运算求解能力.9.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .2437d -<<- C .S n <0时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项答案:ABCD 【分析】S12>0,a7<0,利用等差数列的求和公式及其性质可得:a6+a7>0,a6>0.再利用a3=a1+2d =12,可得<d <﹣3.a1>0.利用S13=13a7<0.可得Sn <0解析:ABCD 【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确. 【详解】∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0, 又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13. 数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0.对于:7≤n ≤12时,nnS a <0.S n >0,但是随着n 的增大而减小;a n <0, 但是随着n 的增大而减小,可得:nnS a <0,但是随着n 的增大而增大. ∴n =7时,nnS a 取得最小值.综上可得:ABCD 都正确. 故选:ABCD . 【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.10.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .当9n =或10时,n S 取最大值 C .911a a <D .613S S =答案:AD 【分析】由求出,即,由此表示出、、、,可判断C 、D 两选项;当时,,有最小值,故B 错误. 【详解】解:,,故正确A.由,当时,,有最小值,故B 错误. ,所以,故C 错误. ,,故D 正确.解析:AD 【分析】由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误. 【详解】解:1385a a S +=,111110875108,90,02da a d a a d a ⨯++=++==,故正确A. 由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误.9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误.61656+5415392dS a d d d ⨯==-+=-,131131213+11778392d S a d d d ⨯==-+=-,故D 正确. 故选:AD【点睛】 考查等差数列的有关量的计算以及性质,基础题.。
高考数学《数列》大题训练50题含答案解析整理版

高考数学《数列》大题训练50题1 .数列{}的前n 项和为,且满足,.n a n S 11a =2(1)n n S n a =+(1)求{}的通项公式; (2)求和T n =.n a 1211123(1)na a n a ++++L 2 .已知数列,a 1=1,点在直线上.}{n a *))(2,(1N n a a P n n ∈+0121=+-y x (1)求数列的通项公式;}{n a (2)函数,求函数最小值.)2*,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 )(n f 3 .已知函数(a ,b 为常数)的图象经过点P (1,)和Q (4,8)x ab x f =)(81(1) 求函数的解析式;)(x f (2) 记a n =log 2,n 是正整数,是数列{a n }的前n 项和,求的最小值。
)(n f n S n S 4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15.求=f (1)+f (2)+…+f (n )的表达式.n S 5 .设数列的前项和为,且,其中是不等于和0的实常数.{}n a n n S 1n n S c ca =+-c 1-(1)求证: 为等比数列;{}n a (2)设数列的公比,数列满足,试写出 的{}n a ()q f c ={}n b ()()111,,23n n b b f b n N n -==∈≥1n b ⎧⎫⎨⎬⎩⎭通项公式,并求的结果.12231n n b b b b b b -+++L 6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量与向量共线,且1+n n A A n n C B 点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上.(1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.7 .已知数列的前三项与数列的前三项对应相同,且…对任意的{}n a {}n b 212322a a a +++12n n a -+8n =∈n N*都成立,数列是等差数列.1{}n n b b +-(1)求数列与的通项公式;{}n a {}n b (2)问是否存在N *,使得?请说明理由.k ∈(0,1)k k b a -∈8 .已知数列),3,2(1335,}{11 =-+==-n a a a a nn n n 且中(I )试求a 2,a 3的值;(II )若存在实数为等差数列,试求λ的值.}3{,nn a λλ+使得9 .已知数列的前项和为,若,{}n a n n S ()1,211++=⋅=+n n S a n a n n(1)求数列的通项公式;{}n a (2)令,①当为何正整数值时,:②若对一切正整数,总有,求的n nn S T 2=n 1+>n n T T n m T n ≤m 取值范围。
高考数学数列多选题复习训练题(含答案解析)

高考数学数列多选题复习训练题(含答案解析)1.(2022·江苏江苏·一模)记n S 为等差数列{}n a 的前n 项和,则( ) A .6422S S S =−B .()6423S S S =−C .2n S ,42n n S S −,64n n S S −成等差数列D .22S ,44S ,66S 成等差数列【答案】BCD 【解析】 【分析】利用等差数列求和公式分别判断. 【详解】 由已知得()112n n n dS a n −=+, A 选项,61615S a d =+,4146S a d =+,212S a d =+,所以42162611S S a d S −=+≠,A 选项错误;B 选项,()42163615S S a d S −=+=,B 选项正确;C 选项,()()221122122n S a n n n d a n n n d =+−=+−,()414241n S a n n n d =+−,()616361n S a n n n d =+−,()242126n n S S a n n n d −=+−,()2641210n n S S a n n n d −=+−,则()()()22264114241222262n n n n S S S a n n n d a n n n d S S ⎡⎤+−=+−=+−=−⎣⎦,C 选项正确;D 选项,2112222S a d d a +==+,411463442S a d a d +==+,6116155662S a d a d +==+,则6241232264S S Sa d +=+=⨯,D 选项正确; 故选:BCD.2.