新人教版高中数学必修一第一章集合-部分学案

合集下载

高一数学必修1第一章集合全章教案

高一数学必修1第一章集合全章教案

第一章集合与函数概念§1.1集合教学目标:(1)了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;教学重点.难点重点:集合的含义与表示方法.难点:表示法的恰当选择.1.1.1集合的含义与表示(一)集合的有关概念:⒈定义:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。

2.表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。

3.集合相等:构成两个集合的元素完全一样。

4.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。

5.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;N内排除0的集.整数集,记作Z;有理数集,记作Q;实数集,记作R;6.关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。

如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。

“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的.⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。

.如:方程(x-2)(x-1)2=0的解集表示为{1,-2},而不是{1,1,-2}⑶无序性:即集合中的元素无顺序,可以任意排列、调换。

练1:判断以下元素的全体是否组成集合,并说明理由:⑶大于3小于11的偶数;⑵我国的小河流;⑶非负奇数;⑷某校2011级新生;⑸血压很高的人;7.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉”两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。

人教版高一数学必修1集合的教案

人教版高一数学必修1集合的教案

高一数学必修1的教案人教版高一数学必修1集合的教案作为一名优秀的教育工作者,就有可能用到教案,教案是备课向课堂教学转化的关节点。

那么优秀的教案是什么样的呢?下面是小编收集整理的人教版高一数学必修1集合的教案,仅供参考,大家一起来看看吧。

人教版高一数学必修1集合的教案1教学目标:1、理解集合的概念和性质。

2、了解元素与集合的表示方法。

3、熟记有关数集。

4、培养学生认识事物的能力。

教学重点:集合概念、性质教学难点:集合概念的理解教学过程:1、定义:集合:一般地,某些指定的对象集在一起就成为一个集合(集)。

元素:集合中每个对象叫做这个集合的元素。

由此上述例中集合的元素是什么?例(1)的元素为1、3、5、7,例(2)的元素为到两定点距离等于两定点间距离的点,例(3)的元素为满足不等式3x—2> x+3的实数x,例(4)的元素为所有直角三角形,例(5)为高一·六班全体男同学。

一般用大括号表示集合,{?}如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}。

则上几例可表示为??为方便,常用大写的拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(1)确定性;(2)互异性;(3)无序性。

3、元素与集合的'关系:隶属关系元素与集合的关系有“属于∈”及“不属于?(?也可表示为)两种。

如A={2,4,8,16},则4∈A,8∈A,32?A。

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A记作a?A,相反,a不属于集A记作a?A(或)注:1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q??元素通常用小写的拉丁字母表示,如a、b、c、p、q??2、“∈”的开口方向,不能把a∈A颠倒过来写。

4注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。

(2)非负整数集内排除0的集。

记作NXX或N+ 。

Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成ZXX请回答:已知a+b+c=m,A={x|ax2+bx+c=m},判断1与A的关系。

高中数学第一章集合教案1

高中数学第一章集合教案1

高中数学第一章集合教案1
教学目标:使学生掌握集合的基本概念和表示方法,了解集合的运算及其性质。

一、集合的定义和表示方法
1. 集合的基本概念
- 了解集合的概念和元素的概念
- 掌握集合的表示方法:列举法、描述法
2. 集合的符号表示
- 学习如何用符号表示集合:A={1,2,3,4,5}
二、集合的运算及其性质
1. 集合的运算
- 了解集合的交集、并集、差集等运算
- 学习集合的运算规则和性质:交换律、结合律、分配律
2. 集合的运算应用
- 能够解决实际问题中的集合运算
三、集合的性质和定理
1. 集合的性质
- 了解集合的基本性质:互斥、重复、子集等
- 学习如何判断两个集合是否相等
2. 集合的定理
- 掌握集合的代数定理和逻辑定理
教学步骤:
1. 引入新知识,通过生动有趣的例子引出集合的概念和表示方法
2. 介绍集合的运算及其性质,让学生掌握集合的基本运算规则
3. 练习集合的运算和性质,加深学生的理解和掌握程度
4. 引导学生应用集合运算解决实际问题,培养学生的应用能力
5. 总结本节课的内容,强调重点,帮助学生做好知识的复习和巩固
教学反馈:通过课堂练习、作业布置等方式对学生的学习情况进行及时反馈,发现问题及时纠正,提高学生的学习效果。

教学资源:教科书、课件、练习题等
教学评价方法:通过课堂练习、小测验、作业等不同方式对学生的学习情况进行评价,及时发现问题,实施个性化教学。

高中数学人教版(新教材)必修1学案1:1.2 集合间的基本关系

高中数学人教版(新教材)必修1学案1:1.2 集合间的基本关系

1.2 集合间的基本关系学习目标1.了解集合之间包含与相等的含义,能识别给定集合的子集;2.理解子集、真子集的概念;3.能使用Venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用,体会数形结合的思想.重点难点重点:集合间的包含与相等关系,子集与其子集的概念;难点:属于关系与包含关系的区别.知识梳理1.集合与集合的关系(1)一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作:()A B B A ⊆⊇或读作:A 包含于B (或B 包含A ).图示:(2)如果两个集合所含的元素完全相同(A B B A ⊆⊆且),那么我们称这两个集合相等.记作:A =B读作:A 等于B. 图示:2. 真子集 若集合A B ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集.记作:A B (或B A )读作:A 真包含于B (或B 真包含A )3.空集不含有任何元素的集合称为空集,记作:∅.规定:空集是任何集合的子集.学习目标探究一子集1.观察以下几组集合,并指出它们元素间的关系:①A ={1,2,3},B ={1,2,3,4,5};②A 为立德中学高一(2)班全体女生组成的集合, B 为这个班全体学生组成的集合; ③A ={x |x >2},B ={x |x >1}.2.子集定义:一般地,对于两个集合A 、B ,如果集合A 中都是集合B 中的元素,我们就说这两个 集合有包含关系,称集合A 为集合B 的.记作:(A B B A ⊆⊇或)读作:(或“”)符号语言:任意有则.3.韦恩图(Venn 图):用一条封闭曲线(圆、椭圆、长方形等)的内部来代表集合叫集合的韦恩图表示.牛刀小试1:图中A 是否为集合B 的子集?牛刀小试2:判断集合A 是否为集合B 的子集,若是则在()打√,若不是则在()打×:①A ={1,3,5}, B ={1,2,3,4,5,6} ( )②A ={1,3,5}, B ={1,3,6,9} ( )③A ={0}, B={x | x 2+2=0} ( )④A ={a,b,c,d }, B ={d,b,c,a } ( )探究二集合相等BB A,A1.观察下列两个集合,并指出它们元素间的关系(1)A ={x |x 是两条边相等的三角形},B ={x |x 是等腰三角形};2.定义:如果集合A 的都是集合B 的元素,同时集合B 都是集合A 的元素,我们就说集合A 等于集合B ,记作.牛刀小试3:()(){}{}12012A x x x B A B =++==--,,.集合与什么关系?探究三真子集1.观察以下几组集合,并指出它们元素间的关系:(1)A ={1,3,5}, B ={1,2,3,4,5,6};(2)A ={四边形}, B ={多边形}.2.定义:如果集合A ⊆B ,但存在元素,且,称集合A 是集合B 的真子集.记作:(或)读作:“A 真含于B ”(或B 真包含A ).探究四空集1.我们把的集合叫做空集,记为φ,并规定:空集是任何集合的子集.空集是任何非空集合的真子集.即φB ,(B φ≠) 例如:方程x 2+1=0没有实数根,所以方程 x 2+1=0的实数根组成的集合为φ.问题:你还能举几个空集的例子吗?2.深化概念:(1)包含关系{}a A ⊆与属于关系a A ∈有什么区别?(2)集合A B 与集合A B ⊆有什么区别?(3)0,{0}与 Φ三者之间有什么关系?3.结论:由上述集合之间的基本关系,可以得到下列结论:(1)任何一个集合是它本身的子集,即.(2)对于集合A 、B 、C ,若,,A B B C ⊆⊆则(类比b a ≤,c b ≤则c a ≤). 例1.写出集合{a ,b }的所有子集,并指出哪些是它的真子集.例2.判断下列各题中集合A 是否为集合B 的子集,并说明理由.(1)A ={1,2,3},B ={x |x 是8的约数};(2)A ={x |x 是长方形},B ={x |x 是两条对角线相等的平行四边形}达标检测1.集合A ={-1,0,1},A 的子集中含有元素0的子集共有( )A .2个B .4个C .6个D .8个2.已知集合M={x|-3<x<2,x∈Z},则下列集合是集合M的子集的为( ) A.P={-3,0,1}B.Q={-1,0,1,2}C.R={y|-π<y<-1,y∈Z}D.S={x||x|≤,x∈N}3.①0∈{0},②∅{0},③{0,1}⊆{(0,1)},④{(a,b)}={(b,a)}.上面关系中正确的个数为( )A.1 B.2C.3 D.44.设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是( )A.{a|a≤2}B.{a|a≤1}C.{a|a≥1}D.{a|a≥2}5.已知集合A={(x,y)|x+y=2,x,y∈N},试写出A的所有子集.——★ 参*考*答*案★——学习过程:探究一1.集合A的元素都属于集合B2.任何一个元素子集集合A含于集合B集合B包含集合Ax∈A,x∈BA⊆B牛刀小试1 集合A不是集合B的子集牛刀小试2 ①√ ②×③×④√探究二集合相等1.(1)中集合A中的元素和集合B中的元素相同.2.任何一个元素任何一个元素A=B牛刀小试3 A=B探究三真子集1.集合A中元素都是集合B的元素,但集合B有的元素不属于集合A.2.x∈Bx AA BB A探究四空集1.不含任何元素2.(1)前者为集合之间关系,后者为元素与集合之间的关系.(2) A = B或A B(3){0}与Φ :{0}是含有一个元素0的集合,Φ是不含任何元素的集合.如Φ{0}不能写成Φ ={0},Φ ∈{0}3.(1)(2)例1.解:集合{a,b}的子集:,{a},{b} ,{a, b}.集合{a,b}真子集:,{a},{b}.例2.解:(1)因为3不是8的约数,所以集合A不是集合B的子集.三、达标检测1.『解析』根据题意,在集合A的子集中,含有元素0的子集有{0}、{0,1}、{0,-1}、{-1,0,1}四个,故选B.『答案』B2.『解析』集合M={-2,-1,0,1},集合R={-3,-2},集合S={0,1},不难发现集合P 中的元素-3∉M,集合Q中的元素2∉M,集合R中的元素-3∉M,而集合S={0,1}中的任意一个元素都在集合M中,所以S⊆M.故选D.『答案』D3.『解析』①正确,0是集合{0}的元素;②正确,∅是任何非空集合的真子集;③错误,集合{0,1}含两个元素0,1,而{(0,1)}含一个元素点(0,1),所以这两个集合没关系;④错误,集合{(a,b)}含一个元素点(a,b),集合{(b,a)}含一个元素点(b,a),这两个元素不同,所以集合不相等.故选B.『答案』B4.『解析』由A={x|1<x<2},B={x|x<a},A⊆B,则{a|a≥2}.『答案』D5.『解』因为A={(x,y)|x+y=2,x,y∈N},所以A={(0,2),(1,1),(2,0)}.所以A的子集有:∅,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)},{(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.。