(2022·江苏南通·模拟预测)若数列{}n a 是等比数列,则( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是等比数列B .数列{}n ka 是等比数列C .数列{}1n n a a ++是等比数列D .数列{}2n a 是等比数列【答案】AD 【解析】 【分析】设等比数列{}n a 的公比为()0q q ≠,利用等比数列的定义结合特例法可判断各选项的正误. 【详解】设等比数列{}n a 的公比为()0q q ≠,11111n n n na a a q a ++==,则1n a ⎧⎫⎨⎬⎩⎭是以1q 为公比的等比数列,A 对; 0k =时,0n ka =,则{}n ka 不是等比数列,B 错;()11n n n n n a a a a q a q ++=+=+,1q =−时,10n n a a ++=,此时{}1n n a a ++不是等比数列,C 错;2212n na q a +=,所以,{}2n a 是公比为2q 的等比数列,D 对. 故选:AD .3.(2022·福建宁德·模拟预测)数列{n a }中,设12n n T a a a =⋅…….若n T 存在最大值,则n a 可以是( ) A .62n n a −= B .()1nn a =− C .29n a n =− D .121n n a n +=− 【答案】BD 【解析】 【分析】根据数列的单调性即可判断. 【详解】对于A ,()()115436212322n n n n n T a a aa −−−−+−=== ,当n 趋于无穷大时,n T 也趋于无穷大, 故n T 不存在最大值; 对于B ,()()()()()()1123211111n n nn T +=−−−−=− ,当()12n n + 为偶数时,1n T = ,当()12n n +为奇数时,1n T =− , 故n T 的最大值为1;对于C ,()()1121128n n n n n T T a a a a T n ++−=−=− ,当5n ≥ 时,10,n n n T T T +>> ,∴5n ≥ 时n T 是递增的数列,不存在最大值; 对于D ,1232342,1,,135a a a ===== 即当3n ≥ 时,0121n n <+<− ,1n a < , 即3n ≥ 时,()1110n n n n T T T a ++−=−< ,所以n T 是递减的数列, 最大值为122T T == ; 故选:BD.4.(2022·福建·模拟预测)已知等差数列{}n a 的前n 项和为2212n a n n S +=,公差为d ,则( )A .11a =B .1d =C .()213521n n S a n −=+++⋅⋅⋅+−D .2222n nn S a a =+ 【答案】ABC 【解析】 【分析】运用代入法,结合等差数列的通项公式和前n 项和公式逐一判断即可. 【详解】取1n =,则21112a a +=,解得11a =,即A 正确;由A 可知,22n n nS +=,则212321d S a =−=−=,即B 正确;于是有1(1)1n a n n =+−⋅=,因为22n n S a n −=,且()()212113212n n n n +−+++−==,即C 正确; 因为()222222222nn n n nS n n a a +==+=+,即D 错误.故选:ABC5.(2021·山东·模拟预测)设等比数列{an }的公比为q ,其前n 项和为Sn ,前n 项积为Tn ,并满足条件a 1>1,a 2019a 2020>1,2019202011a a −−<0,下列结论正确的是( )A .S 2019<S 2020B .a 2019a 2021﹣1<0C .T 2020是数列{Tn }中的最大值D .数列{Tn }无最大值 【答案】AB 【解析】 【分析】根据题意,由等比数列的通项公式可得(a 1q 2018)(a 1q 2019)=(a 1)2(q 4037)>1,分析可得q >0,可得数列{an }各项均为正值,又由2019202011a a −−<0可得2019202011a a <⎧⎨>⎩或2019202011a a >⎧⎨<⎩,由等比数列的性质分析可得q 的范围,据此分析4个选项,综合即可得答案. 【详解】根据题意,等比数列{an }的公比为q ,若a 2019a 2020>1,则(a 1q 2018)(a 1q 2019)=(a 1)2(q 4037)>1,又由a 1>1,必有q >0,则数列{an }各项均为正值, 又由2019202011a a −−<0,即(a 2019﹣1)(a 2020﹣1)<0,则有2019202011a a <⎧⎨>⎩或2019202011a a >⎧⎨<⎩,又由a 1>1,必有0<q <1,则有2019202011a a >⎧⎨<⎩,对于A ,有S 2020﹣S 2019=a 2020>0,即S 2019<S 2020,则A 正确; 对于B ,有a 2020<1,则a 2019a 2021=(a 2020)2<1,则B 正确;对于C ,2019202011a a >⎧⎨<⎩,则T 2019是数列{Tn }中的最大值,C 错误,同理D 错误;故选:AB6.(2022·海南·模拟预测)在数列{}n a 中,11a =,数列11n a ⎧⎫+⎨⎬⎩⎭是公比为2的等比数列,设n S 为{}n a 的前n 项和,则( )A .121n na =− B .1122n n a =+ C .数列{}n a 为递减数列 D .378S >【答案】ACD 【解析】 【分析】由已知结合等比数列通项公式可求11na +,进而可求n a ,然后结合单调性定义及数列的求和分别检验各选项即可判断和选择. 【详解】因为11a =,数列11n a ⎧⎫+⎨⎬⎩⎭是公比为2的等比数列,所以111222n nna −+=⋅=所以121n n a =−,故A 正确,B 错误; 因为()21,1xy x =−≥是单调增函数,故()1,121x y x =≥−是单调减函数, 故数列{}n a 是减数列,故C 正确; 31231171378S a a a =++=++>,故D 正确.故选:ACD .7.(2022·江苏连云港·模拟预测)“外观数列”是一类有趣的数列,该数列由正整数构成,后一项是前一项的“外观描述”.例如:取第一项为1,将其外观描述为“1个1”,则第二项为11;将11描述为“2个1”,则第三项为21;将21描述为“1个2,1个1”,则第四项为1211;将1211描述为“1个1,1个2,2个1”,则第五项为111221,…,这样每次从左到右将连续的相同数字合并起来描述,给定首项即可依次推出数列后面的项.对于外观数列{}n a ,下列说法正确的是( ) A .若13a =,则5131213a =B .若122a =,则10022a =C .若16a =,则100a 的最后一个数字为6D .若1123a =,则100a 中没有数字4【答案】BCD 【解析】 【分析】根据题干中的递推规律,依次分析各项的正误. 【详解】对于A 项,13a =,即“1个3”,213a =,即“1个1,1个3”,31113a =,即“3个1,1个3”,故43113a =,故A 项错;对于B 项,122a =,即“2个2”, 222a =,即“2个2”,以此类推,该数列的各项均为22,则10022a =,故B 项正确;对于C 项,16a =,即“1个6”, 216a =,即“1个1,1个6”, 31116a =,即“3个1,1个6”,故43116a =,即“1个3,2个1,1个6”,以此类推可知,()*n a n ∈N 的最后一个数字均为6,故C 项正确;对于D 项,1123a =,则2111213a =,331121113a =,41321123113a =,L ,若数列{}n a 中,()5,N k a k k *≥∈中为第一次出现数字4,则1k a −中必出现了4个连续的相同数字,如11111k a −=,则在2k a −的描述中必包含“1个1,1个1”, 即211k a −=,显然2k a −的描述是不合乎要求的, 若12222k a −=或13333k a −=,同理可知均不合乎题意,故()N n a n *∈不包含数字4,故D 项正确. 故选:BCD.8.(2022·广东茂名·模拟预测)一组数据1x ,2x ,…,10x 是公差为1−的等差数列,若去掉首末两项1x ,10x 后,则( ) A .平均数不变 B .中位数没变C .极差没变D .方差变小【答案】ABD 【解析】 【分析】根据平均数的概念结合等差数列的性质判断A ,由中位数的概念可判断B ,由方差及等差数列的通项公式计算即可判断C ,根据极差及等差数列的通项公式可判断D . 【详解】由题意可知,对于选项A , 原数据的平均数为1210511()5(1010x x x x x =+++=⨯+ 6561)()2x x x =+,去掉1x ,10x 后的平均数为2395656111()4()()882x x x x x x x x x '=+++=⨯+=+=,即平均数不变,故选项A 正确;对于选项B ,原数据的中位数为561()2x x +,去掉1x ,10x 后的中位数仍为561()2x x +,即中位数没变,故选项B 正确;对于选项C ,原数据的极差为11099x x d −=−=, 去掉1x ,10x 后的极差为2977x x d −=−=, 即极差变小,故选项C 错误;对于选项D ,设公差为d ,则原数据的方差为222215625610561111()()()10222s x x x x x x x x x ⎧⎫⎪⎪⎡⎤⎡⎤⎡⎤=−++−+++−+⎨⎬⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎪⎪⎩⎭2221975()()()10222[d d d =−+−+−222311()()()222d d d +−+−++2222357933()()()()2224]2d d d d +++=, 去掉1x ,10x 后的方差为22222563569561111()()()8222s x x x x x x x x x ⎧⎫⎪⎪⎡⎤⎡⎤⎡⎤'=−++−+++−+⎨⎬⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎪⎪⎩⎭2222222217531135721()()()()()()()()8222222224[]d d d d d d d d =−+−+−+−++++=, 即方差变小,故选项D 正确. 故选:ABD.9.(2022·山东济宁·二模)已知一组数据1x ,2x ,…,11x 是公差不为0的等差数列,若去掉数据6x ,则( ) A .中位数不变 B .平均数变小 C .方差变大 D .方差变小【答案】AC 【解析】 【分析】由中位数的概念可判断A ,根据平均数的概念结合等差数列的性质判断B ,由方差计算公式即可判断CD. 【详解】对于选项A ,原数据的中位数为6x ,去掉6x 后的中位数为5761()2x x x +=,即中位数没变,故选项A 正确;对于选项B ,原数据的平均数为()111121161111()11112x x x x x x x +=+++=⨯=,去掉6x 后的平均数为1111257811610()11()10102x x x x x x x x x x x +'=+++++++=⨯==即平均数不变,故选项B 错误:对于选项C ,则原数据的方差为()()22221626116]1[()11s x x x x x x =−+−++−,去掉6x 后的方差为()()()()()22222216265676116110s x x x x x x x x x x ⎡⎤'=−+−++−+−++−⎣⎦,故2s 2s '<,即方差变大,故选项C 正确,选项D 错误.10.(2022·山东临沂·模拟预测)设数列{}n a 的前n 项和为n S ,已知233=+nn S .数列{}n b 满足3log n n n a b a =,则( )A .13,1,3, 1.n n n a n −=⎧=⎨>⎩B .113n n n b −−=C .数列{}n b 的前n 项和113211243n n n T −+=−⋅ D .数列{}n b 的前n 项和113211243n n n T −−=+⋅ 【答案】AC 【解析】 【分析】根据n S 与n a 的关系,即可求出n a ,利用错位相减法即可求出数列{}n b 的前n 项和n T ,据此,逐个选项判断即可得出答案. 【详解】对于A ,因为233=+nn S ,所以,当1n =时,11226S a ==,得13a =,当2n ≥时,1113332n n n n n n a S S −−−−=−==,经检验,当1n =时,不符合13−=n n a ,所以,13,1,3, 1.n n n a n −=⎧=⎨>⎩故A 正确;对于B ,因为3log n n n a b a =,得311,1log 31,23n n nn n a b n a n −⎧=⎪⎪==⎨−⎪≥⎪⎩,故B 错误; 对于C ,数列{}n b 的前n 项和1232311123133333n n n n T b b b b −−=++++=+++++①, 234111231393333n nn T −=+++++②,所以,−①②得, 23122111111()3933333n n n n T −−=++⨯+++−11515311193293929333n n n n n n −−−⎛⎫=+−=+⨯−− ⎪⎝⎭1823n=−⋅,得 113211243n n n T −+=−⋅,故C 正确,D 错误; 故选:AC11.(2023·福建漳州·三模)已知数列{n a }的前n 项和为211n S n n =−,则下列说法正确的是( ). A .{}n a 是递增数列 B .{}n a 是递减数列C .122n a n =-D .数列{}n S 的最大项为5S 和6S【答案】BCD 【解析】 【分析】根据211n S n n =−,利用二次函数的性质判断D ,利用数列通项和前n 项和关系求得通项公式判断ABC. 【详解】解:因为22111211124n S n n n ⎛⎫=−=−−+ ⎪⎝⎭,所以数列{}n S 的最大项为5S 和6S ,故D 正确;当1n =时,110a =,当2n ≥时,由211n S n n =−,得()()211111n S n n −=−−−,两式相减得:212n a n =−+, 又110a =,适合上式, 所以212n a n =−+,故C 正确;因为120n n a a −−=−<,所以{}n a 是递减数列,故A 错误,B 正确; 故选:BCD12.(2022·湖南怀化·一模)设{}()*n a n N ∈是各项为正数的等比数列,q 是其公比,nK是其前n 项的积,且56678,K K K K K <=>,则下列选项中成立的是( ) A .01q << B .71a =C .95K K >D .6K 与7K 均为n K 的最大值【答案】ABD【分析】结合等比数列的定义利用数列的单调性判断各选项. 