新课标人教A版高中数学必修一第一章第一节《集合》学案

新课标人教A版高中数学必修一第一章第一节《集合》学案

课题集合年级高一授课对象编写人胥勋彪时间2018.2.3 学习重点、难点集合的基本运算、集合的基本关系上课内容:集合的含义及其表示、基本关系、基本运算知识点总结1、集合的含义(1)含义:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)。

(2)表示方法:集合通常用大写拉丁字母A,B,C…表示,元素用小写拉丁字母a,b,c…表示。

(3)元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉两种)若a是集合A中的元素,则称a属于集合A,记作a∈A;若a不是集合A的元素,则称a不属于集合A,记作a∉A。

(4)常用的数集及其记法N:非负整数集(自然数集),包括0 N*或N+:正整数集Z:整数集Q:有理数集R:全体实数的集合2、集合元素的三个特征:(1)确定性:给定的集合,它的元素必须是确定的。

(2)互异性:一个给定集合中的元素是互不相同的。

(3)无序性:集合中的元素是没有先后顺序的。

3.一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作: ()A BB A ⊆⊇或 读作:A 包含于B(或B 包含A).4.集合相等:如果集合A 是集合B 的子集(A B ⊆),且集合B 是集合A 的子集(B A ⊆),此时,集合A 与集合B 中的元素是一样的,因此,集合A 与集合B 相等,记作.A B =即,A B B A A B ⊆⊆⇔=且.5.真子集如果集合B A ⊆,但存在元素x B ∈,且x A ∉,我们称集合A 是集合B 的真子集,即如果A B ⊆且A B ≠,那么集合A 是集合B 的真子集,记作A B(或B A). 6.空集∅我们把不含任何元素的集合叫做空集,记为∅,并规定:空集是任何集合的子集,是任何非空集合的真子集. 7.并集⋃一般的,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与B 的并集,记作:B A ⋃(读作:A 并B )8.交集⋂一般的,由属于集合A 且属于集合B 的元素组成的集合,称为A 与B 的交集。

高一数学必修1第一章集合全章教案

高一数学必修1第一章集合全章教案

第一章集合与函数概念§1.1集合教学目标:(1)了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性•互异性.无序性;(4)会用集合语言表示有关数学对象;教学重点•难点重点:集合的含义与表示方法•难点:表示法的恰当选择•1.1.1集合的含义与表示(一)集合的有关概念:1. 定义:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。

2•表示方法:集合通常用大括号{}或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。

3. 集合相等:构成两个集合的元素完全一样。

4. 元素与集合的关系:(元素与集合的关系有“属于•”及“不属于两种)⑴若a是集合A中的元素,则称a属于集合A,记作a_A ;⑵若a不是集合A的元素,则称a不属于集合A,记作a ' A o5. 常用的数集及记法:非负整数集(或自然数集),记作N ;正整数集,记作N*或N + ; N内排除0的集.整数集,记作Z; 有理数集,记作Q; 实数集,记作R ;6. 关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。

女口:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。

“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的•⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。

如:方程(x-2)(x-1) 2=0的解集表示为:1,-2 ?,而不是「1,1,-2 ?⑶无序性:即集合中的元素无顺序,可以任意排列、调换。

练1:判断以下元素的全体是否组成集合,并说明理由:⑶ 大于3小于11的偶数;⑵我国的小河流;⑶非负奇数;⑷某校2011级新生;⑸ 血压很高的人;7. 元素与集合的关系:(元素与集合的关系有“属于•”及“不属于”两种⑴若a是集合A中的元素,则称a属于集合A,记作a A ;⑵若a不是集合A的元素,则称a不属于集合A,记作a: A°例如,我们A表示1~20以内的所有质数”组成的集合,则有3(A , 4老A,等等。

人教版高中数学必修一《集合》导学案(含答案)

人教版高中数学必修一《集合》导学案(含答案)