【详解】由已知数列各项均为正,因此乘积n K 也为正,公比0q >, 又56678,K K K K K <=>, 6651K a K =>,7761Ka K ==,B 正确; 8871K a K =<,761aq a =<,即01q <<,A 正确; 由71a =得681a a =,591a a =,所以49K K =,而51a >,54K K >,因此95K K <,C 错; 由上知126781a a a a a <<<<=<<,{}n K 先增后减,6K 与7K 均为n K 的最大值,D 正确.故选:ABD .13.(2022·福建龙岩·模拟预测)已知等比数列{}n a 的前n 项和为n S ,公比为q ,则下列命题正确的是( )A .若11a =,2q =,则663S =B .若1q >,则数列{}n a 是单调递增数列C .若10a >,0q >,lg n n b a =,则数列{} n b 是公差为lg q 的等差数列D .若10a >,0q >,且()21105612a a a a +=+,则110a a +的最小值为4 【答案】AC 【解析】 【分析】A :利用等比数列前n 项和公式即可计算;B :根据函数单调性即可判断;C :根据等差数列定义即可判断;D :利用基本不等式即可判断. 【详解】对于A ,66612216312S −==−=−,故A 正确;对于B ,∵11n n a a q −=⋅,故{}n a 的单调性由q 和1a 共同决定,q >1无法判断数列为递增数列,如10a <,此时数列为递减数列,故B 错误;对于C ,∵111lg lg lg lg n n n n n na b b a a q a +++−=−==为常数,∴数列{}n b 是公差为lg q 的等差数列,故C 正确;对于D ,若10a >,0q >,则0n a >,56110a a a a =, ∵()21105612a a a a +=+, ∴()2211011011012122a a a a a a +⎛⎫+=++ ⎪⎝⎭…,即()()22110110124a a a a +++…,即()211016a a +≤,即11004a a <+…,即当110a a =时,110a a +的最大值为4,故D 错误. 故选:AC .14.(2022·江苏泰州·模拟预测)数列{}n a 满足1111,,2n n n a a a n N *+==∈,n S 为数列{}n a 的前n 项和,则( ) A .418a =B .1n n a a +≤C .3n S <D .132n n S S −<【答案】BC 【解析】 【分析】根据题意求得212112n n n n n n a a a a a a ++++==,得到{}n a 的奇数项和偶数项分别构成公比为12的等比数列,且首项分别为1211,2a a ==,由414a =,可判定A 错误;求得n 为奇数和n 为偶数时,数列的通项公式,可判定B 正确;根据n 为奇数和偶数,求得n S ,可判定C 正确;结合2n =时,可判定D 错误. 【详解】由题意,数列{}n a 满足11,2n n na a n N *+=∈,可得212112n n n n n na a a a a a ++++==, 因为11a =,可得2112a a =,所以212a =, 所以{}n a 的奇数项和偶数项分别构成公比为12的等比数列,且首项分别为1211,2a a ==,对于A 中,可得421124a a =⨯=,所以A 错误; 对于B 中,若n 为奇数时,可数列的通项公式为1122111()()22n n n a −−=⨯=; 若n 为偶数时,可数列的通项公式为122111()()222n n n a +=⨯=,当n 为奇数时,121()2n n a −=,2211()2n n a ++=,此时1n n a a +<,当n 为偶数时,121()2n n a +=,1211()2n n a ++=,此时1n n a a +=,综上可得:1n n a a +≤,所以B 正确; 对于C 中,数列{}n a 为1111111,,,,,,,224488,可得{}1n n a a ++构成首项为32,公比为12的等比数列,当n 为偶数时,可得2231[1()]1223[1()]31212nn n S −==⋅−<−, 当n 为奇数时,可得121211[1()]12112[1()]31212n n n S −−⋅−=+=+⋅−<−,所以C 正确;对于D 中,当2n =时,可得213122S =+=,13322S =,此时132n n S S −=,所以D 错误.故选:BC.15.(2022·重庆·二模)设数列{}n a 的前n 项和为n S ,已知12a =,且()1210n n n a na ++−=()n N *∈,则下列结论正确的是( ) A .{}n na 是等比数列 B .n a n ⎧⎫⎨⎬⎩⎭是等比数列C .2n n a n =⋅D .()122nn S n =−⋅+【答案】BC 【解析】 【分析】由条件变形,先求n a n ⎧⎫⎨⎬⎩⎭的通项公式,再判断选项【详解】 由题意得121n n a a n n +=⋅+,故n a n ⎧⎫⎨⎬⎩⎭是首项为2,公比为2的等比数列, 1222n n na n−=⋅=,则2n n a n =⋅.故B ,C 正确,A 错误 122222n n S n =+⋅++⋅, 23122222n n S n +=+⋅++⋅,两式相减得:()1212(222)122n n n n S n n ++=⋅−+++=−⋅+,故D 错误.故选:BC16.(2022·广东茂名·模拟预测)已知数列{}n a 的前n 项和为S ,11a =,121n n n S S a +=++,数列12n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,*n ∈N ,则下列选项正确的为( ) A .数列{}1n a +是等比数列 B .数列{}1n a +是等差数列C .数列{}n a 的通项公式为21n n a =−D .1n T > 【答案】AC 【解析】 【分析】由1121n n n n a S S a ++=−=+可得,1121n n a a ++=+,可判断A,B 的正误,再求出n a ,可判断C 的正误,利用裂项相消法求n T ,可判断D 的正误. 【详解】因为121n n n S S a +=++,所以1121n n n n a S S a ++=−=+,1+122n n a a +=+, 即1121n n a a ++=+,且112a +=, 所以数列{}1n a +是首项为2,公比为2的等比数列,故A 正确,B 错误;所以12nn a +=,即21n n a =−,故C 正确;因为()()111212122211121n n n n n n n n a a +++−−−−==−⋅,所以12231121212121111111111212121n n n n T ++−+−+=−−−−+−−−=−−<…, 故D 错误; 故选:AC.17.(2022·重庆·二模)设等差数列{}n a 前n 项和为n S ,公差0d >,若920S S =,则下列结论中正确的有( ) A .150a = B .当15n =时,n S 取得最小值 C .10220a a +> D .当0n S >时,n 的最小值为29【答案】ABC 【解析】 【分析】根据等差数列的前n 项和公式,结合该数列的单调性逐一判断即可. 【详解】 解:根据题意,由9201111511998202019140022S S a d a d a d a =⇒+⨯⨯=+⨯⨯⇒+=⇒=.故A 正确;因为0d >,故当15n <时,0n a <,150a =,当15n >时,0n a >,当15n =或14n =时,n S 取得最小值,故B 正确;由于()102216150a a a a d d +=2=2+=2>,故C 正确;因为0d >,n *∈N ,所以由1111(1)(14)(1)(29)0222n S na n n d n d n n d dn n =+−=−+−=−>,可得:29,n >n *∈N ,因此n 的最小值为30,故D 错误.故选:ABC18.(2022·河北保定·一模)已知数列{}n a 的前n 项和为n S ,且满足11a =,22a =,1143n n n a a a +−=−,则下面说法正确的是( ) A .数列{}1n n a a +−为等比数列 B .数列{}13n n a a +−为等差数列C .131n n a -=+D .3142n n nS −=+【答案】ABD【分析】由已知递推式可得()113n n n n a a a a +−−=−或1133n n n n a a a a +−−=−,从而可得数列{}1n n a a +−为公比为3的等比数列,数列{}13n n a a +−为常数列,从而可求出,n n a S ,进而可分析判断 【详解】根据题意得()()111113434344n n n n n n n n n a a a a ka k a a k a a k +−+−−⎛⎫=−⇒+=+−=+−⎪+⎝⎭,令2343014k k k k k =−⇒++=⇒=−+或3k =−,所以可得:()113n n n n a a a a +−−=−或1133n n n n a a a a +−−=−,所以数列{}1n n a a +−为公比为3的等比数列,故选项A 正确;数列{}13n n a a +−为常数列,即为公差为0的等差数列,故选项B 正确;所以1113n n n a a −+−=⨯,且131n n a a +−=−,解得1312n n a −+=,所以C 错误,所以12n n S a a a =++⋅⋅⋅+ 011313131222n −+++=++⋅⋅⋅+()011133322n n −=++⋅⋅⋅++ 1132132n n −=⨯+− 3142n n −=+,所以D 正确,故选:ABD .19.(2022·全国·模拟预测)已知数列{}n a 满足()1213n n n a a a m ++=+,12n a ≠−,则下列说法正确的有( )A .若12=−m ,11a =,则35a =B .若0m =,112a =,则11331n n n a −−=+C .若12m =,12a ≠−,3,则32n n a a ⎧⎫−⎨⎬+⎩⎭是等比数列 D .若12m =−,11a =,则766n n a =−【答案】BC 【解析】A 选项由递推关系计算可判断;B 选项,递推关系变形为1111113n n a a +⎛⎫−=− ⎪⎝⎭,构造一个等比数列11n a ⎧⎫−⎨⎬⎩⎭,可求出通项公式,从而判断;C 选项由递推关系变形出1132n n a a ++−+3372n n a a −=−⨯+,从而得到判断;D 选项,递推关系变形得出112n a ⎧⎫⎪⎪⎨⎬⎪⎪−⎩⎭是等比数列,从而求得通项公式进行判断. 【详解】A 选项:若12=−m ,则()121312n n n a a a ++=−,即131221n n n a a a +−=+.又11a =,则231233a −==−,391221615a −−==−+,故A 错误. B 选项:若0m =,则()1213n n n a a a ++=,即1321nn n a a a +=+, 即112133n n a a +=+,则1111113n n a a +⎛⎫−=− ⎪⎝⎭.又112a =,则111211a −=−=, 所以11n a ⎧⎫−⎨⎬⎩⎭是首项为1,公比为13的等比数列,则11113n n a −⎛⎫−= ⎪⎝⎭,即1111113133n n n n a −−−+⎛⎫=+= ⎪⎝⎭,即11331n n n a −−=+,故B 正确.C 选项:若12m =,则()121312n n n a a a ++=+,即131221n n n a a a ++=+,则()()1131233123213213122312221221n n n n n n n n n n a a a a a a a a a a +++−+−+−+===+++++++393371472n n n n a a a a ⎛⎫−+−=−⨯ ⎪++⎝⎭,所以32n n a a ⎧⎫−⎨⎬+⎩⎭是公比为37−的等比数列,故C 正确.D 选项:若12m =−,则113221n n n a a a +−=+,则11132112222121n n n n n n a a a a a a +−−−−−==++,则1212121111112121222n n n n n n a a a a a a +−+⎛⎫==+=+≠ ⎪−−⎝⎭−−,即11111122n n a a +−=−−.又11a =,则11212a =−,所以112n a ⎧⎫⎪⎪⎨⎬⎪⎪−⎩⎭是首项为2,公差为1的等差数列,所以1112n n a =+−, 即1121n a n −=+,即1112n a n =++,故D 错误, 故选:BC.20.(2022·广东·一模)已知数列{}n a 满足11a =,*12()N n n n a a n ++=∈,则下列结论中正确的是( ) A .45a =B .{}n a 为等比数列C .202212202123a a a +++=−D .2023122022223a a a −+++=【答案】AD 【解析】 【分析】利用递推式可求得234,,a a a 的值,可判断A,B;将122021a a a +++变为1235202042021()()()a a a a a a a ++++++++,利用等比数列的求和公式,求得结果,判断C; 将122022a a a +++变为412320212022))()((a a a a a a +++++++,利用等比数列的求和公式,求得结果,判断D; 【详解】11a =,则1222,1a a a +== ,又2334,3a a a +== ,同理33442,5a a a +== ,故A 正确;而32121,3a a a a == ,故{}n a 不是等比数列,B 错误; 1220211235204202021()()()a a a a a a a a a a =+++++++++++1010101120222420204-4-12-112+2++2=1+==1-433=+(14) ,故C 错误; 122022123202120242()a a a a a a a a a ++++=++++++()()101110112023132021-24-22-22+2++2===1-433⨯=2(14),故D 正确, 故选:AD21.(2022·福建·模拟预测)已知{}n a 是正项等差数列,其公差为d ,若存在常数c ,使得对任意正整数n 均有12n n n ac a a c+=+,则以下判断不正确的是( ) A .0d > B .0d = C .1c > D .01c <<【答案】ACD 【解析】 【分析】利用基本不等式可得101n a +<≤,结合通项公式可得0d =,从而可得()212c c a −=,故可得02c <<,故可得正确的选项.