第一章集合与函数概念§1.1集合1. 1.1集合的含义与表示第 1 课时集合的含义课时目标1.通过实例了解集合的含义,并掌握集合中元素的三个特性 .2.体会元素与集合间的“从属关系” .3.记住常用数集的表示符号并会应用.1.元素与集合的概念(1)把 ________统称为元素,通常用__________________ 表示.(2)把 ________________________ 叫做集合 (简称为集 ),通常用 ____________________ 表示.2.集合中元素的特性:________、 ________、 ________.3.集合相等:只有构成两个集合的元素是______的,才说这两个集合是相等的.4.元素与集合的关系关系概念记法读法元素与属于如果 ________的元素,a∈ A a 属于集合 A 就说 a 属于集合 A集合的如果 ________中的元素,关系不属于a?A a 不属于集合 A就说 a 不属于集合 A5.常用数集及表示符号:名称自然数集正整数集整数集有理数集实数集符号________________________一、选择题1.下列语句能确定是一个集合的是()A.著名的科学家B.留长发的女生C.2010 年广州亚运会比赛项目D.视力差的男生2.集合 A 只含有元素 a,则下列各式正确的是 ()A.0∈A B . a?AC.a∈ A D .a= A3.已知 M 中有三个元素可以作为某一个三角形的边长,则此三角形一定不是() A .直角三角形 B .锐角三角形C.钝角三角形 D .等腰三角形4.由 a2,2- a,4 组成一个集合A,A 中含有 3 个元素,则实数 a 的取值可以是 () A . 1B.- 2C. 6D. 25.已知集合 A 是由 0,m,m2- 3m+ 2 三个元素组成的集合,且 2∈ A,则实数 m 为 () A . 2 B . 3C.0或 3 D . 0,2,3 均可6.由实数 x、- x、 |x|、 x2及-3x3所组成的集合,最多含有()A.2 个元素B. 3 个元素C.4 个元素D.5 个元素题号123456答案二、填空题7.由下列对象组成的集体属于集合的是______. (填序号 )①不超过π的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.8.集合 A 中含有三个元素0,1, x,且 x2∈ A,则实数 x 的值为 ________.9.用符号“∈”或“ ?”填空- 2_______R ,- 3_______Q,- 1_______N,πZ .三、解答题10.判断下列说法是否正确?并说明理由.(1)参加 2010 年广州亚运会的所有国家构成一个集合;(2)未来世界的高科技产品构成一个集合;3,1组成的集合含有四个元素;(3)1,0.5,2 2(4)高一 (三 )班个子高的同学构成一个集合.11.已知集合 A 是由 a- 2,2a2+ 5a,12 三个元素组成的,且-3∈ A,求 a.能力提升12.设 P、Q 为两个非空实数集合, P 中含有 0,2,5 三个元素, Q 中含有 1,2,6 三个元素,定义集合 P+Q 中的元素是 a+ b,其中 a∈ P, b∈ Q,则 P+ Q 中元素的个数是多少?13.设 A 为实数集,且满足条件:若1∈ A (a≠ 1).a∈A,则1-a求证: (1)若 2∈ A,则 A 中必还有另外两个元素;(2)集合 A 不可能是单元素集.1.考查对象能否构成一个集合,就是要看是否有一个确定的特征 (或标准 ),能确定一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.集合中元素的三个性质(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素 a, b, c 与由元素 b, a, c 组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.第一章集合与函数概念§1.1 集合1. 1.1 集合的含义与表示第 1课时集合的含义知识梳理1. (1) 研究对象小写拉丁字母 a,b, c,(2) 一些元素组成的总体大写拉丁字母A , B,C, 2.确定性互异性无序性N*或N+ Z Q R3.一样 4.a 是集合 A a 不是集合 A 5.N作业设计1. C[ 选项 A 、 B、 D 都因无法确定其构成集合的标准而不能构成集合.]2.C[ 由题意知 A 中只有一个元素 a ,∴ 0?A,a∈ A,元素 a 与集合 A 的关系不应用“=”,故选 C.]3.D[ 集合 M 的三个元素是互不相同的,所以作为某一个三角形的边长,三边是互不相等的,故选 D.]4. C [ 因 A 中含有 3 个元素,即 a 2,2 - a,4 互不相等,将选项中的数值代入验证知答案选 C.]5. B [ 由 2∈A 可知:若m= 2,则 m2- 3m+ 2= 0,这与 m2- 3m+ 2≠ 0 相矛盾;若 m2- 3m+ 2= 2,则 m= 0 或 m= 3,当 m= 0 时,与 m≠ 0 相矛盾,当 m= 3 时,此时集合 A= {0,3,2} ,符合题意. ]6.A [ 方法一 因为 |x|= ±x , x 2= |x|,-3x 3=- x ,所以不论 x 取何值,最多只能写成两种形式: x 、- x ,故集合中最多含有 2 个元素. 方法二 令 x = 2,则以上实数分别为: 2,- 2,2,2,- 2,由元素互异性知集合最多含 2 个元素. ]7.①④.解析 ①④中的标准明确,②③中的标准不明确.故答案为①④8.- 1解析 当 x = 0,1,- 1 时,都有 x 2∈ A ,但考虑到集合元素的互异性, x ≠ 0, x ≠ 1,故答案为- 1.9.∈∈??10. 解 (1) 正确.因为参加 2010 年广州亚运会的国家是确定的,明确的.(2)不正确.因为高科技产品的标准不确定.1,在这个集合中只能作(3)不正确.对一个集合,它的元素必须是互异的,由于 0.5= 2为一元素,故这个集合含有三个元素. (4)不正确.因为个子高没有明确的标准.11. 解 由- 3∈ A ,可得- 3= a - 2 或- 3= 2a 2+5a ,∴ a =- 1 或 a =-32.则当 a =- 1 时, a - 2=- 3,2a 2+ 5a =- 3,不符合集合中元素的互异性,故舍去.a =- 1 应当 a =- 3时, a - 2=- 7, 2a 2+ 5a =- 3,2 23∴ a =- 2.12. 解 ∵当 a = 0 时, b 依次取 1,2,6 ,得 a + b 的值分别为1,2,6;当 a =2 时, b 依次取 1,2,6,得 a +b 的值分别为 3,4,8; 当 a =5 时, b 依次取 1,2,6,得 a +b 的值分别为 6,7,11. 由集合元素的互异性知 P + Q 中元素为1,2,3,4,6,7,8,11 共 8 个. 113. 证明 (1) 若 a ∈ A ,则 ∈ A.又∵ 2∈ A ,∴1=- 1∈A.1- 21 1 ∵- 1∈ A ,∴ 1--1=2∈ A. ∵ 1∈A ,∴1=2∈ A.211- 21∴ A 中另外两个元素为-1, .21(2)若 A 为单元素集,则a = 1-a ,即 a 2- a +1= 0,方程无解.∴ a ≠ 1,∴ A 不可能为单元素集.1- a第 2 课时集合的表示课时目标1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.1.列举法把集合的元素____________ 出来,并用花括号“{ }”括起来表示集合的方法叫做列举法.2.描述法用集合所含元素的共同特征表示集合的方法称为__________.不等式 x- 7<3 的解集为 __________.所有偶数的集合可表示为________________ .一、选择题1.集合 {x ∈N + |x- 3<2} 用列举法可表示为()A . {0,1,2,3,4}B . {1,2,3,4}C.{0,1,2,3,4,5} D . {1,2,3,4,5}2.集合 {(x , y)|y= 2x- 1} 表示 ()A .方程 y= 2x- 1B.点 (x, y)C.平面直角坐标系中的所有点组成的集合D.函数 y= 2x- 1 图象上的所有点组成的集合3.将集合表示成列举法,正确的是()A . {2,3}B . {(2,3)}C.{x = 2, y= 3} D . (2,3)4.用列举法表示集合{x|x2 - 2x+1= 0} 为 ()A . {1,1}B.{1}C.{x = 1} D . {x2 - 2x +1= 0}5.已知集合 A = {x ∈ N|-3≤ x≤3} ,则有 ()A.- 1∈A B.0∈AC. 3∈A D.2∈A6.方程组的解集不可表示为 ()A .B.C.{1,2} D . {(1,2)}题2356号答案二、填空题87.用列举法表示集合 A = {x|x ∈ Z,6-x∈ N}=______________.8.下列各组集合中,满足P= Q 的有 ________.(填序号 )①P= {(1,2)} ,Q= {(2,1)} ;② P= {1,2,3} , Q= {3,1,2} ;③ P= {(x , y)|y =x- 1, x∈ R} ,Q= {y|y = x-1, x∈ R} .9.下列各组中的两个集合M 和 N,表示同一集合的是________. (填序号 )①M = { π},N = {3.141 59} ;② M = {2,3} , N= {(2,3)} ;③ M = {x| - 1<x≤1, x∈N} , N ={1} ;④M = {1 , 3,π}, N ={ π,1, |-3|} .三、解答题10.用适当的方法表示下列集合①方程 x(x2 + 2x+ 1)=0 的解集;②在自然数集内,小于 1 000 的奇数构成的集合;③不等式 x- 2>6 的解的集合;④大于 0.5 且不大于 6 的自然数的全体构成的集合.11.已知集合 A = {x|y = x2+ 3} ,B = {y|y =x2 + 3} , C= {(x ,y)|y= x2+3} ,它们三个集合相等吗?试说明理由.能力 提 升12.下列集合中,不同于另外三个集合的是 ()A . {x|x = 1}B . {y|(y - 1)2= 0}C .{x = 1}D .{1}k + 1,k ∈ Z} ,N = {x|x = k + 1,k ∈ Z} ,若 x0∈ M ,则 x0 与 N13.已知集合 M = {x|x = 24 4 2的关系是 ( )A . x0∈ NB .x0 ? NC .x0 ∈ N 或 x0 ? ND .不能确定1.在用列举法表示集合时应注意:①元素间用分隔号“,”;②元素不重复;③元素无顺序;④列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式 (即代表元素是什么 ),是数、还是有序实数对 (点 )、还是集合、还是其他形式?(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.第 2 课时集合的表示知识梳理1.一一列举2.描述法 {x|x<10}{x ∈ Z|x= 2k, k∈ Z}作业设计1. B[{x ∈N + |x- 3<2} ={x ∈ N+ |x<5} = {1,2,3,4} . ]2. D[ 集合 {(x , y)|y= 2x- 1} 的代表元素是 (x, y), x, y 满足的关系式为y= 2x- 1,因此集合表示的是满足关系式y= 2x- 1 的点组成的集合,故选 D.]3. B[ 解方程组x+ y= 5,x= 2,得y= 3. 2x- y= 1.所以答案为 {(2,3)}. ]4. B[ 方程 x2- 2x + 1=0 可化简为 (x- 1)2= 0,∴x1=x2= 1,故方程 x2- 2x+ 1= 0 的解集为 {1} . ]5. B6.C[方程组的集合中最多含有一个元素,且元素是一对有序实数对,故 C不符合. ]7. {5,4,2 ,- 2}解析∵ x∈ Z,8∈N ,6- x∴6- x= 1,2,4,8.此时 x= 5,4,2,- 2,即 A = {5,4,2 ,- 2} .8.②解析①中 P、Q 表示的是不同的两点坐标;②中 P= Q;③中 P 表示的是点集,Q 表示的是数集.9.④解析只有④中M 和 N 的元素相等,故答案为④.10.解 ①∵方程 x(x2 + 2x + 1)= 0 的解为 0 和- 1, ∴解集为 {0 ,- 1} ;② {x|x = 2n + 1,且 x<1 000 , n ∈ N} ; ③ {x|x>8} ;④ {1,2,3,4,5,6} .11.解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合. 理由如下:集合 A 中代表的元素是x ,满足条件 y = x2+ 3 中的 x ∈ R ,所以 A =R ;集合 B 中代表的元素是y ,满足条件 y =x2+ 3 中 y 的取值范围是 y ≥3,所以 B ={y|y ≥3}.集合 C 中代表的元素是 (x , y),这是个点集,这些点在抛物线y = x2+ 3 上,所以 C ={P|P 是抛物线 y = x2+ 3 上的点 } .12. C [由集合的含义知 {x|x = 1} = {y|(y - 1)2= 0} = {1} , 而集合 {x = 1} 表示由方程 x =1 组成的集合,故选 C.]13. A [M = {x|x = 2k + 1, k ∈ Z} , N = {x|x = k + 2, k ∈ Z} ,4 4∵ 2k +1(k ∈ Z) 是一个奇数, k + 2(k ∈ Z) 是一个整数,∴ x0∈ M 时,一定有 x0∈ N ,故选 A.]。