【详解】由题设可得{}n a 是无穷正项等差数列,故0d ≥且0c >, 由基本不等式有122nn n a c a a c+=+≥, 所以101n a +<≤对任意的正整数n 恒成立, 即101a nd <+≤对任意的正整数n 恒成立,即111a nd a −<≤−对任意的正整数n 恒成立,故0d =且101a <≤. 而1112a c a a c=+,故()212c c a −=, 所以()021c c <−≤,所以02c <<, 故选:ACD22.(2022·重庆市育才中学模拟预测)已知数列{an }满足11a =,21n n n a a a +=+,则( )A .{an }是递增数列B .n a n ≥C .202120222a ≤D .121111111n a a a ++⋅⋅⋅+<+++ 【答案】ABD 【解析】 【分析】由递推公式和20n a >可判断A ,由数列递增和11a =可判断B ,由递推公式知21n n a a +>可判断C ,对递推公式取倒裂项,然后累加、放缩可判断D. 【详解】因为a 1=1,21n n n a a a +=+,所以1n n a a +>,故A 正确;易知,所以n a 为正整数,又{an }是递增数列,所以n a n ≥,故B 正确;由递推公式得:232,64a a ==>,又221n n n n a a a a +=+>,所以244a >,22225(4)4a >=,()23222644a >=,易知201922021202242a >>,故C 不正确;取倒得1111(1)11n n n n n a a a a a +=−++=,则由累加法得2341123123111111111111()1111n n n a a a a a a a a a a a a ++++⋅⋅⋅+=+++⋅⋅⋅+−+++⋅⋅⋅+++++整理得123111111111111111n n n a a a a a a a +++++⋅⋅⋅+=−=−++++, 又110n a +>所以121111111n a a a ++⋅⋅⋅+<+++故选:ABD23.(2022·河北张家口·三模)已知公差为d 的等差数列{}n a 的前n 项和为n S ,则( ) A .n S n ⎧⎫⎨⎬⎩⎭是等差数列B .n S 是关于n 的二次函数C .{}n na 不可能是等差数列D .“0d >”是“112n n n S S S −++>”的充要条件【答案】AD 【解析】 【分析】根据等差数列前n 项公式及函数特征结合等差数列的定义即可判断ABC ,再结合充分条件和必要条件的定义即可判断D. 【详解】解:由11(1)2n S na n n d =+−知,11(1)2n S a n d n =+−,则1112+−=+n n S S d n n ,所以n S n ⎧⎫⎨⎬⎩⎭是等差数列,故A 正确; 当0d =时,1n S na =不是n 的二次函数,故B 不正确; 当0d =时,11,n n a a na na ==,则()111n n n a na a ++−=,所以{}n na 是等差数列,故C 不正确; 当0d >时,1102n n n S S d S −+=−>+,故112n n n S S S −++>,11111120n n n n n n n n n n n S S S S S S S a a a a d −++−+++>⇔−>−⇔>⇔−=>,所以“0d >”是“112n n n S S S −++>”的充要条件,故D 正确. 故选:AD.24.(2022·江苏江苏·三模)已知各项都是正数的数列{}n a 的前n 项和为n S ,且122n n na S a =+,则( ) A .{}2n S 是等差数列B .212n n n S S S +++<C .1n n a a +>D .1ln n nS n S −≥ 【答案】ABD 【解析】 【分析】对于A,求出1a ,再将n a 转化为n S ,即可证明,对于B,利用A 的结论求出n S ,再利用基本不等式,即可证明. 对于C ,求出21a a <,即可判断正误,对于D ,构造函数()12ln f x x x x=−−,即可判断正误【详解】 1111122a a S a ==+,10a >,解得:111S a == 2n ≥时,()11122n n n n n S S S S S −−−=+−, 整理得:2211n n S S −−=故{}2n S 是等差数列,选项A 正确;2211n S S n n =+−=,则=n S212n n n S S S +++<==,选项B 正确;22111a S S a =−=<,选项C 错误;令()12ln f x x x x =−−,1≥x ,()()2210x f x x −'=≥ ()f x 在[)1,+∞递增,()()10f x f ≥=,则ln 0fn≥ 即1ln n nS n S −≥,选项D 正确; 故选:ABD.25.(2022·河北保定·一模)已知n S 是数列{}n a 的前n 项和,且21n n S S n +=−+,则下列选项中正确的是( ).A .121n n a a n ++=−(2n ≥)B .22n n a a +−=C .若10a =,则1004950S =D .若数列{}n a 单调递增,则1a 的取值范围是11,43⎛⎫− ⎪⎝⎭【答案】AC 【解析】 【分析】对于A , 由 21n n S S n +=−+,多写一项,两式相减即可得出答案.对于B ,由 121n n a a n ++=−(2n ≥),多递推一项,两式相减即可得出答案少了条件2n ≥. 对于C ,由分析知22n n a a +−=,所以{}n a 奇数项是以10a =为首项,2为公差的等差数列,偶数项是以21a =为首项,2为公差的等差数列,由等差数列得前n 项和公式即可得出答案. 对于D ,因为数列{}n a 单调递增,根据1234n a a a a a <<<<<,即可求出1a 的取值范围.【详解】对于A ,因为21n n S S n +=−+,当()2121n n n S S n −≥=−+−,,两式相减得:121n n a a n ++=−(2n ≥),所以A 正确.对于B ,因为121n n a a n ++=−(2n ≥),所以()+122+11=21n n a a n n ++=−+, 两式相减得:22n n a a +−=(2n ≥),所以B 不正确.对于C ,21n n S S n +=−+,令1n =,则211S S =−+,1211a a a +=−+,因为10a =,所以21a =.令2n =,则324S S =−+,112324a a a a a ++=−−+ ,所以32a =.因为22n n a a +−=(2n ≥),而312a a −=,所以22n n a a +−=.所以{}n a 奇数项是以10a =为首项,2为公差的等差数列. 偶数项是以21a =为首项,2为公差的等差数列. 则:()()10012399100139924100=+++S a a a a a a a a a a a =+++++++++5049504950025012=495022⨯⨯⎛⎫⎛⎫=⨯+⨯+⨯+⨯ ⎪ ⎪⎝⎭⎝⎭,所以C 正确.