人教版高中数学必修1学案:集合的基本运算(含答案)

人教版高中数学必修1学案:集合的基本运算(含答案)

1.1.3集合的基本运算(一)1.理解并集、交集的含义,会求两个简单集合的并集与交集.2.体验通过实例的分析和阅读来自学探究集合间的关系与运算的过程,培养学生的自学阅读能力和自主探究能力.3.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.1.一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与B的并集,记作A∪B(读作“A并B”),即A∪B={x|x∈A,或x∈B}.2.一般地,由属于集合A且属于集合B的所有元素组成的集合,称为集合A与B的交集,记作A∩B(读作“A交B”),即A∩B={x|x∈A,且x∈B}.3.A∩A=__A__,A∪A=__A__,A∩∅=__∅__,A∪∅=A.4.若A⊆B,则A∩B=__A__,A∪B=__B__.5.A∩B⊆A,A∩B⊆B,A⊆A∪B,A∩B⊆A∪B.对点讲练求两个集合的交集与并集【例1】求下列两个集合的并集和交集.(1)A={1,2,3,4,5},B={-1,0,1,2,3};(2)A={x|x<-2},B={x|x>-5}.解(1)如图所示,A∪B={-1,0,1,2,3,4,5},A∩B={1,2,3}.(2)结合数轴(如图所示)得:A∪B=R,A∩B={x|-5<x<-2}.规律方法求两个集合的交集、并集依据它们的定义,借用Venn图或结合数轴分析两个集合的元素的分布情况,有利于准确写出交集、并集.变式迁移1(1)若集合A={x|x>-1},B={x|-2<x<2},则A∪B等于()A .{x |x >-2}B .{x |x >-1}C .{x |-2<x <-1}D .{x |-1<x <2} (2)若将(1)中A 改为A ={x |x >a },求A ∪B ,A ∩B . (1)答案 A解析 画出数轴,故A ∪B ={x |x >-2}.(2)解 如图所示,当a <-2时,A ∪B =A ,A ∩B ={x |-2<x <2}; 当-2≤a <2时,A ∪B ={x |x >-2},A ∩B ={x |a <x <2}; 当a ≥2时,A ∪B ={x |-2<x <2或x >a },A ∩B =∅.已知集合的交集、并集求参数【例2】 已知A ={x |2a ≤x ≤a +3},B ={x |x <-1或x >5}. (1)若A ∩B =∅,求a 的取值范围; (2)若A ∪B =R ,求a 的取值范围. 解 (1)由A ∩B =∅, ①若A =∅, 有2a >a +3,∴a >3. ②若A ≠∅,如图:∴⎩⎪⎨⎪⎧2a ≥-1a +3≤52a ≤a +3,解得-12≤a ≤2.综上所述,a 的取值范围是{a |-12≤a ≤2或a >3}.(2)由A ∪B =R ,如图所示,∴⎩⎪⎨⎪⎧2a ≤-1a +3≥5,解得a ∈∅. 规律方法 出现交集为空集的情形,应首先考虑集合中有没有空集,即分类讨论.其次,与不等式有关的集合的交、并运算中,数轴分析法直观清晰,应重点考虑.变式迁移2 已知集合A ={x |2<x <4},B ={x |a <x <3a }. (1)若A ∩B =∅,试求a 的取值范围; (2)若A ∩B ={x |3<x <4},试求a 的取值范围. 解 (1)如图,有两类情况,一类是B ≠∅⇒a >0. 此时,又分两种情况:①B 在A 的左边,如图B 所示; ②B 在A 的右边,如图B ′所示.B 或B ′位置均使A ∩B =∅成立, 即3a ≤2或a ≥4,解得0<a ≤23,或a ≥4.另一类是B =∅,即a ≤0时,显然A ∩B =∅成立. 综上所述,a 的取值范围是{a |a ≤23,或a ≥4}.(2)因为A ={x |2<x <4},A ∩B ={x |3<x <4}, 如图所示:集合B 若要符合题意,显然有a =3,此时B ={x |3<x <9},所以a =3为所求.交集、并集性质的运用【例3】 已知集合A ={x |1<ax <2},B ={x ||x |<1},且满足A ∪B =B ,求实数a 的取值范围.解 ∵A ∪B =B ,∴A ⊆B . (1)当a =0时,A =∅,满足A ⊆B . (2)当a >0时,A =⎩⎨⎧⎭⎬⎫x |1a <x <2a .∵A ⊆B ,∴⎩⎨⎧1a ≥-12a ≤1∴a ≥2.(3)当a <0时,A =⎩⎨⎧⎭⎬⎫x |2a <x <1a .∵A ⊆B ,∴⎩⎨⎧2a≥-11a ≤1∴a ≤-2.综合(1)(2)(3)知,a 的取值范围是 {a |a ≤-2或a =0或a ≥2}.规律方法 明确A ∩B =B 和A ∪B =B 的含义,根据问题的需要,将A ∩B =B 和A ∪B =B 转化为等价的关系式B ⊆A 和A ⊆B 是解决本题的关键.另外在B ⊆A 时易忽视B =∅时的情况.变式迁移3 设集合A ={-2},B ={x |ax +1=0,a ∈R },若A ∩B =B ,求a 的值. 解 ∵A ∩B =B ,∴B ⊆A . ∵A ={-2}≠∅, ∴B =∅或B ≠∅. 当B =∅时,方程ax +1=0无解,此时a =0. 当B ≠∅时,此时a ≠0,则B ={-1a },∴-1a∈A ,即有-1a =-2,得a =12.综上,得a =0或a =12.1.A ∪B 的定义中“或”的意义与通常所说的“非此即彼”有原则的区别,它们是“相容”的.求A ∪B 时,相同的元素在集合中只出现一次.2.A ∩B =A ⇔A ⊆B ,A ∪B =B ⇔A ⊆B ,这两个性质非常重要.另外,在解决有条件A ⊆B 的集合问题时,不要忽视A =∅的情况.课时作业一、选择题 1.设集合A ={x |-5≤x <1},B ={x |x ≤2},则A ∩B 等于( ) A .{x |-5≤x <1} B .{x |-5≤x ≤2}C.{x|x<1} D.{x|x≤2}答案 A2.下列四个推理:①a∈(A∪B)⇒a∈A;②a∈(A∩B)⇒a∈(A∪B);③A⊆B⇒A∪B=B;④A∪B=A⇒A∩B=B.其中正确的个数是()A.1个B.2个C.3个D.4个答案 C解析②③④正确.3.设A={x|1≤x≤3},B={x|x<0或x≥2},则A∪B等于()A.{x|x<0或x≥1} B.{x|x<0或x≥3}C.{x|x<0或x≥2} D.{x|2≤x≤3}答案 A解析结合数轴知A∪B={x|x<0或x≥1}.4.已知A={x|x≤-1或x≥3},B={x|a<x<4},若A∪B=R,则实数a的取值范围是() A.3≤a<4 B.-1<a<4 C.a≤-1 D.a<-1答案 C解析结合数轴知答案C正确.5.满足条件M∪{1}={1,2,3}的集合M的个数是()A.1 B.2 C.3 D.4答案 B解析由已知得M={2,3}或{1,2,3},共2个.二、填空题6.已知A={(x,y)|x+y=3},B={(x,y)|x-y=1},则A∩B=________.答案{(2,1)}7.设集合A={x|-1≤x<2},B={x|x≤a},若A∩B≠∅,则实数a的取值范围为________.答案a≥-1解析由A∩B≠∅,借助于数轴知a≥-1.8.已知集合A={x|x<1或x>5},B={x|a≤x≤b},且A∪B=R,A∩B={x|5<x≤6},则2a-b=________.答案-4解析如图所示,可知a=1,b=6,2a-b=-4.三、解答题9.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.解∵B⊆(A∪B),∴x2-1∈A∪B.∴x2-1=3或x2-1=5.解得x=±2或x=±6.若x2-1=3,则A∩B={1,3}.若x2-1=5,则A∩B={1,5}.10.设集合A={x|x2-3x+2=0},B={x|x2-4x+a=0},若A∪B=A,求实数a的取值范围.解A={1,2},∵A∪B=A,∴B⊆A,集合B有两种情况:B=∅或B≠∅.(1)B=∅时,方程x2-4x+a=0无实数根,∴Δ=16-4a<0,∴a>4.(2)B≠∅时,当Δ=0时,a=4,B={2}⊆A满足条件;当Δ>0时,若1,2是方程x2-4x+a=0的根,由根与系数的关系知矛盾,无解,∴a=4.综上,a的取值范围是a≥4.【探究驿站】11.求满足P∪Q={1,2}的集合P,Q共有多少组?解可采用列举法:当P=∅时,Q={1,2};当P={1}时,Q={2},{1,2};当P={2}时,Q={1},{1,2};当P={1,2}时,Q=∅,{1},{2},{1,2},∴一共有9组.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合的含义及其表示
1.一般地,把研究对象统称为 ,把一些元素组成的总体叫 ,也简称 ;
2.集合中的元素具备 、 、 特征性质;
3.集合常用大写字母 表示,元素用小写字母 表示;
(1)如果a 是集合A 的元素,就说a 属于(belong to )A ,记作a A
(2)如果a 不是集合A 的元素,就说a 不属于(not belong to )A ,记作a A
(3)集合相等:构成两个集合的元素 .
4.常用数集及其记法
非负整数集(或自然数集),记作 ; 正整数集,记作 或 ;
整数集,记作 ; 有理数集,记作 ; 实数集,记作 。