对于D ,21n n S S n +=−+,令1n =,则211S S =−+,1211a a a +=−+,则2121a a =−+又因为+12=21n n a a n +++,令1n =则23=3a a +,所以()3211=332122a a a a −=−−+=+, 同理:()4311=552223a a a a −=−+=−+,()5411=772324a a a a −=−−+=+,因为数列{}n a 单调递增,所以1234n a a a a a <<<<<,解12a a <得:113a <,解23a a <得:114a >−,解34a a <得:114a <, 解45a a <得:114a >−,解56a a <得:114a <, 所以1a 的取值范围是11,44⎛⎫− ⎪⎝⎭,所以D 不正确.故选:AC. 【点睛】本题考查的是等差数列的知识,解题的关键是利用121n n a a n ++=−,得出{}n a 的奇数项、偶数项分别成等差数列,考查学生的逻辑推理能力和运算求解能力,属于难题.26.(2022·山东日照·二模)已知数列{}n a 满足11a =,()12ln 11n n n a a a +=++,则下列说法正确的有( ) A .31225a a a <+ B .2211n nn a a a +−≤+ C .若2n ≥,则131141n i i a =≤<+∑ D .()()1ln 121ln 2nni i a =+≤−∑【答案】BCD 【解析】 【分析】直接计算出23,a a 即可判断A 选项;构造函数函数()ln 1f x x x =−−,由ln 1x x +…,得到ln 1n n a a +…,进而判断B 选项;由ln 11n a +…得到121n n a a ++…,再结合累乘法得到12n n a +…,按照等比数列求和公式即可判断C 选项;构造函数()12ln g x x x x=−+,由11ln 2x x x ⎛⎫− ⎪⎝⎭…得到212n n n a a a ++…,结合累乘法求得()1ln 12ln2n n a −+…,按照等比数列求和公式即可判断D 选项.【详解】()()2113222ln 113,2ln 116ln37a a a a a a =++==++=+,则()3122512ln360a a a −+=−>,又120a a +>,所以31225a a a >+,A 不正确. 令函数()ln 1f x x x =−−,则()11f x x'=−,则()f x 在()0,1上单调递减,在()1,∞+上单调递增,()()10f x f =…,即ln 1x x +…,又易得{}n a 是递增数列,11n a a =…,故ln 1n n a a +…,所以2121n n a a ++…,B 正确.易知{}n a 是递增数列,所以11n a a =…,则()1ln 11,2ln 1121n n n n n a a a a a ++=+++厖,则()1121n n a a +++…,即1121n n a a +++…,所以11212111211n n n n n a a a a a a −−−−++⋅⋅++…,即()111212n n n a a −++=…,所以1112n n a +…,所以2111111111221111222212n n n ni i a =⎛⎫− ⎪⎝⎭+++==−<+−∑…,而当2n …时,则有11211131114ni i a a a =+=+++∑…,C 正确. 令函数()12ln g x x x x =−+,则()222212110x x g x x x x−+−=−−='…,所以()g x 在()0,∞+上单调递减,所以当1x …时,()()10g x g =…,则11ln 2x x x ⎛⎫− ⎪⎝⎭…, 所以211121122n n n n n n a a a a a a +⎡⎤⎛⎫−++=+⎢⎥ ⎪⎢⎥⎝⎭⎣⎦…,()()()()()()()()()211121211ln 1ln 1ln 1ln 111,2,2ln 1ln 1ln 1ln 1n n n n n n n n n a a a a a a a a a a +−−+−−++++++⋅⋅⋅++++剟?,()()111ln 12ln 12ln2n n n a a −−++=…,所以())()11ln 1(122ln221ln2nn n i i a −=++++=−∑…,D 正确.故选:BCD. 【点睛】本题关键点在于B 选项通过构造函数()ln 1f x x x =−−进行放缩得到ln 1n n a a +…,结合()12ln 11n n n a a a +=++即可判断;C 选项由ln 11n a +…放缩得到121n n a a ++…,D 选项构造函数()12ln g x x x x=−+得到212n nn a a a ++…,再结合累乘法和求和公式进行判断. 27.(2022·福建南平·三模)如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n =⋅⋅⋅⋅⋅⋅且,i i x y ∈Z .记n n n a x y =+,如()11,0A 记为11a =,()21,1A −记为20a =,()30,1A −记为31,a =−⋅⋅⋅,以此类推;设数列{}n a 的前n 项和为n S .则( )A .202242a =B .202287S =−C .82n a n =D .()245312n n n n S ++=【答案】ABD 【解析】 【分析】由图观察可知第n 圈的8n 个点对应的这8n 项的和为0,则2440n n S +=,同时第n 圈的最后一个点对应坐标为(),n n ,设2022a 在第k 圈,则k 圈共有()41k k +个数,可判断前22圈共有2024个数,2024a 所在点的坐标为()22,22,向前推导,则可判断A ,B 选项;当2n =时,16a 所在点的坐标为()2,2−−,即可判断C 选项;借助2440n n S +=与图可知22222244144245454544n n n n n nn n n n n n S S S aaa++++++++=−=+++,即n 项之和,对应点的坐标为()1,+n n ,()1,1n n +−,…,()1,1n +,即可求解判断D 选项.【详解】由题,第一圈从点()1,0到点()1,1共8个点,由对称性可知81280S a a a =+++=;第二圈从点()2,1到点()2,2共16个点,由对称性可知248910240S S a a a −=+++=,即 240S =,以此类推,可得第n 圈的8n 个点对应的这8n 项的和为0,即()214482n nn n SS ++⨯==,设2022a 在第k 圈,则()()888168412k k k kk ++++==+,由此可知前22圈共有2024个数,故20240S =,则()2022202420242023S S a a =−+,2024a 所在点的坐标为()22,22,则2024222244a =+=,2023a 所在点的坐标为()21,22,则2023212243a =+=,2022a 所在点的坐标为()20,22,则2022202242a =+=,故A 正确;()()20222024202420230444387S S a a =−+=−+=−,故B 正确;8a 所在点的坐标为()1,1,则8112a =+=,16a 所在点的坐标为()2,2−−,则16224a =−−=−,故C 错误;22222244144245454544n n n n n nn n n n n n S S S aaa++++++++=−=+++,对应点的坐标为()1,+n n ,()1,1n n +−,…,()1,1n +,所以()()()()()245111112122n n S n n n n n n n n +=+++++−++++=+++++()()2123122n n n n n ++++==,故D 正确.