5.集合的常用表示方法有:
(1)把集合的元素一一列举出来,并用花括号“{ }”括起来,这种表示集合的方法叫做 ;
(2)用集合所含元素的共同特征表示集合的方法称为 ,一般形式为{|}x A P ∈,其中x 代表元素,P 是确定条件;
(3)韦恩图法;
(4)自然语言
6. 集合的分类: 、 、
子集、真子集
1、子集:对于两个集合A 与B ,如果集合A 的 元素都是集合B 的元素,我们就说两个集合有包含关系。

称集合A 是集合B 的子集。

记作:B A ⊆或A B ⊇。

读作:“A 含于B ”或“B 包含A ”;
2、在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为
图(韦恩图). 用Venn 图表示两个集合间的“包含”关系为: (A B B A ⊆⊇或子集性质:(1)任何一个集合是 的子集;即:A⊆A; (2)若B A ⊆,C B ⊆,则 。

3、集合相等:对于两个集合A 与B ,如果集合A 是集合B 的子集(B A ⊆且集合B 是集合A 的子集(B A ⊆),此时集合A 与集合B 的元素是一样的,因此,称集合A 与集合B 。

记作:B A =。

4、 真子集:对于两个集合A 与B ,如果A B ,但存在元素x B ∈且
x A ∉,我们称集合A 是集合B 的真子集。

记作:A B (或B A ),读作:A 真包含于B (或B 真包含A ).
5、空集:把 的集合叫做空集,记作 . 规定:空集是 集合的子集。

6、空集是任何非空集合的
7、真子集的传递性:
8、全集:如果集合S 包含有我们所要研究的各个集合,这时S 可以看作一个全集(Universal set ),全集通常记作U.
9、补集:设A S
⊆,由S中 A的所有元素组成的集合称为S的子集A 的
记作: ,即补集的Venn图表示:
交集、并集
1.交集的定义:一般地,叫做A与B的交集.
记作读作:即A I B=
Venn图表示.
2.并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A与B的并集.记作:读作:
即A I B=
Venn图表示.
3.性质:①交集的性质 (1)A I A= A IΦ= (2)A I B⊆ A I B⊆.
②并集的性质:(1)A Y A= A YΦ= (2)A Y B A A Y B B
③若A Y B=B或A I B=A,则
4. 分别指出A、B两个集合下列五种情况的交集部分、并集部分。

5.
∩A有什么关系?
A
(2)A ∪B 与集合A 、B 、B ∪A 有什么关系?
全集、补集
1.全集:如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作 . 2.补集:已知集合U , 集合A ⊆U ,由U 中所有不属于A 的元素组成的集合,叫作A 相对于U 的补集,记作: ,读作:“A 在U 中 ”, 即U C A = .
补集的Venn 图表示:
说明:全集是相对于所研究问题而言的一个相对概念,补集的概念必须要有全集的限制.
3. 性质:(1)()U A C A =I ,()U A C A =U ;(2)()U U C C A = .
4.分别用集合A 、B 、C 表示下图的阴影部分.
(1) ; (2) ;(3) ; (4) .。

相关文档
最新文档