故选:ABD 【点睛】关键点点睛:观察图形,利用对称性求解问题,对D 选项,考虑已知的前n 项和与所求的关系,结合图形,可适当先列举找到规律,再求解.28.(2022·辽宁·东北育才学校二模)如图所示,正五边形ABCDE 的边长为1a ,正五边形11111A B C D E 的边长为2a ,正五边形22222A B C D E 的边长为3a ,……,依次下去,正五边形11111n n n n n A B C D E −−−−−的边长为n a ,记ACE α∠=,则下列结论中正确的是( )A.cos α=B .数列{}n aC .数列{}n a的等比数列D .对任意θ∈R ,cos cos(2)cos(4)cos(6)cos(8)1θθαθαθαθα++++++++= 【答案】AB 【解析】 【分析】根据正五边形的几何性质可知1111111,,,B EAC AE AC CE AB AE CB AB AE B E B C λ======,根据长度关系列方程解得λ=,再利用正弦定理可求得cos α,通过图形类比归纳的12211n n a a a a λ+==,对于D ,注意5πα=,利用诱导公式和两角和差公式化简计算. 【详解】在△ACE ,2CAE AEC α∠=∠=,设1AC CE AE a λλ=== 易知△ACE ∽△1B AE ,则111B E a λ=,11AB AE a ==1ACE CAB ∠=∠,则111AB CB a ==∵11CB B E CE +=,即1111a a a λλ+=,解得λ=又∵AC AE λ=,由正弦定理得sin 2sin αλα=,即2sin cos sin ααλα=∴cos 2λα=,A 正确; 同理:△11B EC ∽△1B AE ,则111211B C B E AE λλ==即2121a a λ=,则2211a a λ==以此类推,1n n a a +={}n aB 正确,C 不正确;∵cos α=2cos 22cos 1αα=−=又∵5πα=,则可得: cos cos(2)cos(4)cos(6)cos(8)θθαθαθαθα++++++++[][][]cos cos(2)cos ()πcos ()πcos (2)2πθθαθαθαθα=+++−+++++−+cos cos(2)cos()cos()cos(2)θθαθαθαθα=++−−−++−()cos 2cos cos 22cos cos cos 12cos 22cos 0θθαθαθαα=+−=+−=D 不正确; 故选:AB .。
高中数学数列100题整理(数列题库)

77.设s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,其中ai,bi∈M,i=1,2,…,n.证明:若an<bn,则s<t.
37.若1和a的等差中项是2,则a的值为()A.4 B.3 C.1 D.﹣4
38.在等比数列{an}中,若an>0,且a3,a7是x2﹣32x+64=0的两根,则log2a1+log2a2+log2a3+…+log2a9=()A.27 B.36 C.18 D.9
39.已∈N*,则数列{an}的通项公式为()A.an=( )n﹣1B.an=( )nC.an= D.an=
21.已知数列{an}的前n项和Sn=2an﹣2n+1,若不等式2n2﹣n﹣3<(5﹣λ)an对∀n∈N*恒成立,则整数λ的最大值为( )A.3 B.4 C.5 D.6
22.已知数列{an}满足a1=10,且2an+1=2an﹣3,若ak•ak+1<0,则正整数k=( )A.6 B.7 C.8 D.9
已知数列 是等比数列,首项 ,公比 ,其前 项和为 ,且 , , 成等差数列.
73.求数列 的通项公式;
74.若数列 满足 , 为数列 的前 项和,且 对任意 恒成立,求实数 的最大值.
75.(2018•北京)设 是等差数列,且 , +a3=5 .
(Ⅰ)求 的通项公式;
(Ⅱ)求 + +…+ .
已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn-1,xi∈M,i=1,2,…,n}.
23.已知由正数组成的等比数列{an}中,公比q="2," a1·a2·a3·…·a30=245,则a1·a4·a7·…·a28= ( ) A.25B.210C.215D.220
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 已知数列{a n }的前三项与数列{b n }的前三项对应相同,且a 1+2a 2+22a 3+…+2
n -1a n =8n 对任意的n∈N *都成立,数列{b n +1-b n }是等差数列.求数列{a n }与{b n }的通项公
式。
2 在等比数列{a n }中,a n >0 (n ∈N *),公比q ∈(0,1),且a 1a 5 + 2a 3a 5 +a 2a 8=25,a 3与a s 的等比中项为2。
(1)求数列{a n }的通项公式;(2)设b n =log 2 a n ,数列{b n }的前n 项和为S n 当1212n S S S n
++•••+最大时,求n 的值。
3 (数列{}n a 中,11a =,且点1(, )n n a a +()n *∈N 在函数()2f x x =+的图象上.
(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)在数列}{n a 中,依次抽取第3,4,6,…,122n -+,
…项,组成新数列{}n b ,试求数列{}n b 的通项n b 及前n 项和n S . 4 已知数列{}n a 的前n 项和为n S ,11a =,141n n S a +=+,设12n n n b a a +=-.(Ⅰ)证明数列{}n b 是等比数列;
(Ⅱ)数列{}n c 满足21log 3
n n c b =+*()n ∈N ,求1223341n n n T c c c c c c c c +=++++L 。
5 求数列
⋅⋅⋅⋅⋅⋅,2
2,,26,24,2232n n 前n 项的和. 6 已知数列{}n a 满足211=a ,n
n a a n n ++=+211,求n a 。
7 已知数列{}n a 满足321=a ,n n a n n a 1
1+=+,求n a 。
8 在数列{}n a 中,11a =,当2n ≥时,有132n n a a -=+,求{}n a 的通项公式。
9 设各项均为正数的数列{}n a 的前n 项和为n S ,对于任意正整数n ,都有等式:n n n S a a 422
=+成立,求{}n a 的通项n a . 解题的基本思路就是构造出某个数列的相邻两项之差,然后采用迭加的方法就可求得这一数列的通项公式。
10 设{}n a 是首项为1的正项数列,且01212=-----n n n n na na a a ,(n ∈N*),求数列
的通项公式an.
11 数列{}n a 中,2
11=
a ,前n 项的和n n a n S 2=,求1+n a . 12 设正项数列{}n a 满足11=a ,212-=n n a a (n ≥2).求数列{}n a 的通项公式.。